CN107122502A - A kind of method of optimized alloy extrusion process - Google Patents
A kind of method of optimized alloy extrusion process Download PDFInfo
- Publication number
- CN107122502A CN107122502A CN201610100295.9A CN201610100295A CN107122502A CN 107122502 A CN107122502 A CN 107122502A CN 201610100295 A CN201610100295 A CN 201610100295A CN 107122502 A CN107122502 A CN 107122502A
- Authority
- CN
- China
- Prior art keywords
- extrusion
- alloy
- billet
- temperature
- extruded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001125 extrusion Methods 0.000 title claims abstract description 263
- 238000000034 method Methods 0.000 title claims abstract description 166
- 230000008569 process Effects 0.000 title claims abstract description 120
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 69
- 239000000956 alloy Substances 0.000 title claims abstract description 69
- 238000004088 simulation Methods 0.000 claims abstract description 26
- 238000005457 optimization Methods 0.000 claims abstract description 18
- 238000001192 hot extrusion Methods 0.000 claims abstract description 16
- 239000007787 solid Substances 0.000 claims abstract description 13
- 238000002474 experimental method Methods 0.000 claims abstract description 12
- 238000004458 analytical method Methods 0.000 claims abstract description 11
- 238000007619 statistical method Methods 0.000 claims abstract description 9
- 230000008676 import Effects 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 34
- 229910052759 nickel Inorganic materials 0.000 claims description 22
- 229910000601 superalloy Inorganic materials 0.000 claims description 22
- 238000010219 correlation analysis Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 10
- 238000013401 experimental design Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 4
- 238000004663 powder metallurgy Methods 0.000 abstract description 2
- 238000009778 extrusion testing Methods 0.000 abstract 1
- 238000013433 optimization analysis Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 17
- 230000002596 correlated effect Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003050 experimental design method Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010275 isothermal forging Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000009862 microstructural analysis Methods 0.000 description 1
- 238000013386 optimize process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/18—Manufacturability analysis or optimisation for manufacturability
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Extrusion Of Metal (AREA)
Abstract
本发明涉及一种优化合金挤压工艺的方法,具体涉及一种粉末冶金合金的热挤压工艺的优化方法,属于塑性加工领域。本发明首先建立待挤压合金的本构方程,然后再依据本构方程,并将其导入固体力学有限元软件,通过试验设计方法进行挤压试验的模拟并分析其结果,最后借用统计分析和优化分析,得出各因子对挤压过程的影响大小,实现对挤压工艺各参数的优化。本发明通过合理有限次的实验获得可信度极高的本构方程后,将本构方程引入固体力学有限元分析软件的模拟分析和统计分析软件的统计优化结果,建立了优化合金挤压工艺的方法,得到了合理实用的优化参数,并且得到了实践验证。
The invention relates to a method for optimizing an alloy extrusion process, in particular to an optimization method for a powder metallurgy alloy hot extrusion process, and belongs to the field of plastic processing. The present invention first establishes the constitutive equation of the alloy to be extruded, and then imports it into the solid mechanics finite element software according to the constitutive equation, carries out the simulation of the extrusion test through the test design method and analyzes the results, and finally uses statistical analysis and Through optimization analysis, the influence of each factor on the extrusion process can be obtained, and the optimization of each parameter of the extrusion process can be realized. After obtaining the highly reliable constitutive equation through reasonable and limited experiments, the present invention introduces the constitutive equation into the simulation analysis of solid mechanics finite element analysis software and the statistical optimization results of statistical analysis software, and establishes an optimized alloy extrusion process The method has obtained reasonable and practical optimization parameters, and has been verified by practice.
Description
技术领域technical field
本发明涉及一种优化合金挤压工艺的方法,具体涉及一种粉末冶金合金的热挤压工艺的优化方法,属于塑性加工领域。The invention relates to a method for optimizing an alloy extrusion process, in particular to an optimization method for a powder metallurgy alloy hot extrusion process, and belongs to the field of plastic processing.
背景技术Background technique
粉末镍基高温合金具有组织均匀、无宏观偏析、合金化程度高、屈服强度高、抗氧化性能和疲劳性能好等优点,因此是热结构部件的常用材料之一。通过挤压细化晶粒,不仅为后续的等温锻造和超塑性锻造提供组织基础,也是提高合金的力学性能的有效手段。Powdered nickel-based superalloy has the advantages of uniform structure, no macro-segregation, high degree of alloying, high yield strength, good oxidation resistance and fatigue performance, so it is one of the commonly used materials for thermal structural components. Refining the grains by extrusion not only provides the organization basis for the subsequent isothermal forging and superplastic forging, but also an effective means to improve the mechanical properties of the alloy.
粉末镍基高温合金的热挤压工艺参数主要涉及挤压比,挤压速率,挤压温度、摩擦因子、工作带长度以及模具温度、模具锥角等,以上参数均会影响挤压过程。由于参数选择的不合适,会使得挤压出现“闷车”(无法顺利挤出)、表面开裂、组织不均匀等现象,其中“闷车”现象往往在镍基高温合金中属于常见现象。传统的方法是通过大量的“试错”实验研究不同参数下的挤压情况,然后不断调整参数,力图寻求较好的挤压效果:即既能最大限度地发挥设备的能力,又能顺利地将试件挤出,获得理想的组织和性能。但是,如上所述,影响挤压的参数众多,且存在相互影响,无法通过有限次的实验去达到所需的效果,且会导致很多实验的失败;或者没能发挥设备的最大能力而造成资源的浪费;所以,存在为追求挤压的顺利而不得不选择比较安全的挤压工艺而致使挤压产品的性能不佳等等问题。而通过实验的获得加工窗口,往往运用到实际挤压过程中也需要进一步的调整,以保证顺利挤出。随着计算机技术的发展和模拟方法的成熟,使得许多工程上的问题能够通过计算机的模拟。例如,Deform有限元软件近年来更多地被用于热挤压的模拟。而质量管理的统计分析软件如Minitab可以依据试验结果将多个影响因素和结果的关系建立起来。这为过程复杂、成本昂贵的热挤压工艺优化提供了基础。The hot extrusion process parameters of powdered nickel-based superalloy mainly involve extrusion ratio, extrusion rate, extrusion temperature, friction factor, working belt length, mold temperature, and mold cone angle, etc. All of the above parameters will affect the extrusion process. Due to the inappropriate selection of parameters, it will cause "stuck" (unable to extrude smoothly), surface cracking, uneven structure and other phenomena in extrusion. Among them, "stuck" phenomenon is often a common phenomenon in nickel-based superalloys. The traditional method is to study the extrusion situation under different parameters through a large number of "trial and error" experiments, and then continuously adjust the parameters, trying to find a better extrusion effect: that is, it can not only maximize the ability of the equipment, but also smoothly Extrude the test piece to obtain the desired structure and properties. However, as mentioned above, there are many parameters that affect extrusion, and there are mutual influences. It is impossible to achieve the desired effect through a limited number of experiments, and it will lead to the failure of many experiments; Therefore, there are problems such as the pursuit of smooth extrusion and having to choose a safer extrusion process, which leads to poor performance of the extruded product. The processing window obtained through experiments often requires further adjustments in the actual extrusion process to ensure smooth extrusion. With the development of computer technology and the maturity of simulation methods, many engineering problems can be simulated by computer. For example, Deform finite element software has been used more in the simulation of hot extrusion in recent years. Statistical analysis software for quality management such as Minitab can establish the relationship between multiple influencing factors and results based on test results. This provides a basis for the optimization of the complex and expensive hot extrusion process.
发明内容Contents of the invention
本发明针对现有合金挤压工艺存在的不足之处,提供一种经济、快速、合理而有效的优化合金挤压工艺的方法;为确定实际挤压工艺提供指导依据。The invention aims at the deficiencies of the existing alloy extrusion process, provides an economical, fast, reasonable and effective method for optimizing the alloy extrusion process, and provides a guiding basis for determining the actual extrusion process.
本发明一种优化合金挤压工艺的方法,包括下述步骤:A method for optimizing alloy extrusion process of the present invention comprises the following steps:
步骤一建立待挤压合金的本构方程Step 1 Establish the constitutive equation of the alloy to be extruded
在A-B之间选取至少3个点值、优选为3-10个值,进一步优选为3-5个值;所述A为待挤压合金的动态再结晶温度,所述B为待挤压合金熔点的0.85倍;Choose at least 3 point values between A-B, preferably 3-10 values, more preferably 3-5 values; said A is the dynamic recrystallization temperature of the alloy to be extruded, and said B is the alloy to be extruded 0.85 times the melting point;
在应变速率为0.0001-100s-1之间选取至少3个点值;优选为4-10个值,进一步优选为4-6个值;Select at least 3 point values between the strain rate of 0.0001-100s -1 ; preferably 4-10 values, more preferably 4-6 values;
在选定的温度和应变速率的限定下,进行压缩实验;收集应力-应变数据,并根据所收集的应力-应变数据构建合金的本构方程;Under the limitation of selected temperature and strain rate, carry out compression experiment; collect stress-strain data, and construct constitutive equation of alloy according to the collected stress-strain data;
步骤二step two
根据要求设定合金挤压坯尺寸,建立坯料、挤压杆和挤压筒的三维几何模型,三维模型中,挤压杆和挤压筒的实际尺寸参数根据实际参数确定;Set the size of the alloy extrusion billet according to the requirements, and establish the three-dimensional geometric model of the billet, extrusion rod and extrusion cylinder. In the three-dimensional model, the actual size parameters of the extrusion rod and extrusion cylinder are determined according to the actual parameters;
将步骤一所设定并求解的本构方程导入固体力学有限元分析软件的材料数据库中作为热挤压坯料的材料参数,并且用该软件模拟分析挤压过程,并且得到挤压过程多个工艺参数在不同工艺参数水平下的挤压过程模拟分析结果,然后通过统计分析或统计分析软件分析,量化这些挤压工艺参数对挤压坯料的影响;Import the constitutive equation set and solved in step 1 into the material database of the solid mechanics finite element analysis software as the material parameters of the hot extrusion billet, and use the software to simulate and analyze the extrusion process, and obtain multiple processes of the extrusion process The simulation analysis results of the extrusion process with parameters at different process parameter levels, and then through statistical analysis or statistical analysis software analysis, quantify the impact of these extrusion process parameters on the extrusion billet;
步骤三step three
根据操作时,所用挤压设备所能提供的最大施工条件和待加工材料要求,并以此为限制条件,优化挤压工艺参数;从而形成在满足设备条件和材料要求的限制条件下,待挤压合金的合理挤压工艺。According to the maximum construction conditions that the extrusion equipment can provide and the requirements of the materials to be processed during operation, and use this as a limit condition to optimize the extrusion process parameters; thus forming a machine to be extruded under the constraints that meet the equipment conditions and material requirements. Reasonable extrusion process for pressed alloys.
本发明一种优化合金挤压工艺的方法,所述本构方程建立了应变、应力、温度和材料参数的相互关系,可以合理预测不同实验条件下材料应力-应变的相互关系;所述本构方程可以是双曲正弦型Arrhenius方程,所述双曲正弦型Arrhenius方程的表达式为:The present invention is a method for optimizing the alloy extrusion process. The constitutive equation establishes the relationship between strain, stress, temperature and material parameters, and can reasonably predict the relationship between material stress-strain under different experimental conditions; the constitutive equation The equation can be a hyperbolic sine type Arrhenius equation, and the expression of the hyperbolic sine type Arrhenius equation is:
式(1)中,In formula (1),
为应变速率,其单位为s-1; is the strain rate, and its unit is s -1 ;
Q为变形激活能,其单位为J/mol,Q is the deformation activation energy, its unit is J/mol,
σp为流变应力,其单位为MPa;σ p is flow stress, its unit is MPa;
n为应力指数;n is the stress index;
T为挤压坯体的平均温度,其单位为K;T is the average temperature of the extruded billet, and its unit is K;
R为摩尔气体常数,取值为8.314J/mol·K;R is the molar gas constant, with a value of 8.314J/mol K;
A和α为与材料有关的常数;A and α are constants related to materials;
本发明一种优化合金挤压工艺的方法,所述固体力学有限元模拟分析软件为可以采用材料的本构方程以及相应的边界和初始条件对材料的固体变形行为进行模拟分析的软件。优选为DEFORM、ANSYS等商用或非商用软件或执行程序。The invention discloses a method for optimizing an alloy extrusion process. The solid mechanics finite element simulation analysis software is a software that can simulate and analyze the solid deformation behavior of a material by using the constitutive equation of the material and corresponding boundary and initial conditions. It is preferably commercial or non-commercial software or execution programs such as DEFORM and ANSYS.
本发明一种优化合金挤压工艺的方法,步骤二中,将步骤一所设定并求解的本构方程导入固体力学有限元分析软件的材料数据库中作为热挤压坯料的材料参数,并且用该软件模拟分析挤压过程,并且得到挤压过程多个工艺参数在不同工艺参数水平下的挤压过程模拟分析结果,然后通过统计分析或统计分析软件分析,量化这些挤压工艺参数对挤压坯料内部温度,挤压力、等效应力的影响。The present invention is a method for optimizing the alloy extrusion process. In step 2, the constitutive equation set and solved in step 1 is imported into the material database of the solid mechanics finite element analysis software as the material parameter of the hot extrusion billet, and used The software simulates and analyzes the extrusion process, and obtains the extrusion process simulation analysis results of multiple process parameters in the extrusion process at different process parameter levels, and then quantifies the impact of these extrusion process parameters on extrusion through statistical analysis or statistical analysis software analysis. The influence of billet internal temperature, extrusion force and equivalent stress.
本发明一种优化合金挤压工艺的方法,步骤二中,通过实验设计的方法系统地分析五个或五个以上的工艺参数包括但不限于挤压温度、挤压速度、挤压比、模具温度、模具锥角,并且通过统计分析量化这些工艺参数对挤压坯料内部温度,挤压力、等效应力的影响;所述实验设计的方法优选为正交实验设计。优选为The present invention is a method for optimizing the alloy extrusion process. In step 2, five or more process parameters including but not limited to extrusion temperature, extrusion speed, extrusion ratio, and mold are systematically analyzed by means of experimental design. temperature, die cone angle, and quantify the influence of these process parameters on the internal temperature of the extrusion billet, extrusion force, and equivalent stress through statistical analysis; the method of the experimental design is preferably an orthogonal experimental design. preferably
将步骤一所设定并求解的本构方程导入固体力学有限元软件包括商用软件如DEFORM与ANSYS和非商用软件材料数据库中作为热挤压坯料的材料参数,按试验设计方法所设计的方案进行有限元数值模拟试验;所述按试验设计方法所设计的方案为七个工艺参数和每个参数三个水平的一共18组的模拟试验方案;Import the constitutive equation set and solved in step 1 into the solid mechanics finite element software including commercial software such as DEFORM and ANSYS and non-commercial software material database as the material parameters of the hot extrusion billet, and proceed according to the scheme designed by the experimental design method Finite element numerical simulation test; the scheme designed by the test design method is a total of 18 groups of simulation test schemes with seven process parameters and three levels of each parameter;
所述七工艺参数分别为:坯料挤压的平均温度T、挤压速度v、挤压比r、模具温度t、模具锥角摩擦因子f和工作带长度L;The seven process parameters are respectively: average temperature T of billet extrusion, extrusion speed v, extrusion ratio r, die temperature t, die cone angle Friction factor f and working belt length L;
通过模拟实验,Through simulation experiments,
得出七个工艺参数对坯料挤压时坯料内部最高温度的影响,并通过相关性分析得出七个工艺参数对挤压时坯料内部最高温度影响的顺序;The influence of seven process parameters on the maximum temperature inside the billet during extrusion is obtained, and the order of the influence of seven process parameters on the maximum temperature inside the billet during extrusion is obtained through correlation analysis;
得出七个工艺参数对挤压时坯料所受最大挤压力的影响、并通过相关性分析得出七个工艺参数对挤压时坯料所受最大挤压力影响的顺序;The influence of seven process parameters on the maximum extrusion force of the billet during extrusion is obtained, and the order of the influence of the seven process parameters on the maximum extrusion force of the billet during extrusion is obtained through correlation analysis;
得出七个工艺参数对坯料挤压时的等效应力的影响;并通过相关性分析得出七个工艺参数对坯料挤压时的等效应力影响的顺序。The influence of seven process parameters on the equivalent stress of billet extrusion is obtained; and the order of the influence of seven process parameters on the equivalent stress of billet extrusion is obtained through correlation analysis.
本发明一种优化合金挤压工艺的方法,步骤三,所用挤压设备所能提供的最大施工条件中,定义其所能提供的最大挤压力为P设备,P设备是最常规的限制条件。A method for optimizing the alloy extrusion process of the present invention, step 3, among the maximum construction conditions that the extrusion equipment can provide, define the maximum extrusion force that it can provide as P equipment , and P equipment is the most conventional limiting condition .
本发明一种优化合金挤压工艺的方法,步骤三中根据操作时,所用挤压设备所能提供的最大压力P设备,在统计分析软件或参数优化分析软件包括商用软件如Minitab的响应优化器中设定挤压力的目标值为P设备;A kind of method of optimization alloy extrusion process of the present invention, during step 3 according to operation, the maximum pressure P equipment that extrusion equipment can provide, in statistical analysis software or parameter optimization analysis software comprises the response optimizer of commercial software such as Minitab Set the target value of extrusion force in P equipment ;
根据所制备材料在挤压后应力允许的最大值Rmax,在统计分析软件或参数优化分析软件包括商用软件如Minitab的响应优化器中设定最大应力的目标值为Rmax;According to the allowable maximum value Rmax of the stress of the prepared material after extrusion, the target value of the maximum stress is set in the response optimizer of the statistical analysis software or parameter optimization analysis software including commercial software such as Minitab;
按照(挤压坯的最高温度-挤压坯的平均温度)|取值最小的原则,在统计分析软件或参数优化分析软件包括商用软件如Minitab的响应优化器中设定温差目标最小化;According to the principle of (the maximum temperature of the extruded billet-the average temperature of the extruded billet) | the minimum value, the temperature difference target is set to be minimized in the statistical analysis software or the parameter optimization analysis software including the response optimizer of commercial software such as Minitab;
按照上述设定进行优化,得出待挤压合金的合理挤压工艺。Optimizing according to the above settings, a reasonable extrusion process of the alloy to be extruded is obtained.
本发明一种优化合金挤压工艺的方法,建立待挤压合金的本构方程的同时,通过在选定的温度和应变速率的限定下进行的挤压实验;得出待挤压合金的组织演化图。所得组织演化图结合步骤二所得的七个工艺参数对挤压时坯料内部最高温度影响的顺序、七个工艺参数对挤压时坯料所受最大挤压力影响的顺序;七个工艺参数对坯料挤压时的等效应力影响的顺序;可以帮助本领域技术人员根据实际需求在Minitab的响应优化器中设定挤压力的目标值、设定最大应力的目标值;进而可以缩短计算时间,提高工作效率。The invention discloses a method for optimizing the alloy extrusion process. While establishing the constitutive equation of the alloy to be extruded, the extrusion experiment is carried out under the limitation of the selected temperature and strain rate; the microstructure of the alloy to be extruded is obtained evolution diagram. Gained microstructure evolution diagram combines the order of the influence of the seven process parameters obtained in step 2 on the maximum temperature inside the billet during extrusion, the order of the impact of the seven process parameters on the maximum extrusion force of the billet during extrusion; the seven process parameters have an impact on the billet The order of the impact of the equivalent stress during extrusion; it can help those skilled in the art to set the target value of the extrusion force and the target value of the maximum stress in the response optimizer of Minitab according to actual needs; and then the calculation time can be shortened, Improve work efficiency.
本发明一种优化合金挤压工艺的方法,公式(1)中Q、σp、n、A、α通过公知的解法可以得出。The invention discloses a method for optimizing an alloy extrusion process. Q, σ p , n, A, and α in formula (1) can be obtained through known solutions.
本发明一种优化合金挤压工艺的方法,步骤一中所述待挤压合金为镍基高温合金。The invention relates to a method for optimizing an alloy extrusion process, wherein the alloy to be extruded in step 1 is a nickel-based superalloy.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金优选为镍基高温合金时,The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is preferably a nickel-based superalloy,
步骤一中,800℃-1200℃、优选900℃-1200℃选取至少3个点值;优选为3-10个值,进一步优选为3-5个值。优选取值均匀性好的值,所取的任意两个点值之间的数值差大于等于10℃而且小于等于47℃;In step 1, at least 3 point values are selected for 800°C-1200°C, preferably 900°C-1200°C; preferably 3-10 values, more preferably 3-5 values. It is preferred to take a value with good value uniformity, and the numerical difference between any two point values taken is greater than or equal to 10°C and less than or equal to 47°C;
在应变速率为0.0001-100s-1之间选取至少3个点值;优选为4-10个值,进一步优选为4-6个值。优选取值均匀性好的值,所取任意两个所选的点值,按大值/小值进行排列后,所得商大于等于3小于等于100。Select at least 3 point values between the strain rate of 0.0001-100s −1 ; preferably 4-10 values, more preferably 4-6 values. It is preferable to take a value with good value uniformity. After taking any two selected point values and arranging them according to the large value/small value, the obtained quotient is greater than or equal to 3 and less than or equal to 100.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金优选为镍基高温合金时,The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is preferably a nickel-based superalloy,
步骤一中,在1000℃-1200℃选取3-5个点值;在应变速率为0.0001-10s-1之间选取4-10个值。In step 1, 3-5 point values are selected at 1000°C-1200°C; 4-10 values are selected at the strain rate of 0.0001-10s -1 .
本发明一种优化合金挤压工艺的方法,当所述待挤压合金为镍基高温合金时,步骤二中;The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is a nickel-based superalloy, step 2;
定义坯料挤压的平均温度T的三个水平优选在1000-1160℃的范围内。The three levels defining the average temperature T of billet extrusion are preferably in the range of 1000-1160°C.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金为镍基高温合金时,步骤二中;The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is a nickel-based superalloy, step 2;
挤压速度v的单位mm/s,定义挤压速度的三个水平优选在20-220mm/s的范围内。The unit of extrusion speed v is mm/s, and the three levels defining the extrusion speed are preferably in the range of 20-220 mm/s.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金为镍基高温合金时,步骤二中;The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is a nickel-based superalloy, step 2;
定义挤压比r的三个水平优选在4-12的范围内。The three levels defining the extrusion ratio r are preferably in the range 4-12.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金为镍基高温合金时,步骤二中;The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is a nickel-based superalloy, step 2;
定义模具温度t的三个水平优选在300-600℃的范围内。The three levels defining the mold temperature t are preferably in the range 300-600°C.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金为镍基高温合金时,步骤二中;The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is a nickel-based superalloy, step 2;
定义模具锥角的三个水平优选在20-80°的范围内。Define Die Cone Angle The three levels are preferably in the range of 20-80°.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金为镍基高温合金时,步骤二中;The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is a nickel-based superalloy, step 2;
定义摩擦因子f的三个水平优选在0.05-0.6的范围内。The three levels defining the friction factor f are preferably in the range of 0.05-0.6.
本发明一种优化合金挤压工艺的方法,当所述待挤压合金为镍基高温合金时,步骤二中;The present invention is a method for optimizing the alloy extrusion process, when the alloy to be extruded is a nickel-based superalloy, step 2;
所述工作带的单位mm,定义工作带长度L的三个水平优选在2-30mm的范围内。The unit of the working belt is mm, and the three levels defining the length L of the working belt are preferably in the range of 2-30 mm.
原理和优势Principles and advantages
本发明先通过有限次实验收集数据后,即可建立本构方程,再依据本构方程,依托固体力学有限元软件,通过试验设计的方案以及有限元模拟分析得出不同工艺参数组合下的响应结果,然后将模拟结果导入到统计分析软件中分析,得出各因子对产品性能的影响大小顺序,最后借用参数优化分析软件的分析优化,实现对多个挤压工艺参数的优化。In the present invention, the constitutive equation can be established after collecting data through a limited number of experiments, and then according to the constitutive equation, relying on the solid mechanics finite element software, through the experimental design scheme and finite element simulation analysis, the response under different process parameter combinations can be obtained As a result, the simulation results are then imported into statistical analysis software for analysis, and the order of the impact of each factor on product performance is obtained. Finally, the optimization of multiple extrusion process parameters is realized by using the analysis and optimization of parameter optimization analysis software.
本发明通过物理试验建立材料应力-应变的本构方程,结合固体力学有限元软件进行系统的模拟分析,将模拟结果与统计分析软件结合对工艺参数的影响进行统计分析,通过这些不同试验-模拟-分析的结合,提出了对多个挤压工艺参数进行优化的快速、高效并且低成本的方法。采用本发明方法,获得了挤压比,挤压速率,挤压温度、摩擦因子、工作带长度以及模具温度、模具锥角等挤压工艺对挤压力、挤压坯料温度分布及等效应力的影响大小,优化确定并实验验证了合理的挤压工艺参数。The present invention establishes the constitutive equation of material stress-strain through physical tests, performs systematic simulation analysis in combination with solid mechanics finite element software, and combines the simulation results with statistical analysis software to perform statistical analysis on the influence of process parameters. Through these different tests-simulation - A combination of analyzes that proposes a fast, efficient and low-cost method for the optimization of multiple extrusion process parameters. Adopt the method of the present invention, obtain extrusion ratio, extrusion rate, extrusion temperature, friction factor, working belt length and mold temperature, mold cone angle etc. to extrusion force, extrusion billet temperature distribution and equivalent stress The size of the impact, optimization and experimental verification of reasonable extrusion process parameters.
附图说明Description of drawings
附图1为实施例1步骤一所得不同变形条件下的组织演化图;Accompanying drawing 1 is the tissue evolution figure under the different deformation conditions that embodiment 1 step one gains;
附图2为实施例1步骤二中坯料、挤压杆和挤压筒的三维几何模型;Accompanying drawing 2 is the three-dimensional geometric model of blank, extrusion rod and extrusion cylinder in embodiment 1 step two;
附图3为实施例1步骤二中通过相关性分析得出七个工艺参数对挤压时坯料内部最高温度影响的主效应图;Accompanying drawing 3 is the main effect figure that obtains seven process parameters on the influence of the maximum temperature inside the billet during extrusion through correlation analysis in step 2 of embodiment 1;
附图4为实施例1步骤二中通过相关性分析得出七个工艺参数对挤压后坯料的等效应力的主效应图;Accompanying drawing 4 obtains the main effect diagram of seven process parameters to the equivalent stress of the billet after extrusion by correlation analysis in embodiment 1 step two;
附图5为实施例1步骤二中通过相关性分析得出七个工艺参数对挤压时坯料所受最大挤压力的主效应图;Accompanying drawing 5 obtains the main effect diagram of the maximum extrusion force suffered by the billet during extrusion by seven process parameters through correlation analysis in the embodiment 1 step two;
附图6为实施例1步骤三中,按照(挤压坯的最高温度-挤压坯的平均温度)取值最小的原则,在的响应优化器中设定温差目标最小化;参数设计对话框的截图;Accompanying drawing 6 is in step 3 of embodiment 1, according to the principle that (maximum temperature of extruded billet-average temperature of extruded billet) takes the smallest value, set the temperature difference target in the response optimizer to be minimized; parameter design dialog box screenshot of
附图7为实施例1步骤三中,通过Minitab的优化求解后所得求解界面图;Accompanying drawing 7 is in the step 3 of embodiment 1, gained solution interface diagram after the optimization solution by Minitab;
附图8为按照实施例1所得最优参数进行实验验证所得样品的宏观形貌图;Accompanying drawing 8 is the macroscopic appearance diagram of the sample obtained by experimental verification according to the optimal parameters obtained in Example 1;
附图9为附图8中的1号样品样品的截面不同位置的金相图。Accompanying drawing 9 is the metallographic diagram of different positions of the section of No. 1 sample sample in the accompanying drawing 8.
具体实施方式detailed description
在本发明实施例1中所采用的挤压设备的的最大加压压力为1800KN;且挤压设备的摩擦因子可调。The maximum pressing pressure of the extrusion equipment used in Example 1 of the present invention is 1800KN; and the friction factor of the extrusion equipment is adjustable.
目标产物的挤压后应力标准为小于均值860Mpa;The post-extrusion stress standard of the target product is less than the average value of 860Mpa;
实施例1Example 1
以镍基高温合金为例,按下述步骤进行Taking nickel-based superalloy as an example, follow the steps below
步骤一建立待挤压合金(镍基高温合金)的本构方程Step 1 Establish the constitutive equation of the alloy to be extruded (nickel-based superalloy)
在1040-1160℃之间选取5个值;这五个值分别为1040℃、1070℃、1100℃、1130℃、1160℃;Select 5 values between 1040-1160°C; these five values are 1040°C, 1070°C, 1100°C, 1130°C, 1160°C;
在应变速率为0.0001-100s-1之间选取5个点值;5个点值分别为0.001s-1、0.01s-1、0.1s-1、1s-1、10s-1;Select 5 point values between the strain rate of 0.0001-100s -1 ; the 5 point values are 0.001s -1 , 0.01s -1 , 0.1s -1 , 1s -1 , 10s -1 ;
在选定的温度和应变速率的限定下,进行挤压实验;收集应力-应变数据,并根据所收集的应力-应变数据构建双曲正弦型Arrhenius方程;所述双曲正弦型Arrhenius方程的表达式为:Under the restriction of selected temperature and strain rate, carry out extrusion experiment; Collect stress-strain data, and construct hyperbolic sine type Arrhenius equation according to the stress-strain data collected; The expression of described hyperbolic sine type Arrhenius equation The formula is:
式(1.1)中,In formula (1.1),
为应变速率,其单位为s-1; is the strain rate, and its unit is s -1 ;
T为挤压坯体的平均温度,其单位为K;T is the average temperature of the extruded billet, and its unit is K;
R为摩尔气体常数,取值为8.314J/mol·K;R is the molar gas constant, with a value of 8.314J/mol K;
同时,通过实验获得了不同变形条件下的组织演化图(如图1所示),作为初步选取工艺参数的依据;At the same time, the microstructure evolution diagram (as shown in Figure 1) under different deformation conditions was obtained through experiments, as the basis for preliminary selection of process parameters;
步骤二step two
根据实际需求,设定挤压坯料尺寸,建立坯料、挤压杆和挤压筒的三维几何模型,三维模型中,挤压杆和挤压筒的实际尺寸参数根据实际参数确定;坯料、挤压杆和挤压筒的三维几何模型如图2所示;According to actual needs, set the size of the extrusion billet, and establish the three-dimensional geometric model of the billet, extrusion rod and extrusion cylinder. In the three-dimensional model, the actual size parameters of the extrusion rod and extrusion cylinder are determined according to the actual parameters; The three-dimensional geometric model of the rod and extrusion cylinder is shown in Figure 2;
将步骤一所设定并求解的本构方程导入DEFORM-3D材料数据库中作为热挤压坯料的材料参数,按DOE所设计的实验方案进行有限元数值模拟试验;所述按DOE所设计的实验方案为七因素三水平的一共18组的模拟实验方案如表2所示;Import the constitutive equation set and solved in step 1 into the DEFORM-3D material database as the material parameters of the hot extrusion billet, and carry out the finite element numerical simulation test according to the experimental plan designed by DOE; the experiment designed according to DOE The scheme is a total of 18 groups of simulation experiment schemes with seven factors and three levels as shown in Table 2;
所述七因素分别为:坯料挤压的平均温度T、挤压速度v、挤压比r、模具温度t、模具锥角摩擦因子f和工作带长度L;The seven factors are: average temperature T of billet extrusion, extrusion speed v, extrusion ratio r, die temperature t, die cone angle Friction factor f and working belt length L;
镍基高温合金热挤压关键工艺参数因子及水平如表1所示The key process parameters and levels of hot extrusion of nickel-based superalloys are shown in Table 1
表1镍基高温合金热挤压工艺的关键工艺参数及水平Table 1 Key process parameters and levels of nickel-based superalloy hot extrusion process
表2镍基高温合金热挤压有限元数值模拟的实验方案Table 2 Experimental scheme of finite element numerical simulation of nickel-based superalloy hot extrusion
通过模拟实验:得出七个因子对坯料挤压时坯料内部最高温度的影响,并通过相关性分析得出七个因子对挤压时坯料内部最高温度影响的主效应图(如图3所示);通过图3可以看出,挤压温度和挤压比与坯料内部温度的成正相关关系,而挤压速度、模具温度、模具锥角、摩擦因子以及工作带长度与坯料内部温度不存在明显的线性关系。挤压后坯料内部温度的大小主要受挤压温度、挤压比、模具锥角和摩擦因子的影响,相关性分析结果如下表所示:Through simulation experiments: the influence of seven factors on the maximum temperature inside the billet during extrusion is obtained, and the main effect diagram of the influence of seven factors on the maximum temperature inside the billet during extrusion is obtained through correlation analysis (as shown in Figure 3 ); As can be seen from Figure 3, the extrusion temperature and extrusion ratio are positively correlated with the internal temperature of the billet, while the extrusion speed, die temperature, die cone angle, friction factor and working belt length have no significant relationship with the internal temperature of the billet linear relationship. The internal temperature of the billet after extrusion is mainly affected by extrusion temperature, extrusion ratio, die cone angle and friction factor. The correlation analysis results are shown in the following table:
P值的大小代表相关性的弱强,P值越小,代表相关性越大,P<<0.05表示强相关,则它们影响挤压坯料内部温度的主次关系为:挤压温度>模具锥角>挤压比>摩擦因子,其中挤压温度为强相关因子。挤压温度根据材料的流变行为进行确定,选择适当的挤压温度。挤压比主要决定了坯料的变形程度,挤压比越大对挤压设备的能量要求也就越大,因此挤压比不宜过大。模具锥角决定了材料瞬时变形量的大小以及与挤压筒作用的时间,模具锥角通常选择适中的大小。摩擦因子决定了坯料与挤压筒接触的摩擦的大小,通常应尽量减小坯料与挤压筒之间的摩擦因子。挤压速度、模具温度和工作带长度对坯料内部温度影响较小,不同条件下的坯料内部温度均在均值附近。The size of the P value represents the weak strength of the correlation, the smaller the P value, the greater the correlation, and P<<0.05 represents a strong correlation, then the primary and secondary relationship between them affecting the internal temperature of the extrusion billet is: extrusion temperature > die cone angle > extrusion ratio > friction factor, where extrusion temperature is a strong correlation factor. The extrusion temperature is determined according to the rheological behavior of the material, and an appropriate extrusion temperature is selected. The extrusion ratio mainly determines the degree of deformation of the billet. The larger the extrusion ratio, the greater the energy requirement of the extrusion equipment, so the extrusion ratio should not be too large. The die cone angle determines the instantaneous deformation of the material and the time it interacts with the extrusion cylinder, and the die cone angle usually chooses a moderate size. The friction factor determines the friction between the billet and the extrusion cylinder, and the friction factor between the billet and the extrusion cylinder should usually be minimized. Extrusion speed, die temperature and working belt length have little effect on the internal temperature of the billet, and the internal temperature of the billet under different conditions is near the mean value.
通过模拟实验:同时也得出七个因子对挤压后坯料的等效应力的影响,并通过相关性分析得出七个因子对挤压后坯料的等效应力的主效应图(见图4)。通过图4可以看出,挤压后坯料的最大等效应力与挤压温度、挤压速度、模具温度和模具锥角成相负相关,与挤压比成正相关关系。摩擦因子和工作带长度与最大等效应力不存在明显的线性关系,最大等效应力在摩擦因子为0.3时取最小值,在工作带长度为10mm时取最小值。挤压后坯料的最大等效应力值主要受挤压温度、挤压速度、挤压比、模具温度和摩擦因子的影响,相关性分析结果如下表所示:Through simulation experiments: At the same time, the influence of seven factors on the equivalent stress of the extruded billet is also obtained, and the main effect diagram of the seven factors on the equivalent stress of the extruded billet is obtained through correlation analysis (see Figure 4 ). It can be seen from Figure 4 that the maximum equivalent stress of the billet after extrusion is negatively correlated with extrusion temperature, extrusion speed, die temperature and die cone angle, and positively correlated with extrusion ratio. There is no obvious linear relationship between the friction factor and the working belt length and the maximum equivalent stress. The maximum equivalent stress takes the minimum value when the friction factor is 0.3, and takes the minimum value when the working belt length is 10mm. The maximum equivalent stress value of the billet after extrusion is mainly affected by extrusion temperature, extrusion speed, extrusion ratio, die temperature and friction factor. The correlation analysis results are shown in the following table:
则它们影响挤压后坯料最大等效应力的主次关系为:挤压速度>模具温度>挤压温度>挤压比>摩擦因子,其中挤压速度及模具温度为强相关因子。因此,在确定工艺参数的过程中,应该尽量增大挤压速度(挤压速率是个综合影响因素,一方面挤压速率快会使得材料变形过程的抗力增大,另一方面,挤压速度慢,会使得坯锭的温降增大,从而使得材料变形过程的抗力增大),提高挤压温度和模具温度,减小挤压比和摩擦因子。而模具锥角和工作带长度对挤压后坯料的最大等效应力的影响小。Then the primary and secondary relationship between them affecting the maximum equivalent stress of the billet after extrusion is: extrusion speed>die temperature>extrusion temperature>extrusion ratio>friction factor, among which extrusion speed and die temperature are strong correlation factors. Therefore, in the process of determining the process parameters, the extrusion speed should be increased as much as possible (the extrusion speed is a comprehensive influencing factor. On the one hand, a fast extrusion speed will increase the resistance of the material deformation process; on the other hand, a slow extrusion speed , will increase the temperature drop of the billet, thereby increasing the resistance of the material deformation process), increase the extrusion temperature and mold temperature, and reduce the extrusion ratio and friction factor. However, the cone angle of the die and the length of the working belt have little influence on the maximum equivalent stress of the billet after extrusion.
通过模拟实验:同时也得出七个因子对挤压时坯料所受最大挤压力的影响、并通过相关性分析得出七个因子对挤压时坯料所受最大挤压力的主效应图(见图5)通过图5可以看出,在热挤压过程中的最大挤压力与挤压比、模具锥角、摩擦因子和工作带长度成正相关关系,与挤压温度成负相关关系。挤压速度和模具温度与最大挤压力不存在明显的线性关系,最大挤压力在挤压比为8:1时取最小值,在模具温度为450℃时取最大值。可以看出在热挤压过程中的最大挤压力主要受挤压温度、挤压速度、挤压比、模具锥角、摩擦因子和工作带长度的影响,相关性分析结果如下表所示:Through simulation experiments: At the same time, the influence of seven factors on the maximum extrusion force of the billet during extrusion is also obtained, and the main effect diagram of the seven factors on the maximum extrusion force of the billet during extrusion is obtained through correlation analysis (See Figure 5) It can be seen from Figure 5 that the maximum extrusion force in the hot extrusion process is positively correlated with extrusion ratio, die cone angle, friction factor and working belt length, and negatively correlated with extrusion temperature . There is no obvious linear relationship between the extrusion speed and the mold temperature and the maximum extrusion force. The maximum extrusion force takes the minimum value when the extrusion ratio is 8:1, and takes the maximum value when the mold temperature is 450 °C. It can be seen that the maximum extrusion force in the hot extrusion process is mainly affected by extrusion temperature, extrusion speed, extrusion ratio, die cone angle, friction factor and working belt length. The correlation analysis results are shown in the following table:
它们影响最大挤压力的主次关系为:挤压温度>挤压比>模具锥角>摩擦因子>工作带长度>挤压速度,表明挤压温度、挤压比、模具锥角为主要影响因素。因此,为了减小在挤压过程中挤压力的大小,在选择热挤压工艺参数时应该尽量提高挤压温度,减小挤压比、模具锥角、摩擦因子、工作带长度等工艺参数,选择适中的挤压速度和模具温度,模具温度对最大挤压力的影响小,故在挤压工艺的选择,主要是根据模具材料的承温情况及坯料的挤压温度而定。The primary and secondary relationship between them affecting the maximum extrusion force is: extrusion temperature > extrusion ratio > die cone angle > friction factor > working belt length > extrusion speed, indicating that extrusion temperature, extrusion ratio, and die cone angle are the main influences factor. Therefore, in order to reduce the extrusion force during the extrusion process, the extrusion temperature should be increased as much as possible when selecting the hot extrusion process parameters, and the extrusion ratio, die cone angle, friction factor, working belt length and other process parameters should be reduced. , choose a moderate extrusion speed and mold temperature, the influence of mold temperature on the maximum extrusion force is small, so the selection of extrusion process is mainly based on the temperature of the mold material and the extrusion temperature of the billet.
步骤三优化求解Step 3 optimization solution
根据实际操作时,所用挤压设备所能提供的最大压力P设备=1800KN,在Minitab的响应优化器中设定挤压力的目标值为P设备;According to the actual operation, the maximum pressure P equipment that can be provided by the extrusion equipment used is 1800KN, and the target value of the extrusion force is set in Minitab’s response optimizer to be P equipment ;
根据所制备材料在应用时,对挤压后应力允许的最大值Rmax=860Mpa,在Minitab的响应优化器中设定最大应力的目标值为Rmax;According to the application of the prepared material, the maximum allowable stress after extrusion is Rmax=860Mpa, and the target value of the maximum stress is set in Minitab’s response optimizer to Rmax;
按照|挤压坯的平均温度-挤压坯的最高温度|取值最小的原则,在Minitab的响应优化器中设定温差目标最小化;参数设计对话框见图6;According to the principle of |the average temperature of the extruded billet - the maximum temperature of the extruded billet| the minimum value, set the temperature difference target to be minimized in Minitab's response optimizer; the parameter design dialog box is shown in Figure 6;
按照上述设定进行优化,通过响应优化器求解,根据以上分析进行优化求解,得出满足以上设定的要求的最优解。其求解优化图如图7所示。Perform optimization according to the above settings, solve through the response optimizer, and optimize and solve according to the above analysis, and obtain the optimal solution that meets the requirements of the above settings. Its solution optimization diagram is shown in Fig. 7.
所得合理优化工艺为:挤压温度:1120.3℃;挤压速度197.53mm/s;挤压比:8.3:1;挤压模具锥角44°及工作带长度设计为8.0mm;挤压模具的预热温度505℃,摩擦方式采用双重摩擦、控制摩擦因子为0.1469,其一是坯料采用玻璃粉润滑,挤压筒采用特制的润滑剂,以尽量减小摩擦力挤压过程的摩擦力。其挤压的外观如图8所示,可以看出,挤压外观完整度较好,表明所制定挤压工艺参数能顺利安全地将坯料挤出。The reasonable optimized process obtained is: extrusion temperature: 1120.3°C; extrusion speed: 197.53mm/s; extrusion ratio: 8.3:1; cone angle of extrusion die is 44° and length of working belt is designed to be 8.0mm; The heating temperature is 505°C, the friction method adopts double friction, and the friction factor is controlled to 0.1469. One is that the billet is lubricated with glass powder, and the extrusion cylinder uses a special lubricant to minimize the friction during the extrusion process. The extruded appearance is shown in Figure 8. It can be seen that the extruded appearance has a good integrity, indicating that the established extrusion process parameters can smoothly and safely extrude the billet.
对挤压后的材料进行显微组织分析,如图9所示。a b c为横截面上不同位置的显微组织。其中图9a表示试棒边缘的显微组织图(金相图)、图9b表示试棒1/2半径处的显微组织图(金相图)、图9c表示试棒中心处的显微组织图(金相图)从图中可以看出,材料经过挤压后,其组织均匀细小,且不同位置下的组织差别不大,表明设定的挤压参数不仅能将其顺利挤出,且表面质量良好,无脱皮、开裂现象,内部组织均匀细小。The microstructural analysis of the extruded material is performed, as shown in Figure 9. a b c is the microstructure at different positions on the cross section. Wherein Fig. 9a shows the microstructure diagram (metallographic diagram) at the edge of the test bar, Fig. 9b shows the microstructure diagram (metallographic diagram) at the 1/2 radius of the test bar, and Fig. 9c shows the microstructure at the center of the test bar It can be seen from the figure (metallographic diagram) that after the material is extruded, its structure is uniform and fine, and the structure at different positions is not much different, indicating that the set extrusion parameters can not only extrude it smoothly, but also The surface quality is good, without peeling and cracking, and the internal structure is uniform and fine.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610100295.9A CN107122502B (en) | 2016-02-24 | 2016-02-24 | Method for optimizing alloy extrusion process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610100295.9A CN107122502B (en) | 2016-02-24 | 2016-02-24 | Method for optimizing alloy extrusion process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107122502A true CN107122502A (en) | 2017-09-01 |
CN107122502B CN107122502B (en) | 2021-01-29 |
Family
ID=59717551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610100295.9A Active CN107122502B (en) | 2016-02-24 | 2016-02-24 | Method for optimizing alloy extrusion process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107122502B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109877180A (en) * | 2019-04-25 | 2019-06-14 | 西安建筑科技大学 | A hot extrusion device and method for measuring friction coefficient of inner wall of extrusion cylinder |
CN111368402A (en) * | 2020-02-21 | 2020-07-03 | 西安交通大学 | Pipe extrusion process optimization method |
CN112214879A (en) * | 2020-09-16 | 2021-01-12 | 宁波锦越新材料有限公司 | Method for constructing aluminum alloy extrusion limit diagram |
CN113343516A (en) * | 2021-05-14 | 2021-09-03 | 华中科技大学 | Method for eliminating critical deformation of powder superalloy PPB and determining extrusion process parameters |
CN114239176A (en) * | 2021-12-17 | 2022-03-25 | 宁波长振铜业有限公司 | Brass wire short-flow preparation process design and optimization method |
CN114492099A (en) * | 2021-12-09 | 2022-05-13 | 有研工程技术研究院有限公司 | A method for optimizing the hot extrusion process of recycled brass for energy saving and consumption reduction |
CN114580271A (en) * | 2022-02-16 | 2022-06-03 | 昆明贵金属研究所 | Method for realizing solid-liquid phase temperature prediction of multi-element precious metal alloy brazing filler metal |
CN117358863A (en) * | 2023-12-08 | 2024-01-09 | 成都先进金属材料产业技术研究院股份有限公司 | Method for preventing high-temperature alloy from generating cracks in free forging process on hammer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102463268A (en) * | 2010-11-10 | 2012-05-23 | 北京有色金属研究总院 | Zinc alloy bar extrusion process design and optimization method |
-
2016
- 2016-02-24 CN CN201610100295.9A patent/CN107122502B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102463268A (en) * | 2010-11-10 | 2012-05-23 | 北京有色金属研究总院 | Zinc alloy bar extrusion process design and optimization method |
Non-Patent Citations (4)
Title |
---|
GUOAI HE 等: "Characterization of hot compression behavior of a new HIPed nickel-based P/M superalloy using processing maps", 《MATERIALS AND DESIGN》 * |
何国爱 等: "热挤压态镍基高温合金的组织及其热变形行为", 《2015年全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会论文集》 * |
包春玲: "镁合金等温挤压工艺及变形机理的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技I辑》 * |
李明娥 等: "6061铝合金等温挤压工艺参数优化及粗晶环机理研究", 《甘肃科技》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109877180A (en) * | 2019-04-25 | 2019-06-14 | 西安建筑科技大学 | A hot extrusion device and method for measuring friction coefficient of inner wall of extrusion cylinder |
CN111368402A (en) * | 2020-02-21 | 2020-07-03 | 西安交通大学 | Pipe extrusion process optimization method |
CN111368402B (en) * | 2020-02-21 | 2022-04-05 | 西安交通大学 | A kind of pipe extrusion process optimization method |
CN112214879A (en) * | 2020-09-16 | 2021-01-12 | 宁波锦越新材料有限公司 | Method for constructing aluminum alloy extrusion limit diagram |
CN112214879B (en) * | 2020-09-16 | 2024-06-04 | 宁波锦越新材料有限公司 | Construction method of aluminum alloy extrusion limit diagram |
CN113343516A (en) * | 2021-05-14 | 2021-09-03 | 华中科技大学 | Method for eliminating critical deformation of powder superalloy PPB and determining extrusion process parameters |
CN114492099A (en) * | 2021-12-09 | 2022-05-13 | 有研工程技术研究院有限公司 | A method for optimizing the hot extrusion process of recycled brass for energy saving and consumption reduction |
CN114239176A (en) * | 2021-12-17 | 2022-03-25 | 宁波长振铜业有限公司 | Brass wire short-flow preparation process design and optimization method |
CN114580271A (en) * | 2022-02-16 | 2022-06-03 | 昆明贵金属研究所 | Method for realizing solid-liquid phase temperature prediction of multi-element precious metal alloy brazing filler metal |
CN114580271B (en) * | 2022-02-16 | 2024-07-02 | 昆明贵金属研究所 | A method for predicting the solid-liquid phase temperature of multi-element precious metal alloy solder |
CN117358863A (en) * | 2023-12-08 | 2024-01-09 | 成都先进金属材料产业技术研究院股份有限公司 | Method for preventing high-temperature alloy from generating cracks in free forging process on hammer |
CN117358863B (en) * | 2023-12-08 | 2024-03-08 | 成都先进金属材料产业技术研究院股份有限公司 | Method for preventing high-temperature alloy from generating cracks in free forging process on hammer |
Also Published As
Publication number | Publication date |
---|---|
CN107122502B (en) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107122502A (en) | A kind of method of optimized alloy extrusion process | |
CN105373683B (en) | A kind of prediction technique of 20CrMnTiH steel thermal deformation process Microstructural Evolution rule | |
CN102463268B (en) | Zinc alloy bar extruding process designing and optimizing method | |
CN108977741A (en) | For the prediction technique of titanium alloy die forging part mesh basket Tissue distribution | |
CN113787108B (en) | Manufacturing method and system of bent pipe | |
CN106650112B (en) | Method and device for acquiring hot extrusion process parameters of nickel-based alloy pipe | |
CN102831265A (en) | Method for analyzing and preventing forging through flow and coarse-grain defects | |
Equbal et al. | Deformation behavior of micro-alloyed steel by using thermo mechanical simulator and finite element method | |
CN115775605B (en) | High-strength steel cogging forging process optimization method based on grain size simulation | |
CN102142054B (en) | A Method for Dividing Passes in Stretching Forming of Aluminum Alloy Skin | |
CN101974672A (en) | Control method for implementing microstructure by non quenched and tempered steel hot forging formation | |
Liu et al. | Numerical optimization on hot forging process of connecting rods based on RSA with experimental verification | |
CN101840447B (en) | Finite element modeling method for predicting forging force in rotary swaging process | |
CN107423469B (en) | A judging method for forging penetration of 06Cr19Ni9NbN steel | |
CN111889601B (en) | Design method of wavy blank for increasing surface deformation of alloy die forging difficult to deform | |
CN111368402B (en) | A kind of pipe extrusion process optimization method | |
CN105631160A (en) | Method for forecasting room-temperature mechanical property of TC4 alloy forge piece | |
CN107818184A (en) | Method for constructing material deformation resistance model | |
CN113838535B (en) | A unified flow stress model and calculation method | |
CN104999021A (en) | Forging method capable of controlling crystalline grain unevenness of shaft class forged piece | |
CN108169019A (en) | A kind of recognition methods of quasi-static plasticity compression stress strain parameter | |
CN114692464A (en) | A process optimization method for differential temperature stamping forming of magnesium alloy 3C product cover | |
Han et al. | Optimizing profiled ring preforms for enhanced deformation uniformity using the isothermal field method | |
CN112836414A (en) | The method of TC4 cylindrical part coreless die closing-spinning based on finite element simulation | |
Wang et al. | Finite element analysis and deformation homogeneity optimization of constrained groove pressing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |