CN107121708A - Absolute gravity measurement system and measuring method - Google Patents
Absolute gravity measurement system and measuring method Download PDFInfo
- Publication number
- CN107121708A CN107121708A CN201710388867.2A CN201710388867A CN107121708A CN 107121708 A CN107121708 A CN 107121708A CN 201710388867 A CN201710388867 A CN 201710388867A CN 107121708 A CN107121708 A CN 107121708A
- Authority
- CN
- China
- Prior art keywords
- laser
- vacuum chamber
- vacuum
- measurement system
- absolute gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V7/00—Measuring gravitational fields or waves; Gravimetric prospecting or detecting
- G01V7/14—Measuring gravitational fields or waves; Gravimetric prospecting or detecting using free-fall time
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明提供一种绝对重力测量系统及测量方法,所述绝对重力测量包括:自由落体装置、激光干涉测量装置、隔振平台。所述自由落体装置包括壳体、设置在所述壳体内的真空仓、以及与所述真空仓传动连接的动力装置。所述动力装置用于控制所述真空仓在竖直方向的运动。所述落体设置于所述真空仓内。所述真空仓底部设置有真空仓观察窗用于观测所述落体的自由落体运动。所述绝对重力测量系统进一步包括设置在所述壳体内的真空仓位移测量装置。所述真空仓位移测量装置包括设置于所述壳体内部的光栅尺,以及固定安装在所述真空仓外壳的读数头。所述绝对重力测量系统进一步包括空气折射率测量装置,用于测量所述壳体内部的空气折射率。
The invention provides an absolute gravity measurement system and a measurement method. The absolute gravity measurement includes: a free fall device, a laser interferometric measurement device, and a vibration isolation platform. The free-fall device includes a housing, a vacuum chamber arranged in the housing, and a power device connected in transmission with the vacuum chamber. The power device is used to control the movement of the vacuum chamber in the vertical direction. The falling body is arranged in the vacuum chamber. The bottom of the vacuum chamber is provided with a vacuum chamber observation window for observing the free fall motion of the falling body. The absolute gravity measurement system further includes a vacuum chamber displacement measurement device arranged in the housing. The vacuum chamber displacement measuring device includes a grating scale arranged inside the housing, and a reading head fixedly installed on the outer shell of the vacuum chamber. The absolute gravimetric measurement system further includes an air refractive index measurement device for measuring the air refractive index inside the housing.
Description
技术领域technical field
本发明涉及精密仪器技术领域,尤其涉及一种绝对重力测量系统及测量方法。The invention relates to the technical field of precision instruments, in particular to an absolute gravity measurement system and a measurement method.
背景技术Background technique
绝对重力仪是一种通过测量敏感元件对重力场的响应来计算重力加速度绝对值的仪器,在计量、测绘、地震、地球物理、资源勘探和辅助导航等领域承担着重要测量任务。绝对重力仪根据敏感元件的线度可分为两类:一类是经典自由落体绝对重力仪,它以激光器波长为长度测量参考基准、原子钟频率为时间测量参考基准,以角反射棱镜为敏感元件,使用马赫-曾德尔型激光干涉仪测量角反射棱镜在真空中的自由落体运动位移。下落棱镜每移动二分之一激光波长的距离,光电探测器探测到的光强会发生一个整周期的变化。光电探测器将该光信号转换成均值为零的电信号,通过测量其过零点时间可反推出落体运动轨迹,拟合求解重力加速度值。另一类是原子干涉绝对重力仪,它利用原子能级分布概率对重力场的响应来测量重力加速度值。Absolute gravimeter is an instrument that calculates the absolute value of gravitational acceleration by measuring the response of sensitive elements to the gravitational field. It undertakes important measurement tasks in the fields of metrology, surveying and mapping, seismic, geophysics, resource exploration and auxiliary navigation. Absolute gravimeters can be divided into two categories according to the linearity of sensitive components: one is the classic free fall absolute gravimeter, which uses the laser wavelength as the reference reference for length measurement, the atomic clock frequency as the reference reference for time measurement, and the angular reflective prism as the sensitive element , using a Mach-Zehnder type laser interferometer to measure the displacement of a corner reflective prism in free fall in vacuum. Every time the falling prism moves a distance of one-half of the laser wavelength, the light intensity detected by the photodetector will change for a full period. The photodetector converts the optical signal into an electrical signal with an average value of zero, and by measuring the zero-crossing time, the trajectory of the falling object can be deduced, and the value of the acceleration of gravity can be solved by fitting. The other is the atomic interference absolute gravimeter, which uses the response of the atomic energy level distribution probability to the gravitational field to measure the gravitational acceleration value.
由于原子干涉重力仪技术成熟较晚、复杂度较高,目前广泛应用的绝对重力仪仍是经典自由落体绝对重力仪。Micro-g LaCoste公司在早期JILA型绝对重力仪的基础上开发出了FG-5型绝对重力仪。该重力仪采用“无拖曳下落腔技术”有效地减小了残余空气的影响,并将激光干涉仪中的参考棱镜放置在“超级弹簧(Super Spring)”中组成隔振系统,以降低地面微振动对测量结果的影响。另外,该重力仪的隔振系统与真空下落腔共线布置,满足阿贝原则,可提高测量准确度及可靠性。在此基础上开发出的FG-5X型绝对重力仪带有补偿质量块,可减小地面反弹效应对测量结果的影响。这两种仪器的不确定度可达2μGal。此外,意大利国家计量院(INRIM)研发的IMGC-02型绝对重力仪采用上抛下落的运动方式,不确定度可达9μGal。中国计量科学研究院研制NIM系列绝对重力仪,该系列仪器曾多次参与国际绝对重力仪比对,不确定度优于10μGal。本课题组于2011年自主研制出T-1型高精度绝对重力仪。该重力仪同样采用经典自由落体结构,使用弹性下拉方式实现落体释放,并用高速信号采集系统采集小型化激光干涉仪的输出信号,不确定度可达到μGal量级。为提高仪器的机动性,Micro-g公司还研发出一款A-10型便携式绝对重力仪。该重力仪通过缩小真空腔和隔振系统、简化激光干涉仪、选用小型离子泵代替原离子泵等方法,简化系统的整体结构,可快速拆装,便于在测量地点之间移动。A-10型便携式绝对重力仪的精度可达10μGal。Due to the relatively late maturity and high complexity of atomic interference gravimeter technology, the most widely used absolute gravimeter is still the classic free-fall absolute gravimeter. Micro-g LaCoste developed the FG-5 Absolute Gravimeter based on the earlier JILA Absolute Gravimeter. The gravimeter adopts the "no-drag falling cavity technology" to effectively reduce the influence of residual air, and places the reference prism in the laser interferometer in the "Super Spring" to form a vibration isolation system to reduce ground vibration. Effect of vibration on measurement results. In addition, the vibration isolation system of the gravimeter is arranged in line with the vacuum falling chamber, which meets Abbe's principle and can improve measurement accuracy and reliability. The FG-5X absolute gravimeter developed on this basis has a compensating mass, which can reduce the impact of the ground rebound effect on the measurement results. Both instruments have an uncertainty of up to 2 µGal. In addition, the IMGC-02 absolute gravimeter developed by the Italian National Institute of Metrology (INRIM) adopts the motion method of throwing up and down, and the uncertainty can reach 9μGal. The NIM series of absolute gravimeters developed by the China Institute of Metrology has participated in international absolute gravimeter comparisons for many times, and the uncertainty is better than 10μGal. In 2011, our research group independently developed the T-1 high-precision absolute gravimeter. The gravimeter also adopts the classic free-fall structure, uses the elastic pull-down method to realize the release of the falling body, and uses the high-speed signal acquisition system to collect the output signal of the miniaturized laser interferometer, and the uncertainty can reach the μGal level. In order to improve the mobility of the instrument, Micro-g has also developed a portable absolute gravity meter A-10. The gravimeter simplifies the overall structure of the system by reducing the vacuum chamber and vibration isolation system, simplifying the laser interferometer, and selecting a small ion pump instead of the original ion pump. It can be quickly disassembled and easily moved between measurement locations. The A-10 Portable Absolute Gravimeter has an accuracy of up to 10μGal.
在上述的所有绝对重力仪里,落体的下落过程全部发生在一个体积较大的真空腔中,且一般都带有离子泵来维持腔中的真空,以减小空气阻尼、空气浮力等对落体运动的干扰。这些绝对重力仪可以在实验室环境中实现高精度测量,但其系统较为复杂、沉重,不适用于环境恶劣的野外测量。In all the above-mentioned absolute gravimeters, the falling process of the falling body all takes place in a large vacuum chamber, and generally has an ion pump to maintain the vacuum in the chamber to reduce the impact of air damping, air buoyancy, etc. on the falling body. movement interference. These absolute gravimeters can achieve high-precision measurements in a laboratory environment, but their systems are complex and heavy, and are not suitable for field measurements in harsh environments.
为此,必须设计更为轻便简单、机动性和可靠性更高的绝对重力仪。虽然上述A-10型便携式绝对重力仪相比其他重力仪而言体积更小,但由于它仍使用了传统结构,体积减小有限,且运输途中仍需要离子泵来维持真空,若遇到系统断电等突发情况,就会有真空泄漏的风险。For this reason, it is necessary to design an absolute gravimeter that is lighter, simpler, more maneuverable and more reliable. Although the above-mentioned A-10 portable absolute gravimeter is smaller in size than other gravimeters, because it still uses the traditional structure, the volume reduction is limited, and an ion pump is still needed to maintain the vacuum during transportation. In emergencies such as power outages, there is a risk of vacuum leakage.
发明内容Contents of the invention
基于此,有必要针对上述技术问题,提供一种轻便简单、机动性和可靠性更高,适用于环境恶劣的野外测量的绝对重力测量系统及测量方法。Based on this, it is necessary to address the above technical problems and provide an absolute gravity measurement system and measurement method that are light, simple, more maneuverable and more reliable, and suitable for field measurements in harsh environments.
一种绝对重力测量系统,包括:An absolute gravimetric measurement system comprising:
自由落体装置,用于实现落体的自由落体运动;The free fall device is used to realize the free fall motion of the falling body;
激光干涉测量装置,用于跟踪所述落体作自由落体运动以获取激光干涉条纹信号;A laser interferometry device, used to track the falling body for free-fall motion to obtain laser interference fringe signals;
隔振平台,设置在所述自由落体装置与所述激光干涉测量装置之间,用于隔离地面震动对所述测量的影响,其中:The vibration isolation platform is arranged between the free fall device and the laser interferometry device, and is used to isolate the influence of ground vibration on the measurement, wherein:
所述自由落体装置包括壳体、设置在所述壳体内的真空仓、以及与所述真空仓传动连接的动力装置,所述动力装置用于控制所述真空仓在竖直方向的运动,所述落体设置于所述真空仓内,所述真空仓底部设置有真空仓观察窗用于观测所述落体的自由落体运动;The free fall device includes a housing, a vacuum chamber arranged in the housing, and a power device connected to the vacuum chamber in transmission, and the power device is used to control the movement of the vacuum chamber in the vertical direction, so The falling body is arranged in the vacuum chamber, and the bottom of the vacuum chamber is provided with a vacuum chamber observation window for observing the free fall movement of the falling body;
所述绝对重力测量系统进一步包括设置在所述壳体内的真空仓位移测量装置,所述真空仓位移测量装置包括设置于所述壳体内部的光栅尺,以及固定安装在所述真空仓外壳的读数头;The absolute gravity measurement system further includes a vacuum chamber displacement measuring device arranged in the housing, the vacuum chamber displacement measuring device includes a grating ruler arranged inside the housing, and a reading head;
所述绝对重力测量系统进一步包括空气折射率测量装置,用于测量所述壳体内部的空气折射率。The absolute gravimetric measurement system further includes an air refractive index measurement device for measuring the air refractive index inside the housing.
在其中一个实施例中,所述自由落体装置包括设置于所述壳体内部的支撑框架,所述支撑框架包括竖直设置的直线导轨;In one of the embodiments, the free fall device includes a support frame arranged inside the housing, and the support frame includes a vertically arranged linear guide rail;
所述真空仓滑动安装于所述直线导轨,在所述动力装置的驱动下沿所述直线导轨移动;The vacuum chamber is slidably installed on the linear guide rail, and is driven by the power device to move along the linear guide rail;
所述光栅尺安装于所述支撑框架,且与所述直线导轨平行间隔设置从而使得所述光栅尺与所述读数头相对设置。The grating ruler is installed on the support frame, and is arranged in parallel with the linear guide rail so that the grating ruler is opposite to the reading head.
在其中一个实施例中,所述真空仓内壁固定设置有支撑结构,用于支撑所述落体。In one of the embodiments, the inner wall of the vacuum chamber is fixedly provided with a supporting structure for supporting the falling body.
在其中一个实施例中,所述真空仓为焊接密封,所述真空仓内的真空度为10-6Pa至10-4Pa。In one embodiment, the vacuum chamber is sealed by welding, and the vacuum degree in the vacuum chamber is 10 -6 Pa to 10 -4 Pa.
在其中一个实施例中,所述真空仓内设置有空气吸收剂。In one of the embodiments, an air absorbent is arranged in the vacuum chamber.
在其中一个实施例中,所述落体内设置有第一反射棱镜,用于反射所述激光干涉测量装置发出的测量激光;In one of the embodiments, a first reflective prism is arranged in the falling body, which is used to reflect the measuring laser light emitted by the laser interferometry device;
所述隔震平台内设置有第二反射棱镜,用于反射所述第一反射棱镜反射的所述测量激光。A second reflective prism is arranged inside the shock-isolation platform for reflecting the measuring laser light reflected by the first reflective prism.
在其中一个实施例中,所述激光干涉测量装置包括:In one of the embodiments, the laser interferometry device includes:
第一分光元件,用于将准直激光分成相互垂直的所述测试激光和参考激光,所述测试激光传输至所述第一反射棱镜,并经过所述第一反射棱镜反射至所述第二反射棱镜;The first light splitting element is used to split the collimated laser light into the test laser light and the reference laser light perpendicular to each other, the test laser light is transmitted to the first reflective prism, and is reflected to the second reflective prism through the first reflective prism. reflective prism;
第二分光镜,用于将穿过所述第二分光镜的所述参考激光,和经由所述第二反射棱镜反射至所述第二分光镜的所述测试激光进行光合;a second beam splitter, configured to photosynthesize the reference laser light passing through the second beam splitter and the test laser light reflected to the second beam splitter through the second reflective prism;
光电探测器,用于将经由所述第二分光镜光合的所述测量激光与所述参考激光形成的干涉条纹转换成模拟信号。The photodetector is used to convert the interference fringes formed by the measurement laser light combined with the reference laser light through the second beam splitter into an analog signal.
在其中一个实施例中,所述空气折射率测量装置包括设置于所述壳体内部的传感器,所述传感器用于感测所述壳体内部的温度、气压和湿度。In one of the embodiments, the air refractive index measuring device includes a sensor disposed inside the housing, and the sensor is used to sense the temperature, air pressure and humidity inside the housing.
在其中一个实施例中,所述的绝对重力测量系统还包括:In one of the embodiments, the absolute gravimetric measurement system also includes:
数字信号处理器,所述数字信号处理器与所述动力装置和所述传感器电连接,用于控制所述动力装置,并通过所述传感器采集所述壳体内部的温度、气压和湿度;A digital signal processor, the digital signal processor is electrically connected to the power device and the sensor, and is used to control the power device, and collect the temperature, air pressure and humidity inside the housing through the sensor;
与所述数字信号处理器连接的计算机,用于通过所述数字信号处理器给所述动力装置发送指令从而控制所述动力装置,并且根据所述数字信号处理器传回的所述壳体内部的温度、气压和湿度计算所述壳体内部的空气折射率;A computer connected to the digital signal processor, used to send instructions to the power device through the digital signal processor to control the power device, and according to the information sent back by the digital signal processor inside the housing Calculate the air refraction index inside the housing according to the temperature, air pressure and humidity;
与所述真空仓位移测量装置、所述激光干涉装置和所述计算机连接的数据采集卡,所述计算机通过所述数据采集卡获取所述激光干涉装置发出的激光干涉条纹信号和所述真空仓位移测量装置发出的真空仓位移信号;以及A data acquisition card connected with the vacuum chamber displacement measurement device, the laser interference device and the computer, and the computer obtains the laser interference fringe signal and the vacuum chamber position signal emitted by the laser interference device through the data acquisition card. Vacuum chamber displacement signals from the displacement measuring device; and
与所述数据采集卡连接的原子钟,所述原子钟为所述数据采集卡提供标准的时钟参考信号。An atomic clock connected to the data acquisition card, the atomic clock provides a standard clock reference signal for the data acquisition card.
一种采用如上任一实施例所述的绝对重力测量系统的绝对重力测量方法,包括:An absolute gravimetric measurement method using the absolute gravimetric measurement system described in any one of the above embodiments, comprising:
通过所述动力装置控制所述真空仓由所述壳体顶部竖直向下运动,从而使得所述落体做自由落体运动;Controlling the vacuum chamber to move vertically downward from the top of the casing through the power device, so that the falling body can freely fall;
通过所述激光干涉测量装置跟踪所述落体做自由落体运动以获取激光干涉条纹信号;Tracking the falling body through the laser interferometry device for free-fall motion to obtain laser interference fringe signals;
通过所述真空仓位移测量装置测得所述真空仓下落时的真空仓位移信号;The displacement signal of the vacuum chamber when the vacuum chamber falls is measured by the vacuum chamber displacement measuring device;
通过所述空气折射率测量装置测得所述壳体内部的空气折射率;以及measuring the refractive index of air inside the casing by the air refractive index measuring device; and
根据所述激光干涉条纹信号、所述真空仓位移信号和所述空气折射率计算绝对重力加速度。The absolute gravitational acceleration is calculated according to the laser interference fringe signal, the vacuum chamber displacement signal and the air refractive index.
本申请的绝对重力测量系统可以脱离离子泵工作,简化了绝对重力测量系统,提高了绝对重力测量野外作业的便捷性与可靠性。另外,本申请的技术方案还包括真空仓位移测量装置和空气折射率测量装置,从而可以通过由所述真空仓位移测量装置测量真空仓位移信息和所述空气折射率测量装置测量的壳体内部的空气折射率,对绝对重力的测量方法进行修正,从而获得更加准确的测量结果。因此,本申请的绝对重力测量系统具有轻便简单、机动性和可靠性更高,适用于环境恶劣的野外测量的优点。The absolute gravity measurement system of the present application can work without the ion pump, which simplifies the absolute gravity measurement system and improves the convenience and reliability of the absolute gravity measurement field operation. In addition, the technical solution of the present application also includes a vacuum chamber displacement measuring device and an air refractive index measuring device, so that the displacement information of the vacuum chamber measured by the vacuum chamber displacement measuring device and the inside of the housing measured by the air refractive index measuring device can be The refractive index of air is corrected for the measurement method of absolute gravity, so as to obtain more accurate measurement results. Therefore, the absolute gravimetric measurement system of the present application has the advantages of portability and simplicity, higher mobility and reliability, and is suitable for field measurement in harsh environments.
附图说明Description of drawings
图1为本发明一个实施例的绝对重力测量系统的结构示意图;Fig. 1 is the structural representation of the absolute gravimetric measurement system of an embodiment of the present invention;
图2为本发明一个实施例中的绝对重力测量系统的自由落体装置的内部结构的正面视图;Fig. 2 is the front view of the internal structure of the free fall device of the absolute gravimetric measurement system in one embodiment of the present invention;
图3为图2中的自由落体装置的内部结构的侧面视图;Fig. 3 is a side view of the internal structure of the free-fall device in Fig. 2;
图4为本发明一个实施例中的绝对重力测量系统的真空仓的内部结构示意图;Fig. 4 is a schematic diagram of the internal structure of the vacuum chamber of the absolute gravity measurement system in one embodiment of the present invention;
图5为本发明一个实施例中的绝对重力测量系统的激光干涉测量装置的光路结构示意图;Fig. 5 is a schematic diagram of the optical path structure of the laser interferometry device of the absolute gravity measurement system in one embodiment of the present invention;
图6为本发明一个实施例中的绝对重力测量系统的结构框图;Fig. 6 is the structural block diagram of the absolute gravimetric measurement system in one embodiment of the present invention;
图7为本发明一个实施例中的绝对重力测量系统的自由落体运动轨迹测量原理图。Fig. 7 is a schematic diagram of the free-fall trajectory measurement of the absolute gravity measurement system in one embodiment of the present invention.
主要元件符号说明Description of main component symbols
绝对重力测量系统 100Absolute Gravity Measurement System 100
自由落体装置 10Free Fall Device 10
顶部法兰 11Top flange 11
壳体 12Shell 12
主腔体 13main chamber 13
底部观察窗 14bottom viewing window 14
底部法兰 15Bottom flange 15
隔振平台 20Vibration isolation platform 20
激光干涉测量装置 30Laser interferometry device 30
准直激光器 31Collimated lasers 31
反射元件 32reflective elements 32
第一分光元件 33The first light splitting element 33
第二分光元件 34Second light splitting element 34
透镜 35lens 35
光电探测器 36Photodetector 36
数字信号处理器 40Digital Signal Processor 40
计算机 50computer 50
数据采集卡 60Data Acquisition Card 60
原子钟 70atomic clock 70
真空仓 110Vacuum chamber 110
铜管 111Copper pipe 111
落体 112Falling 112
真空仓顶板 113Vacuum chamber roof 113
第一反射棱镜 114First reflector prism 114
真空从仓底板 115Vacuum from bin floor 115
支撑结构 116Support structure 116
真空仓观察窗 117Vacuum chamber observation window 117
真空仓侧壁 119Vacuum chamber side wall 119
真空仓位移测量装置 120Vacuum chamber displacement measuring device 120
光栅尺 122Grating ruler 122
读数头 124Readhead 124
安装座 126Mount 126
空气折射率测量装置 130Air Refractive Index Measuring Device 130
动力装置 140Power unit 140
控制电机 142Controlling Motors 142
柔性联轴器 143Flexible Couplings 143
同步带 144timing belt 144
行程开关 145Travel switch 145
第一同步带轮 146The first timing pulley 146
第二同步带轮 148Second timing pulley 148
支撑框架 150Support frame 150
框架顶板 151Frame top plate 151
导轨支架 152Rail bracket 152
直线导轨 154Linear guides 154
滑块 155slider 155
真空仓连接件 156Vacuum chamber connector 156
框架底板 157Frame bottom plate 157
第二反射棱镜 214Second reflective prism 214
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请参见图1,本发明实施例提供一种绝对重力测量系统100,用于测量地球不同位置的绝对重力值。所述绝对重力测量系统100包括自由落体装置10、隔振平台20、激光干涉测量装置30、真空仓位移测量装置120和空气折射率测量装置130。Please refer to FIG. 1 , an embodiment of the present invention provides an absolute gravity measurement system 100 for measuring absolute gravity values at different positions on the earth. The absolute gravity measurement system 100 includes a free fall device 10 , a vibration isolation platform 20 , a laser interferometry device 30 , a vacuum chamber displacement measurement device 120 and an air refractive index measurement device 130 .
所述自由落体装置10设置于所述隔振平台20,用于实现落体112的自由落体运动。所述自由落体装置10包括壳体12、设置在所述壳体12内的真空仓110、以及与所述真空仓110传动连接的动力装置140。所述落体112设置于所述真空仓110内。所述动力装置140可以控制所述真空仓110在重力方向上移动,从而实现所述落体112做自由落体运动。所述壳体12内部为大气压强。可以理解,所述壳体12底部还具有底部观察窗14,可以使得激光进入以探测所述落体112。The free fall device 10 is arranged on the vibration isolation platform 20 for realizing the free fall movement of the falling body 112 . The free fall device 10 includes a casing 12 , a vacuum chamber 110 disposed in the casing 12 , and a power device 140 connected to the vacuum chamber 110 in transmission. The falling body 112 is disposed in the vacuum chamber 110 . The power device 140 can control the vacuum chamber 110 to move in the direction of gravity, so as to realize the free-fall movement of the falling body 112 . The inside of the housing 12 is atmospheric pressure. It can be understood that the bottom of the casing 12 also has a bottom observation window 14 , which can allow laser light to enter to detect the falling object 112 .
所述隔振平台20设置于所述自由落体装置10与所述激光干涉测量装置30之间,用于隔离底面震动对测量的影响。所述激光干涉测量装置30可以发射测量激光,并且通过所述测量激光来跟踪所述落体112,以获取所述落体112在做自由落体运动时的激光干涉条纹信号。所述真空仓位移测量装置120用于测量所述真空仓110下落时的真空仓位移信号。所述真空仓位移测量装置120包括设置于所述壳体12内部的光栅尺122,以及固定安装在所述真空仓110外壳的读数头124。所述空气折射率测量装置130设置于所述壳体12内部,用于测量所述壳体12内部的空气折射率。The vibration isolation platform 20 is arranged between the free fall device 10 and the laser interferometry device 30 for isolating the influence of the vibration of the bottom surface on the measurement. The laser interferometry device 30 can emit a measuring laser, and track the falling body 112 through the measuring laser, so as to obtain the laser interference fringe signal of the falling body 112 when it is in free fall. The vacuum chamber displacement measuring device 120 is used to measure the vacuum chamber displacement signal when the vacuum chamber 110 falls. The vacuum chamber displacement measuring device 120 includes a grating ruler 122 disposed inside the housing 12 , and a reading head 124 fixedly installed on the outer shell of the vacuum chamber 110 . The air refractive index measuring device 130 is disposed inside the housing 12 for measuring the air refractive index inside the housing 12 .
请参见图2-3,所述壳体12可以由顶部法兰11、主腔体13、底部法兰15、底部观察窗14组成。其中,所述顶部法兰11、所述主腔体13和所述底部法兰15可以采用铝合金材料制作,用于降低自由落体装置10的重量。可以理解,所述顶部法兰11、所述主腔体13和所述底部法兰15的材料不限于铝合金,也可采用其他金属材料制备。可以理解,所述壳体12的结构形状不限制,只要能够形成一个收纳空间即可。Referring to FIGS. 2-3 , the housing 12 can be composed of a top flange 11 , a main cavity 13 , a bottom flange 15 and a bottom observation window 14 . Wherein, the top flange 11 , the main cavity 13 and the bottom flange 15 can be made of aluminum alloy material for reducing the weight of the free fall device 10 . It can be understood that the materials of the top flange 11 , the main cavity 13 and the bottom flange 15 are not limited to aluminum alloy, and other metal materials can also be used. It can be understood that the structural shape of the housing 12 is not limited, as long as a storage space can be formed.
在一个实施例中,所述自由落体装置10内部可以设置支撑框架150,用于安装所述真空仓110。所述支撑框架150包括框架顶板151、导轨支架152和框架底板157。所述导轨支架152固定在所述框架顶板151和所述框架底板157之间。所述导轨支架152上设置有直线导轨154。所述真空仓110滑动设置在所述直线导轨154上,从而可以沿着所述直线导轨154滑动。可以理解,所述直线导轨154可以匹配设置有滑块155。所述滑块155可以沿着所述直线导轨154做直线运动。所述真空仓110可以通过真空仓连接件156固定在所述滑块155上。从而,所述真空仓110在所述动力装置140的控制下,可以沿着所述直线导轨154做直线运动,以实现所述落体112的自由落体运动。In one embodiment, a support frame 150 may be provided inside the free fall device 10 for installing the vacuum chamber 110 . The support frame 150 includes a frame top plate 151 , a rail bracket 152 and a frame bottom plate 157 . The rail bracket 152 is fixed between the frame top plate 151 and the frame bottom plate 157 . The guide rail bracket 152 is provided with a linear guide rail 154 . The vacuum chamber 110 is slidably disposed on the linear guide rail 154 so as to be able to slide along the linear guide rail 154 . It can be understood that the linear guide rail 154 can be matched with a sliding block 155 . The slider 155 can move linearly along the linear guide rail 154 . The vacuum chamber 110 can be fixed on the slider 155 through a vacuum chamber connecting piece 156 . Therefore, under the control of the power device 140 , the vacuum chamber 110 can move linearly along the linear guide rail 154 to realize the free-fall motion of the falling body 112 .
所述光栅尺122可以固定安装于所述支撑框架150。具体地,所述光栅尺122的两端可以分别固定于所述框架顶板151和所述框架底板157。所述光栅尺122与所述直线导轨154平行间隔设置。所述读数头124设置在所述真空仓110上。具体地,所述读数头124可以通过连接件126固定在所述真空仓110的上。因此,所述读数头124相对于所述光栅尺122的运动就是所述真空仓110相对于所述支撑框架150的运动。从而所述读数头124的位移等同于所述真空仓110的位移。因此,所述真空仓位移测量装置120可以通过所述光栅尺122和所述读数头124测量出所述真空仓110的位移信息,也就是真空仓位移信息。可以理解,所述光栅尺122的测量范围应该大于所述真空仓110的最大速度。所述真空仓110的瞬时加速度可以大于重力加速度。在一个实施例中,所述光栅尺122可连续输出0V方波或5V方波,测量分辨率为2×10-6m。The grating scale 122 can be fixedly mounted on the supporting frame 150 . Specifically, two ends of the grating ruler 122 may be respectively fixed to the frame top plate 151 and the frame bottom plate 157 . The grating ruler 122 is arranged parallel to the linear guide rail 154 at intervals. The reading head 124 is disposed on the vacuum chamber 110 . Specifically, the reading head 124 can be fixed on the vacuum chamber 110 through a connecting piece 126 . Therefore, the movement of the reading head 124 relative to the grating ruler 122 is the movement of the vacuum chamber 110 relative to the supporting frame 150 . Thus the displacement of the reading head 124 is equivalent to the displacement of the vacuum chamber 110 . Therefore, the vacuum chamber displacement measuring device 120 can measure the displacement information of the vacuum chamber 110 through the grating ruler 122 and the reading head 124 , that is, the vacuum chamber displacement information. It can be understood that the measurement range of the grating ruler 122 should be greater than the maximum speed of the vacuum chamber 110 . The instantaneous acceleration of the vacuum chamber 110 may be greater than the acceleration of gravity. In one embodiment, the grating ruler 122 can continuously output a 0V square wave or a 5V square wave, and the measurement resolution is 2×10 −6 m.
所述动力装置140可以是各种能够提供动力的装置,只要能够控制所述真空仓110在重力方向竖直运动即可。所述动力装置140的作用是提供动力,从而控制所述真空仓110沿着所述直线轨道154运动。在一个实施例中,所述动力装置140包括控制电机142、柔性联轴器143、同步带144、行程开关145、第一同步带轮146和第二同步带轮148。所述控制电机142可以穿过所述壳体12安装于所述支撑框架150。所述控制电机142的转轴与所述柔性联轴器143相连。所述柔性联轴器143与所述第一同步带轮146连接。所述第一同步带轮146安装于所述框架顶板151。所述第二同步带轮148安装于所述框架底板147。所述同步带12缠绕在所述第一同步带轮146和所述第二同步带轮148上,并与所述真空仓连接件156固定连接。所述控制电机142可以通过所述第一同步带轮146和所述同步带144带动所述真空仓连接件156运动,从而实现所述真空仓110的上升和下降,以及所述落体112的自由下落。所述行程开关145固定安装在所述轨道支架152上。当所述真空仓连接件156与所述行程开关145接触之后,所述控制电机142停止转动。The power device 140 can be any device capable of providing power, as long as it can control the vertical movement of the vacuum chamber 110 in the direction of gravity. The function of the power device 140 is to provide power to control the movement of the vacuum chamber 110 along the linear track 154 . In one embodiment, the power device 140 includes a control motor 142 , a flexible coupling 143 , a synchronous belt 144 , a travel switch 145 , a first synchronous pulley 146 and a second synchronous pulley 148 . The control motor 142 can pass through the casing 12 and be installed on the support frame 150 . The rotating shaft of the control motor 142 is connected with the flexible coupling 143 . The flexible coupling 143 is connected with the first synchronous pulley 146 . The first synchronous pulley 146 is installed on the frame top plate 151 . The second synchronous pulley 148 is mounted on the frame bottom plate 147 . The synchronous belt 12 is wound on the first synchronous pulley 146 and the second synchronous pulley 148 , and is fixedly connected with the vacuum chamber connector 156 . The control motor 142 can drive the vacuum chamber connector 156 to move through the first synchronous pulley 146 and the synchronous belt 144, thereby realizing the rise and fall of the vacuum chamber 110 and the free movement of the falling body 112. whereabouts. The travel switch 145 is fixedly installed on the track bracket 152 . After the vacuum chamber connector 156 contacts the travel switch 145, the control motor 142 stops rotating.
请参见图4,在一个实施例中,所述真空仓110包括铜管111、真空仓顶板113、真空仓侧壁119、真空仓底板115、以及真空仓观察窗117。所述真空仓侧壁119设置在所述真空仓顶板113和所述真空仓底板115之间,三者共同形成一个封闭的真空腔体。所述落体112放置在所述真空腔体内。所述铜管11用于对所述真空腔体抽真空。所述真空仓顶板113、所述真空仓侧壁119、所述真空仓底板115可以通过焊接密封连接在一起。所述真空仓观察窗117设置在所述真空仓底板115。激光可以通过所述真空仓观察窗117进入所述真空仓110内部。可以理解,所述真空仓观察窗117与所述真空仓底板115之间也可以通过焊接密封连接在一起。可以理解,所述真空仓110的材料应该具有一定的强度,并且适合做真空仓,可以但是不限于金属。在一个实施例中,所述真空仓110为铝合金材料制成。所述真空仓110内壁上还可以设置有支撑结构116,用于支撑所述落体112。可以理解,所述支撑结构11上还可以设置凹槽,与所述落体112上设置的凸起结构配合,从而使得所述落体112稳定的放置在所述支撑结构116上。在一个实施例中,所述支撑结构116为支撑环。所述落体112放置在所述支撑环上。所述落体112内部还设置有第一反射棱镜114。所述第一反射棱镜114可以反射从所述真空仓观察窗117射入的激光,用于测量。可以理解,所述第一反射棱镜114的结构不限制,可以根据需要选择。Referring to FIG. 4 , in one embodiment, the vacuum chamber 110 includes a copper pipe 111 , a vacuum chamber roof 113 , a vacuum chamber sidewall 119 , a vacuum chamber bottom 115 , and a vacuum chamber observation window 117 . The vacuum chamber side wall 119 is arranged between the vacuum chamber top plate 113 and the vacuum chamber bottom plate 115, and the three together form a closed vacuum chamber. The falling body 112 is placed in the vacuum chamber. The copper tube 11 is used to evacuate the vacuum cavity. The vacuum chamber top plate 113 , the vacuum chamber side wall 119 , and the vacuum chamber bottom plate 115 can be sealed together by welding. The vacuum chamber viewing window 117 is disposed on the vacuum chamber bottom plate 115 . Laser light can enter the interior of the vacuum chamber 110 through the vacuum chamber observation window 117 . It can be understood that the vacuum chamber viewing window 117 and the vacuum chamber bottom plate 115 can also be sealed and connected together by welding. It can be understood that the material of the vacuum chamber 110 should have a certain strength and be suitable for a vacuum chamber, it can be but not limited to metal. In one embodiment, the vacuum chamber 110 is made of aluminum alloy. A supporting structure 116 may also be provided on the inner wall of the vacuum chamber 110 for supporting the falling body 112 . It can be understood that grooves can also be provided on the supporting structure 11 to cooperate with the protruding structures provided on the falling body 112 , so that the falling body 112 can be stably placed on the supporting structure 116 . In one embodiment, the support structure 116 is a support ring. The falling body 112 is placed on the support ring. A first reflective prism 114 is also arranged inside the falling body 112 . The first reflective prism 114 can reflect the laser light incident from the observation window 117 of the vacuum chamber for measurement. It can be understood that the structure of the first reflective prism 114 is not limited and can be selected according to requirements.
所述隔振平台20可以由机械弹簧和精密控制系统组成,以实现超过20秒的本征振荡周期,具有较好的隔离地面振动的效果。所述隔振平台20可以悬挂有第二反射棱镜214,用于与所述激光干涉测量装置30配合组成光路,将所述落体112的所述第一反射棱镜114反射的激光发射到所述激光干涉测量装置30。可以理解,所述第二反射棱镜214的结构不限制,可以根据需要选择。The vibration isolation platform 20 can be composed of mechanical springs and a precision control system to achieve an intrinsic oscillation period of more than 20 seconds, which has a better effect of isolating ground vibrations. The vibration isolation platform 20 can be suspended with a second reflective prism 214, which is used to cooperate with the laser interferometry device 30 to form an optical path, and emit the laser light reflected by the first reflective prism 114 of the falling body 112 to the laser beam. Interferometry device 30 . It can be understood that the structure of the second reflective prism 214 is not limited and can be selected according to needs.
所述激光干涉测量装置30用于测量所述落体112作自由落体运动的激光干涉条纹信号。所述激光干涉条纹信号用于计算所述落体112的绝对重力加速度。可以理解,所述激光干涉测量装置30的结构不限,只要能够实现上述功能即可。请一并参见图5,在一个实施例中,所述激光干涉测量装置30可以包括准直激光器31、反射元件32、第一分光元件33、第二分光元件34、透镜35、以及光电探测器36。所述准直激光器31用于发射出准直激光,其可以通过一个激光器和以及准直器组成。所述反射元件32用于将所述准直激光器31发出的准直激光反射进入所述第一分光元件33。可以理解,当所述准直激光直接进入所述第一分光元件33时,所述反射元件32是可选元件。所述第一分光元件33可以将所述准直激光分为测试激光和参考激光。所述测试激光和所述测试激光相互垂直。所述测试激光输入所述第一反射棱镜114,并经由所述第一反射棱镜114反射至所述第二分光元件34。所述参考激光输入所述第二分光元件34,并与所述测试激光合光后进入所述光电探测器36。经过所述第二分光元件34的所述参考激光和所述测试激光可以通过所述透镜35后进入所述光电探测器36。所述光电探测器36可以将经由所述第二分光元件34光合的所述测量激光与所述参考激光形成的干涉条纹转换成模拟信号。可以理解,所述透镜35也可以是可选择元件。所述第一分光元件33和所述第二分元件34都可以为分光镜。The laser interferometry device 30 is used to measure the laser interference fringe signal of the falling body 112 in free fall. The laser interference fringe signal is used to calculate the absolute gravitational acceleration of the falling object 112 . It can be understood that the structure of the laser interferometry device 30 is not limited, as long as the above functions can be realized. Please also refer to FIG. 5 , in one embodiment, the laser interferometry device 30 may include a collimated laser 31, a reflective element 32, a first light splitting element 33, a second light splitting element 34, a lens 35, and a photodetector 36. The collimated laser 31 is used to emit collimated laser light, which may be composed of a laser and a collimator. The reflective element 32 is used to reflect the collimated laser light emitted by the collimated laser 31 into the first light splitting element 33 . It can be understood that when the collimated laser light directly enters the first light splitting element 33, the reflective element 32 is an optional element. The first light splitting element 33 can divide the collimated laser light into a test laser light and a reference laser light. The test laser and the test laser are perpendicular to each other. The test laser is input into the first reflective prism 114 and reflected to the second light splitting element 34 through the first reflective prism 114 . The reference laser light enters the second light splitting element 34 , combines with the test laser light and enters the photodetector 36 . The reference laser light and the test laser light passing through the second light splitting element 34 may enter the photodetector 36 after passing through the lens 35 . The photodetector 36 can convert the interference fringes formed by the measurement laser light combined with the reference laser light through the second light splitting element 34 into an analog signal. It can be understood that the lens 35 can also be an optional element. Both the first beam splitting element 33 and the second beam splitting element 34 can be beam splitters.
请参见图6,所述绝对重力测量系统100,还可以包括数字信号处理器40、与所述数字信号处理器40连接的计算机50、数据采集卡60、以及原子钟70。所述数字信号处理器40与所述动力装置140和所述空气折射率测量装置130电连接。所述数字信号处理器40用于控制所述动力装置140,并通过所述空气折射率测量装置130采集所述壳体12内部的温度、气压和湿度。所述计算机50用于通过所述数字信号处理器40给所述动力装置140发送指令从而控制所述动力装置140,并且根据所述数字信号处理器40传回的所述壳体12内部的温度、气压和湿度计算所述壳体12内部的空气折射率。所述数据采集卡60与所述真空仓位移测量装置120、所述激光干涉装置130和所述计算机50电连接。所述计算机50通过所述数据采集卡60获取所述激光干涉装置30发出的激光干涉条纹信号和所述真空仓位移测量装置120发出的真空仓位移信号。所述原子钟70与所述数据采集卡60连接,所述原子钟70为所述数据采集卡60提供标准的时钟参考信号。所述原子钟70可以是任何基准钟,比如铷原子钟。所述数字信号处理器40可以使用任何形式的嵌入式处理器。Referring to FIG. 6 , the absolute gravity measurement system 100 may further include a digital signal processor 40 , a computer 50 connected to the digital signal processor 40 , a data acquisition card 60 , and an atomic clock 70 . The digital signal processor 40 is electrically connected with the power device 140 and the air refractive index measurement device 130 . The digital signal processor 40 is used to control the power device 140 , and collect the temperature, air pressure and humidity inside the housing 12 through the air refractive index measuring device 130 . The computer 50 is used to send instructions to the power unit 140 through the digital signal processor 40 to control the power unit 140 , and according to the temperature inside the casing 12 returned by the digital signal processor 40 , air pressure and humidity to calculate the refractive index of the air inside the casing 12 . The data acquisition card 60 is electrically connected with the vacuum chamber displacement measurement device 120 , the laser interference device 130 and the computer 50 . The computer 50 obtains the laser interference fringe signal from the laser interference device 30 and the vacuum chamber displacement signal from the vacuum chamber displacement measuring device 120 through the data acquisition card 60 . The atomic clock 70 is connected to the data acquisition card 60 , and the atomic clock 70 provides a standard clock reference signal for the data acquisition card 60 . The atomic clock 70 can be any reference clock, such as rubidium atomic clock. The digital signal processor 40 can use any form of embedded processor.
下面详细介绍所述自由落体装置10如何实现所述落体112的自由落体运动。How the free-fall device 10 realizes the free-fall movement of the falling body 112 will be described in detail below.
(1)、通过所述控制电机142转动,使得所述真空仓连接件156向上运动,并带动所述真空仓110向上运动,从而将所述真空仓110和放置在其中的所述落体112运送至所述壳体12的顶部位置。(1), through the rotation of the control motor 142, the vacuum chamber connector 156 moves upward, and drives the vacuum chamber 110 to move upward, thereby transporting the vacuum chamber 110 and the falling body 112 placed therein to the top position of the housing 12.
(2)、当所述真空仓连接件156与所述行程开关145接触之后,所述控制电机142停止转动。(2) After the vacuum chamber connector 156 contacts the travel switch 145 , the control motor 142 stops rotating.
(3)、通过所述控制电机142反向转动,使得所述真空仓连接件156向下运动。所述真空仓110随所述真空仓连接件156加速向下运动。所述真空仓110的运动加速度大于重力加速度。所述落体112与所述支撑结构116分离,此时所述落体112仅受到重力的作用,开始向下作自由落体运动。(3) Through the reverse rotation of the control motor 142 , the vacuum chamber connecting member 156 moves downward. The vacuum chamber 110 moves downward with the acceleration of the vacuum chamber connecting member 156 . The motion acceleration of the vacuum chamber 110 is greater than the gravitational acceleration. The falling body 112 is separated from the supporting structure 116, and at this moment, the falling body 112 is only subjected to the action of gravity, and starts to freely fall downward.
(4)、当所述真空仓110向下运动到所述壳体12的底部位置时,所述控制电机10减速。所述支撑结构116与作自由落体运动的所述落体112重新接触,并且一起作减速运动,直至静止。(4) When the vacuum chamber 110 moves down to the bottom position of the casing 12 , the control motor 10 decelerates. The support structure 116 reconnects with the falling body 112 in free fall, and together they decelerate until they come to a standstill.
(5)、重复以上(1)-(4)步骤,可以重复实现所述落体112的自由落体运动。(5), repeating the above steps (1)-(4), the free fall movement of the falling body 112 can be realized repeatedly.
与现有技术相比,本申请的技术方案采用高真空维持技术,通过焊接密封技术保持小型化真空仓内的真空度,巧妙地实现了落体的自由落体运动。小型化真空仓的采用使重力仪可以脱离离子泵工作,简化了绝对重力测量系统,提高了绝对重力测量野外作业的便捷性与可靠性。另外,本申请的技术方案还包括真空仓位移测量装置和空气折射率测量装置,从而可以通过由所述真空仓位移测量装置测量真空仓位移信息和所述空气折射率测量装置测量的壳体内部的空气折射率,对绝对重力的测量方法进行修正,从而获得更加准确的测量结果。因此,本申请的绝对重力测量系统具有轻便简单、机动性和可靠性更高,适用于环境恶劣的野外测量的优点。Compared with the prior art, the technical proposal of the present application adopts the high vacuum maintenance technology, maintains the vacuum degree in the miniaturized vacuum chamber through the welding and sealing technology, and skillfully realizes the free fall movement of the falling body. The adoption of a miniaturized vacuum chamber allows the gravimeter to work without the ion pump, which simplifies the absolute gravity measurement system and improves the convenience and reliability of absolute gravity measurement in field operations. In addition, the technical solution of the present application also includes a vacuum chamber displacement measuring device and an air refractive index measuring device, so that the displacement information of the vacuum chamber measured by the vacuum chamber displacement measuring device and the inside of the housing measured by the air refractive index measuring device can be The refractive index of air is corrected for the measurement method of absolute gravity, so as to obtain more accurate measurement results. Therefore, the absolute gravimetric measurement system of the present application has the advantages of portability and simplicity, higher mobility and reliability, and is suitable for field measurement in harsh environments.
本申请实施例还提供一种采用所述绝对重力测量系统100的绝对重力测量方法,包括:The embodiment of the present application also provides an absolute gravity measurement method using the absolute gravity measurement system 100, including:
通过所述动力装置140控制所述真空仓110由所述壳体12顶部竖直向下运动,从而使得所述落体112做自由落体运动;The vacuum chamber 110 is controlled by the power device 140 to move vertically downward from the top of the casing 12, so that the falling body 112 is free-falling;
通过所述激光干涉测量装置30跟踪所述落体112做自由落体运动以获取激光干涉条纹信号;Tracking the falling body 112 through the laser interferometry device 30 for free-fall motion to obtain laser interference fringe signals;
通过所述真空仓位移测量装置120测得所述真空仓110下落时的真空仓位移信号;The vacuum chamber displacement signal when the vacuum chamber 110 falls is measured by the vacuum chamber displacement measuring device 120;
通过所述空气折射率测量装置130测得所述壳体12内部的空气折射率;以及Measure the air refractive index inside the housing 12 by the air refractive index measuring device 130; and
根据所述激光干涉条纹信号、所述真空仓位移信号和所述空气折射率计算绝对重力加速度。The absolute gravitational acceleration is calculated according to the laser interference fringe signal, the vacuum chamber displacement signal and the air refractive index.
以下介绍如何通过所述激光干涉条纹信号、所述真空仓位移信号和所述空气折射率计算绝对重力加速度。在一个下落周期内,所述真空仓110与所述落体112一同下落。下落过程中所述落体112相对所述真空仓110的位移、以及所述真空仓110相对所述激光干涉测量装置30的位移均发生改变。上述改变将导致测量臂光程变化,此时所述激光干涉条纹信号已不能表征所述落体112的位移绝对值,而应通过分析测量臂光程变化的方法重建所述落体112的轨迹,具体过程如下。The following describes how to calculate the absolute gravitational acceleration by using the laser interference fringe signal, the vacuum chamber displacement signal and the air refractive index. In one falling cycle, the vacuum chamber 110 falls together with the falling body 112 . During the falling process, the displacement of the falling body 112 relative to the vacuum chamber 110 and the displacement of the vacuum chamber 110 relative to the laser interferometry device 30 both change. The above changes will lead to changes in the optical path of the measuring arm. At this time, the laser interference fringe signal can no longer represent the absolute value of the displacement of the falling object 112, but the trajectory of the falling object 112 should be reconstructed by analyzing the optical path change of the measuring arm. Specifically The process is as follows.
请参见图7,表示下落过程中i时刻(实线)和i+1时刻(虚线)所述真空仓110与所述落体112的位置关系。矩形代表所述真空仓110,直角三角形代表所述落体112内的所述第一角反射棱镜114。箭头代表i时刻(实线)和i+1时刻(虚线)的测量臂光束。x为所述落体112的位移,y为所述真空仓110的真空仓位移,二者均取竖直向下为正方向,下标i表示它们各自在i时刻的取值。记测量臂光程为z,则从i时刻到i+1时刻z的变化为:Please refer to FIG. 7 , which shows the positional relationship between the vacuum chamber 110 and the falling body 112 at time i (solid line) and time i+1 (dotted line) during the falling process. The rectangle represents the vacuum chamber 110 , and the right triangle represents the first corner reflective prism 114 inside the falling body 112 . Arrows represent the measuring arm beam at time i (solid line) and time i+1 (dashed line). x is the displacement of the falling body 112, and y is the displacement of the vacuum chamber of the vacuum chamber 110, both of which take the vertical downward as the positive direction, and the subscript i represents their respective values at the moment i. Record the optical path of the measuring arm as z, then the change of z from time i to time i+1 is:
zi+1-zi=2(yi+1-yi)(nTPf-nvac)+2(xi+1-xi)nvac (1)z i+1 -z i =2(y i+1 -y i )(n TPf -n vac )+2( xi +1 -xi )n vac (1)
式中nTPf表示激光干涉仪测量臂附近空气折射率,nvac为真空仓内残余气体的折射率。由(1)式可知,通过测量真空仓位移y、空气折射率nTPf与激光干涉条纹信号z,可以重建真空中的自由落体轨迹x。这三个物理量分别由绝对重力测量系统100的所述激光干涉测量装置30、所述真空仓位移测量装置120和所述空气折射率测量装置130得到。因此,通过上述三个物理量就可以计算出所述落体112的准确自由落体轨迹,从而计算出绝对重力加速度。In the formula, n TPf represents the refractive index of the air near the measuring arm of the laser interferometer, and n vac is the refractive index of the residual gas in the vacuum chamber. It can be seen from formula (1) that by measuring the displacement y of the vacuum chamber, the air refractive index n TPf and the laser interference fringe signal z, the free fall trajectory x in vacuum can be reconstructed. These three physical quantities are respectively obtained by the laser interferometry device 30 , the vacuum chamber displacement measurement device 120 and the air refractive index measurement device 130 of the absolute gravity measurement system 100 . Therefore, the accurate free-fall trajectory of the falling body 112 can be calculated through the above three physical quantities, thereby calculating the absolute gravitational acceleration.
由于本申请中所述的所述真空仓110随所述落体112一同下落,根据公式(1),所述激光干涉测量装置35测量到的激光光程变化不再等同于落体的自由落体运动位移。通过所述真空仓位移测量装置120和所述空气折射率测量装置130安装在所述自由落体装置10中,以配合所述激光干涉测量装置30,可以保证测量结果的准确性。Since the vacuum chamber 110 described in this application falls together with the falling body 112, according to the formula (1), the laser optical path change measured by the laser interferometry device 35 is no longer equal to the free fall displacement of the falling body . By installing the vacuum chamber displacement measurement device 120 and the air refractive index measurement device 130 in the free fall device 10 to cooperate with the laser interferometry device 30, the accuracy of the measurement results can be guaranteed.
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed related devices and methods may be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述程序可存储于一计算机可读取存储介质中,如本发明实施例中,所述程序可存储于计算机系统的存储介质中,并被所述计算机系统中的至少一个处理器执行,以实现包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccess Memory,RAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented through computer programs to instruct related hardware, and the programs can be stored in a computer-readable storage medium, as described in the present invention. In an embodiment, the program may be stored in a storage medium of a computer system, and executed by at least one processor in the computer system, so as to implement the processes of the embodiments including the above-mentioned methods. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), and the like.
以上所述实施例仅表达了本发明的几种实施方式,随其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the accompanying descriptions are more specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710388867.2A CN107121708B (en) | 2017-05-25 | 2017-05-25 | Absolute gravity measurement system and measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710388867.2A CN107121708B (en) | 2017-05-25 | 2017-05-25 | Absolute gravity measurement system and measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107121708A true CN107121708A (en) | 2017-09-01 |
CN107121708B CN107121708B (en) | 2023-08-08 |
Family
ID=59728754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710388867.2A Active CN107121708B (en) | 2017-05-25 | 2017-05-25 | Absolute gravity measurement system and measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107121708B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109061758A (en) * | 2018-07-31 | 2018-12-21 | 湖北省地震局 | Steel band offset falling bodies central drive mechanism for absolute gravimeter |
CN109471191A (en) * | 2018-11-13 | 2019-03-15 | 中国地震局地震研究所 | A kind of method and equipment of aerial gravity measurement |
CN112014895A (en) * | 2020-08-05 | 2020-12-01 | 中国地震局地球物理研究所 | Method and equipment for measuring absolute gravity under dynamic environment |
CN112698415A (en) * | 2020-12-02 | 2021-04-23 | 杭州微伽科技有限公司 | Movable gravity measurement laboratory |
CN118426066A (en) * | 2024-05-17 | 2024-08-02 | 中国计量科学研究院 | An ejection device for an absolute gravimeter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100175472A1 (en) * | 2009-01-14 | 2010-07-15 | Niebauer Timothy M | Gravity Survey with Relative and Absolute Gravimeters |
CN201654251U (en) * | 2010-04-23 | 2010-11-24 | 国家测绘局第一大地测量队 | Indoor fixed hanging free fall absolute gravity meter |
CN102323624A (en) * | 2011-08-05 | 2012-01-18 | 清华大学 | Absolute gravity measurement system, measurement method and free fall method |
CN103941302A (en) * | 2014-05-15 | 2014-07-23 | 浙江大学 | Double-vacuum cavity type fall control absolute gravity meter and application method |
CN103941301A (en) * | 2014-04-13 | 2014-07-23 | 浙江大学 | Catapulting type absolute gravimeter faller prism upward-throwing control device and gravity test method |
CN207198347U (en) * | 2017-05-25 | 2018-04-06 | 清华大学 | Absolute gravity measurement system |
-
2017
- 2017-05-25 CN CN201710388867.2A patent/CN107121708B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100175472A1 (en) * | 2009-01-14 | 2010-07-15 | Niebauer Timothy M | Gravity Survey with Relative and Absolute Gravimeters |
CN201654251U (en) * | 2010-04-23 | 2010-11-24 | 国家测绘局第一大地测量队 | Indoor fixed hanging free fall absolute gravity meter |
CN102323624A (en) * | 2011-08-05 | 2012-01-18 | 清华大学 | Absolute gravity measurement system, measurement method and free fall method |
CN103941301A (en) * | 2014-04-13 | 2014-07-23 | 浙江大学 | Catapulting type absolute gravimeter faller prism upward-throwing control device and gravity test method |
CN103941302A (en) * | 2014-05-15 | 2014-07-23 | 浙江大学 | Double-vacuum cavity type fall control absolute gravity meter and application method |
CN207198347U (en) * | 2017-05-25 | 2018-04-06 | 清华大学 | Absolute gravity measurement system |
Non-Patent Citations (2)
Title |
---|
胡华;李哲;李刚;伍康;王力军;: "T-1A型高精度绝对重力仪" * |
胡华;李哲;李刚;伍康;王力军;: "T-1A型高精度绝对重力仪", 导航与控制, vol. 14, no. 02, pages 17 - 22 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109061758A (en) * | 2018-07-31 | 2018-12-21 | 湖北省地震局 | Steel band offset falling bodies central drive mechanism for absolute gravimeter |
CN109061758B (en) * | 2018-07-31 | 2023-08-18 | 湖北省地震局 | Steel belt offset falling body center driving mechanism for absolute gravimeter |
CN109471191A (en) * | 2018-11-13 | 2019-03-15 | 中国地震局地震研究所 | A kind of method and equipment of aerial gravity measurement |
CN112014895A (en) * | 2020-08-05 | 2020-12-01 | 中国地震局地球物理研究所 | Method and equipment for measuring absolute gravity under dynamic environment |
CN112014895B (en) * | 2020-08-05 | 2021-07-16 | 中国地震局地球物理研究所 | Method and equipment for measuring absolute gravity under dynamic environment |
CN112698415A (en) * | 2020-12-02 | 2021-04-23 | 杭州微伽科技有限公司 | Movable gravity measurement laboratory |
CN112698415B (en) * | 2020-12-02 | 2023-04-07 | 杭州微伽量子科技有限公司 | Movable gravity measurement laboratory |
CN118426066A (en) * | 2024-05-17 | 2024-08-02 | 中国计量科学研究院 | An ejection device for an absolute gravimeter |
Also Published As
Publication number | Publication date |
---|---|
CN107121708B (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107121708B (en) | Absolute gravity measurement system and measurement method | |
US7222534B2 (en) | Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer | |
CN103941302B (en) | Double-vacuum cavity type fall control absolute gravity meter and application method | |
CN102323624B (en) | Absolute gravity measuring system and measuring method as well as falling method of free-falling body | |
US5461914A (en) | Optical fiber gravity meter | |
EP1821107A1 (en) | Pressure compensated optical accelerometer, optical inclinometer and seismic sensor system | |
CN207198347U (en) | Absolute gravity measurement system | |
CN107193050B (en) | A kind of the absolute gravity measurement optical system and method for double freely falling bodies | |
RU107866U1 (en) | SEISMOGRAPH | |
US20120008149A1 (en) | Velometer, navigational apparatus and methods for direct measurement of object's own velocity | |
CN217060530U (en) | Optical absolute gravimeter falling body rotation angular velocity measuring device | |
CN212207704U (en) | Asynchronous falling differential absolute gravimeter | |
CN112764115B (en) | Quantum absolute gravimeter and probe thereof | |
RU101848U1 (en) | SEISMOGRAPH | |
US4666296A (en) | Velocity interferometer with continuously variable sensitivity | |
CN214623074U (en) | Quantum absolute gravimeter and probe thereof | |
Vitushkin et al. | Laser displacement interferometers with subnanometer resolution in absolute ballistic gravimeters | |
Cowsik et al. | Performance characteristics of a rotational seismometer for near-field and engineering applications | |
CN111650660B (en) | Asynchronous drop differential absolute gravimeter | |
US9110181B2 (en) | Rotational seismometer for near-field measurements | |
CN112764114A (en) | Quantum absolute gravimeter and light path structure thereof | |
RU133946U1 (en) | BOTTOM LASER SEISMOGRAPH | |
WO2021198834A1 (en) | Vibration remote sensor based on speckles tracking, which uses an optical-inertial accelerometer, and method for correcting the vibrational noise of such a sensor | |
US3500688A (en) | Gravimeter | |
CN214623075U (en) | Quantum absolute gravimeter and light path structure thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |