CN107112379A - Solar energy aerial array and its manufacture - Google Patents
Solar energy aerial array and its manufacture Download PDFInfo
- Publication number
- CN107112379A CN107112379A CN201580071231.4A CN201580071231A CN107112379A CN 107112379 A CN107112379 A CN 107112379A CN 201580071231 A CN201580071231 A CN 201580071231A CN 107112379 A CN107112379 A CN 107112379A
- Authority
- CN
- China
- Prior art keywords
- ground
- power
- antenna array
- lines
- carbon nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title description 31
- 238000000034 method Methods 0.000 claims abstract description 35
- 230000002950 deficient Effects 0.000 claims abstract description 10
- 238000001228 spectrum Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 42
- 239000002041 carbon nanotube Substances 0.000 claims description 40
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 35
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 230000003197 catalytic effect Effects 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- 235000012431 wafers Nutrition 0.000 claims description 16
- 238000000151 deposition Methods 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 13
- 239000002071 nanotube Substances 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 3
- 230000003647 oxidation Effects 0.000 claims 3
- 238000007254 oxidation reaction Methods 0.000 claims 3
- 238000004544 sputter deposition Methods 0.000 claims 2
- 229910017052 cobalt Inorganic materials 0.000 claims 1
- 239000010941 cobalt Substances 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 26
- 239000004020 conductor Substances 0.000 description 17
- 238000003491 array Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000009415 formwork Methods 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 239000004952 Polyamide Substances 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 230000000873 masking effect Effects 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 239000002861 polymer material Substances 0.000 description 5
- 239000006059 cover glass Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- -1 aluminum and gold Chemical class 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001429 visible spectrum Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
- H10F77/1437—Quantum wires or nanorods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
Description
相关申请的交叉引用Cross References to Related Applications
本申请是2012年4月24日提交的申请号为13/454,155的美国专利申请的部分继续申请,该申请的全部内容通过引用并入本文。This application is a continuation-in-part of US Patent Application No. 13/454,155 filed April 24, 2012, which is incorporated herein by reference in its entirety.
技术领域technical field
本公开的各个方面可以涉及用于将太阳能转换成电的可见光整流天线阵列的经济制造过程。Aspects of the present disclosure may relate to economical manufacturing processes for visible light rectenna arrays for converting solar energy into electricity.
背景技术Background technique
用于高频信号的交流(AC)至直流(DC)转换的整流器已知数十年。当联接到天线时称为整流天线(Rectenna)的特定类型的二极管整流器也已知数十年。更具体地,在20多年前,洛根(Logan)在1991年8月27日授权的美国专利5,043,739中描述了使用一排整流天线来捕获微波并将该微波转换成电能。然而,天线的尺寸受到频率限制,直到最近当格里茨(Gritz)在2010年3月16日授权的美国专利7,679,957中描述了使用类似结构将红外光转换为电能,以及彼得罗·西西利亚诺(Pietro Siciliano)在“纳米整流天线用于太阳光高效率直接转换到电力(Nano-Rectenna For High Efficiency Direct Conversion ofSunlight to Electricity):微电子与微系统研究所IMM-CNR(Pietro Sici liano of TheInstitute for Microelectronics and Microsystems IMM-CNR)的彼得罗·西西利亚诺(Pietro Siciliano),莱切(Lecce)(意大利)”中建议这种结构可用于太阳光。Rectifiers for alternating current (AC) to direct current (DC) conversion of high frequency signals have been known for decades. A specific type of diode rectifier known as a rectenna when coupled to an antenna has also been known for decades. More specifically, more than 20 years ago, Logan in US Patent 5,043,739, issued August 27, 1991, described the use of an array of rectennas to capture microwaves and convert the microwaves into electrical energy. However, the size of the antenna was limited by the frequency until recently when Gritz in US Patent 7,679,957 issued March 16, 2010 described the use of a similar structure to convert infrared light into electricity, and Pietro Sicilia Pietro Siciliano in "Nano-Rectenna For High Efficiency Direct Conversion of Sunlight to Electricity": IMM-CNR (Pietro Sici liano of The Institute of Microelectronics and Microsystems) For Microelectronics and Microsystems IMM-CNR), Pietro Siciliano, Lecce (Italy)" suggested that this structure could be used for sunlight.
然而,这种可见光整流天线所需的最小尺寸通常在几十纳米。虽然这些尺寸可以通过现今的深亚微米掩蔽技术来实现,但是这种处理通常比目前需要更大尺寸的太阳能电池工艺昂贵得多。However, the minimum size required for such visible light rectennas is usually in the tens of nanometers. While these dimensions can be achieved with today's deep submicron masking techniques, such processing is typically much more expensive than current solar cell processes that require larger dimensions.
然而,正如洛根(Logan)在美国专利5,043,739中指出的那样,微波整流器的效率可以高达40%,比典型的单结多晶硅太阳能电池阵列的高出一倍,以及当使用如彼得罗(Pietro)建议的金属氧化物金属(MOM)整流二极管,阵列核心中不需要半导体晶体管。However, as Logan pointed out in US Patent 5,043,739, microwave rectifiers can achieve efficiencies as high as 40%, twice that of typical single-junction polycrystalline silicon solar cell arrays, and when used as in Pietro The proposed metal-oxide-metal (MOM) rectifier diodes do not require semiconductor transistors in the core of the array.
因此,能够利用现今半导体制造的现有精细几何处理能力而不会导致这种制造成本可能是有利的。Therefore, it may be advantageous to be able to take advantage of the existing fine geometry processing capabilities of today's semiconductor manufacturing without incurring such manufacturing costs.
并且最近,莱斯大学(Rice University)公布了他们的研究人员制造出了一种具有类金属导电与导热性能的碳纳米管线(CNT)。此外,如罗森伯格(Rosenberger)等人在2008年4月8日授权的美国专利7,354,877中所述的,单壁碳纳米管(SWCNT)结构变得越来越可制造。各种形式的连续CNT生长也被考虑到,例如勒梅尔(Lemaire)等人在2010年6月29日授权的美国专利7,744,793中不断收获的CNT“森林”,和/或使用普雷蒂森斯基(Predtechensk y)等人在2012年3月20日授权的美国专利8,137,653中描述的技术进行实践。格里戈里安(Grigorian)等人在2008年10月7日授权的美国专利7,431,985中描述了连续推动碳气通过催化剂背衬多孔膜来使得CNT生长。And recently, Rice University announced that researchers have created a carbon nanotube (CNT) with metal-like electrical and thermal properties. In addition, single-walled carbon nanotube (SWCNT) structures are becoming increasingly manufacturable as described in US Patent 7,354,877, issued April 8, 2008 to Rosenberger et al. Various forms of continuous CNT growth are also contemplated, such as the continuously harvested CNT "forests" of Lemaire et al. Practice the technique described in US Patent 8,137,653 issued March 20, 2012 by Predtechensky et al. Grigorian et al. in US Patent 7,431,985, issued October 7, 2008, describe CNT growth by continuously pushing carbon gas through a catalyst-backed porous membrane.
此外,其他人已经考虑在各种结构中使用SWCNT,例如麦克·威廉姆斯(MikeWilliams)于2014年2月13日发布在网站http://news.rice.edu/2014/02/13/rices-carbon-nanotube-fibers-outperform-copper-2上的“莱斯的碳纳米管纤维优于铜(Rice’s carbon nanotube fibers outperform copper)”中所述的莱斯大学(Rice University)的CNT线,泰森·温纳尔斯基在2010年3月30日授权的美国专利7,687,160中描述的磁性数据存储,特别是佐藤伊藤(Tadashi Ito)等人在2010年9月30日公布的美国专利公布2010/0244656中描述的基于天线的太阳能电池。然而,伊藤等人没有描述低成本地构建碳纳米管太阳能天线以有效转换太阳能的方法。In addition, others have considered using SWCNTs in various structures, such as Mike Williams on February 13, 2014 at http://news.rice.edu/2014/02/13/rices CNT wire from Rice University as described in "Rice's carbon nanotube fibers outperform copper" on carbon-nanotube-fibers-outperform-copper-2, Thailand Magnetic data storage as described in U.S. Patent 7,687,160, issued March 30, 2010 to Sen. Winarski, and in particular, U.S. Patent Publication 2010/ Antenna-based solar cells described in 0244656. However, Ito et al. do not describe a method for the low-cost construction of carbon nanotube solar antennas for efficient conversion of solar energy.
发明内容Contents of the invention
本发明的各实施例可以涉及用于将太阳光转换成电的整流天线阵列的结构和/或制造这种结构的方法,其可以利用自对准工艺步骤和使用当前深亚微米IC掩蔽技术制造的模板来实现天线需要的精细尺寸。Embodiments of the invention may relate to structures and/or methods of fabricating rectenna arrays for converting sunlight into electricity that can be fabricated using self-aligned process steps and using current deep submicron IC masking techniques template to achieve the fine dimensions required by the antenna.
天线阵列的结构可以包括通过MOM二极管连接到正轨和负轨的一排天线。所述天线可以具有相等的长度,居中以最大限度地接收绿光。The structure of the antenna array can include a row of antennas connected to the positive and negative rails through MOM diodes. The antennas may be of equal length, centered for maximum reception of green light.
在一个实施例中,天线的排数可以在蓝光的最佳接收部分和红光的最佳接收部分之间沿着阵列来回递增地变化。这种最佳接收部分可以由半波长天线组成,其长度可以从220纳米变化到340纳米。整流天线阵列可以附接到固体背面,其可以包括用于将光反射回阵列的反射镜。其还可以用作接地平面,其中地面和天线阵列之间的距离以及它们之间的聚合物的介电常数可以形成用于可见光的理想的带状天线。In one embodiment, the number of rows of antennas can be varied incrementally back and forth along the array between the optimally received portion of blue light and the optimally received portion of red light. This optimal receiving section can consist of a half-wavelength antenna whose length can vary from 220 to 340 nanometers. A rectenna array can be attached to a solid back, which can include mirrors to reflect light back into the array. It can also be used as a ground plane, where the distance between the ground and the antenna array and the dielectric constant of the polymer between them can form an ideal strip antenna for visible light.
在另一个实施例中,一对阵列可以夹在一起,使得天线的各层相互垂直。In another embodiment, a pair of arrays can be sandwiched together such that the layers of the antenna are perpendicular to each other.
在一个实施例中,可以通过一系列掩蔽的各向异性V形槽蚀刻与随后的抗粘附沉积产生模板。该方法的步骤包括抛光抗蚀剂以允许硅的非凹槽部分被V形槽蚀刻。In one embodiment, the template can be created by a series of masked anisotropic V-groove etch followed by anti-stick deposition. The method steps include polishing the resist to allow non-grooved portions of the silicon to be etched by the V-shaped grooves.
在另一个实施例中,可以在连续的金属沉积步骤中使用模板来制造整流天线阵列。当用作沉积靶时,模板可以是成角度的或平坦的,并且沉积可以远小于模板中的V形槽的深度。所得到的金属可以使用聚合物背衬材料从模板上剥离。然后可以将另外的层沉积在聚合物背衬的整流天线阵列上。In another embodiment, the template can be used in successive metal deposition steps to fabricate the rectenna array. When used as a deposition target, the template can be angled or flat, and the deposition can be much smaller than the depth of the V-grooves in the template. The resulting metal can be peeled off the template using a polymer backing material. Additional layers can then be deposited on the polymer-backed rectenna array.
在另一个实施例中,模板可以被重复地清洁并重复使用。In another embodiment, the template can be repeatedly cleaned and reused.
在另一个实施例中,整流天线阵列可以具有冗余天线,其如果有缺陷可以通过阵列施加电力来断开天线。In another embodiment, the rectenna array may have redundant antennas that can be powered through the array to disconnect the antennas if defective.
在另一个实施例中,碳纳米管天线可以在由V形槽模板形成的金属和金属氧化物纳米球的混合物组成的金属线之间生长。In another embodiment, carbon nanotube antennas can be grown between metal wires consisting of a mixture of metal and metal oxide nanospheres formed from a V-groove template.
附图说明Description of drawings
现在将结合附图描述本发明的各实施例,其中:Embodiments of the invention will now be described with reference to the accompanying drawings, in which:
图1是根据本发明一实施例的天线阵列的逻辑图,1 is a logic diagram of an antenna array according to an embodiment of the present invention,
图2a,2b和2c是根据本发明一实施例的模板在其制造期间在Y方向上的横截面,Figures 2a, 2b and 2c are cross-sections in the Y direction of a template according to an embodiment of the invention during its manufacture,
图3a,3b,3c和3d是根据本发明一实施例的模板在其制造期间在X方向上的横截面,Figures 3a, 3b, 3c and 3d are cross-sections in the X direction of a template according to an embodiment of the invention during its manufacture,
图4是根据本发明一实施例的模版的一部分的图,Figure 4 is a diagram of a portion of a template according to an embodiment of the present invention,
图5a,5b,5c和5d是根据本发明的一实施例的天线阵列在X方向上的横截面,5a, 5b, 5c and 5d are cross-sections of an antenna array in the X direction according to an embodiment of the present invention,
图6a,6b和6c是根据本发明一实施例的天线阵列在其制造过程中沿Y方向的横截面,6a, 6b and 6c are cross-sections along the Y direction of an antenna array according to an embodiment of the present invention during its manufacturing process,
图7是根据本发明一实施例的天线阵列的一部分的横截面,Figure 7 is a cross-section of a portion of an antenna array according to an embodiment of the invention,
图8是根据本发明一实施例的夹在一起的两个天线阵列的横截面,Figure 8 is a cross-section of two antenna arrays clamped together according to an embodiment of the present invention,
图9是根据本发明一实施例的天线阵列的一部分的俯视图,Figure 9 is a top view of a portion of an antenna array according to an embodiment of the present invention,
图10是根据本发明一实施例的夹在一起的两个天线阵列的俯视图,Fig. 10 is a top view of two antenna arrays clamped together according to an embodiment of the present invention,
图11a和11b是根据本发明一实施例的具有缺陷的天线阵列在测试之前和之后的逻辑图,11a and 11b are logic diagrams of an antenna array with defects before and after testing according to an embodiment of the present invention,
图12a,12b和12c是根据本发明一实施例的模板在其制造期间沿Y方向的横截面,12a, 12b and 12c are cross-sections along the Y direction of a template according to an embodiment of the present invention during its manufacture,
图13a,13b,13c和13d是根据本发明一实施例的模版在其制造期间在X方向上的横截面,Figures 13a, 13b, 13c and 13d are cross-sections in the X direction of a stencil according to an embodiment of the invention during its manufacture,
图14是根据本发明一实施例的模版的一部分的顶部剖视图,Figure 14 is a top cross-sectional view of a portion of a stencil according to an embodiment of the invention,
图15a至15f是根据本发明一实施例的天线阵列在制造期间在模板上的横截面,Figures 15a to 15f are cross-sections of an antenna array on a template during fabrication according to an embodiment of the invention,
图16a,16b和16c是本发明一实施例的天线阵列在其制造期间从模板上移除之后的横截面,Figures 16a, 16b and 16c are cross-sections of an antenna array according to an embodiment of the invention after it has been removed from the template during its manufacture,
图17是根据本发明一实施例的天线阵列的另一逻辑图,Figure 17 is another logical diagram of an antenna array according to an embodiment of the present invention,
图18a至18d是根据本发明一实施例的另一模板制造的横截面,Figures 18a to 18d are cross-sections of another formwork fabrication according to an embodiment of the present invention,
图19a和19b是根据本发明的实施例的模板的部分的图,Figures 19a and 19b are diagrams of parts of a template according to an embodiment of the invention,
图20a至20d是本发明一实施例的天线阵列在其制造期间的横截面,Figures 20a to 20d are cross-sections of an antenna array according to an embodiment of the invention during its manufacture,
图21a至21d是根据本发明另一实施例的天线阵列在其制造过程中的横截面,21a to 21d are cross-sections of an antenna array according to another embodiment of the present invention during its manufacture,
图22a和22b是对应于图19a和19b所示的模板的部分的太阳能阵列上的电力线和接地线的两种不同配置的俯视图,Figures 22a and 22b are top views of two different configurations of power and ground lines on a solar array corresponding to portions of the formwork shown in Figures 19a and 19b,
图23是具有缺陷碳纳米管天线的天线阵列的横截面,Figure 23 is a cross-section of an antenna array with defective carbon nanotube antennas,
图24是根据本发明一实施例的天线阵列的带注释的横截面,以及Figure 24 is an annotated cross-section of an antenna array according to an embodiment of the invention, and
图25是根据本发明另一个实施例的具有盖板的天线阵列的横截面。25 is a cross-section of an antenna array with a cover plate according to another embodiment of the present invention.
具体实施方式detailed description
现在参考图1-24来描述本发明的实施例,应当理解,附图可以说明各种实施例的主题并且可以是不按比例或测量的。Embodiments of the present invention are now described with reference to Figures 1-24, it being understood that the figures may be illustrative of the subject matter of various embodiments and may not be to scale or measure.
图1中示出了本发明的实施例的一个示例的逻辑图。太阳能天线阵列的核心可以具有由电力线(power line)13和接地线14分开的一排排的天线10。电力线和接地线由隧道二极管11和12分别联接到天线。当天线被可见光激发时,电流可以从接地线流到电力线,从而产生半整流的电能。本领域技术人员可以理解的是,额外的电路,例如开关和去耦电容器可以包括在太阳能天线阵列的外围,其可以期望产生适合于商业应用的电压的稳定的直流电力。A logic diagram of one example of an embodiment of the present invention is shown in FIG. 1 . The core of a solar antenna array may have rows of antennas 10 separated by power lines 13 and ground lines 14 . The power line and the ground line are connected to the antenna by tunnel diodes 11 and 12, respectively. When the antenna is excited by visible light, current can flow from the ground line to the power line, producing half-rectified power. It will be understood by those skilled in the art that additional circuitry such as switches and decoupling capacitors may be included around the periphery of the solar antenna array which may be desired to generate stable DC power at a voltage suitable for commercial applications.
对于有效接收可见光的天线,对它们有利的是捕获的光的波长的1/4或1/2,这取决于天线是否耦合到现有的接地平面。为了没有昂贵的掩蔽操作而产生这样的小结构,可以创建用于制造天线的模板。For antennas to efficiently receive visible light, it is beneficial for them to capture 1/4 or 1/2 the wavelength of the light, depending on whether the antenna is coupled to an existing ground plane. In order to produce such small structures without expensive masking operations, templates for the manufacture of antennas can be created.
现在参考图4,这种模板的一个实施例的俯视图的示例。模板可以具有一排排水平的v形槽40,v形槽40的每一侧边由一个大的V形脊41和一个小的V形脊42界定。这些脊可交替跨越天线阵列。该模板可以由具有晶体取向(1,1,1)的硅晶片形成,以便于生产V形结构。Referring now to FIG. 4 , an example of a top view of one embodiment of such a template. The template may have rows of horizontal v-grooves 40 bounded on each side by a large ridge 41 and a small ridge 42 . The ridges may alternate across the antenna array. The template can be formed from a silicon wafer with a crystallographic orientation (1,1,1) to facilitate the production of V-shaped structures.
现在参考图2a,2b和2c,可以用于生产模板的第一组步骤的Y方向的横截面示例。最初,图2a的硅晶片21可以用正抗蚀剂中的接近最小尺寸的线图案化,其可以被垂直蚀刻以产生一系列小沟槽23。这些沟槽随后可以具有一层蚀刻停止材料22,例如沉积在它们之上的氧化硅或氮化硅。可以在负抗蚀剂中形成类似图案,其中类似的图案可以由接近最小尺寸的线组成,再沉积一层可以在沟槽23之间等间距的蚀刻停止层24。Referring now to Figures 2a, 2b and 2c, there are examples of cross-sections in the Y direction of the first set of steps that can be used to produce the formwork. Initially, the silicon wafer 21 of FIG. 2 a can be patterned with near minimum dimension lines in the positive resist, which can be etched vertically to create a series of small trenches 23 . These trenches may then have a layer of etch stop material 22, such as silicon oxide or silicon nitride, deposited over them. A similar pattern can be formed in the negative resist, where the similar pattern can consist of lines close to the minimum dimension, and an etch stop layer 24 can be deposited that can be equally spaced between the trenches 23 .
如图2b所示,在下一步骤中,抗蚀线24和沉积材料22可以形成用于V形槽蚀刻的蚀刻停止层,其可以去除硅晶片25的一部分,留下交替的大的脊26和小的脊27。随后在图2c中,可以在整个阵列上沉积蚀刻停止薄层,其可能粘附到非(1,1,1)硅表面。可以使用随后的垂直蚀刻从脊28之间的水平表面沿薄的硅层29去除所有蚀刻停止层,留下沉积在大的脊和小的脊28上的蚀刻停止薄层。应注意到,图2a中形成沟槽22和抗蚀线图案24的掩蔽步骤的对准以及图2b中V形槽蚀刻25的持续时间的组合可用于产生适当的天线长度20,如图2c所示。As shown in Figure 2b, in a next step, the resist line 24 and deposited material 22 can form an etch stop for the V-groove etch, which can remove a portion of the silicon wafer 25, leaving alternating large ridges 26 and Small ridge27. Then in Figure 2c, a thin etch-stop layer can be deposited over the entire array, which may adhere to non-(1,1,1) silicon surfaces. A subsequent vertical etch can be used to remove all the etch stop layer along the thin silicon layer 29 from the horizontal surfaces between the ridges 28 , leaving a thin etch stop layer deposited on the large and small ridges 28 . It should be noted that a combination of the alignment of the masking steps to form the trench 22 and resist line pattern 24 in FIG. 2a and the duration of the V-groove etch 25 in FIG. 2b can be used to produce a suitable antenna length 20, as shown in FIG. 2c Show.
现在参考图3a,3b,3c和3d,可以用于生产模板的第二组步骤的X方向的横截面示例。在图3a中,等宽线30和间隔的规则阵列可以在小的和大的V形脊之间的平坦硅表面上被图案化(例如,可以如上文所讨论地准备)。随后的部分V形槽蚀刻可以在抗蚀剂线30之间形成部分V形槽31。如果使用(1,1,1)硅材料,则这可能不是时间关键步骤,因为蚀刻可优先选择(1,1,1)硅表面,当槽完成时停止。然后,可以在蚀刻的V形槽33中沉积薄层蚀刻停止材料,通过利用用于对V形槽32进行图案化的抗蚀剂将其卸下,从而去除其余部分材料,如图3b所示。使用现有V形槽35中的材料作为蚀刻停止层进行另一个V组蚀刻,其可以用于蚀刻新的V形槽34,如图3c所示。然后可以清除掉所得到的凹槽图案的蚀刻停止材料,并随后用与金属天线不粘合的材料层(例如图3d所示的氮化硅36)覆盖。Referring now to Figures 3a, 3b, 3c and 3d, there are examples of cross-sections in direction X of a second set of steps that may be used to produce the formwork. In Figure 3a, a regular array of equal width lines 30 and spaces can be patterned on a flat silicon surface between small and large V-shaped ridges (eg, can be prepared as discussed above). A subsequent partial V-groove etch may form a partial V-groove 31 between the resist lines 30 . If a (1,1,1) silicon material is used, this may not be a time critical step, since the etch may preferentially select the (1,1,1) silicon surface, stopping when the trench is complete. A thin layer of etch stop material can then be deposited in the etched V-groove 33 and removed by removing it with the resist used to pattern the V-groove 32, as shown in Figure 3b . Another V-group etch is performed using the material in the existing V-groove 35 as an etch stop, which can be used to etch the new V-groove 34, as shown in Figure 3c. The resulting groove pattern can then be cleaned of etch stop material and subsequently covered with a layer of material that does not adhere to the metal antenna, such as silicon nitride 36 as shown in Figure 3d.
V形脊之间的线30的对准不需要是精确的,只要它们足够大到能够延伸到V形脊上而不超过V形脊,因为图3c中的初始V形槽蚀刻不影响小的和大的脊上的材料28,如图2c所示。尽管如图3a所示将线30和间隔31保持于最小尺寸可能是可取的,但可能不是关键的;相反,保持线30和间隔31的宽度尽可能相等可能更重要,以使V形槽的深度尽可能地保持相等。因此,在另一个实施例中,如果线间距可以被保持为比线宽和间隔更严格的公差,则图3b中的V形槽蚀刻可以之后是抗蚀剂去除和连续的V形槽蚀刻,从而产生尽可能多的两倍深的V形槽的一半。在这种情况下,可以扩大在Y方向上形成的沟槽,以确保太阳能天线阵列的适当制造。The alignment of the lines 30 between the V-shaped ridges does not need to be precise, as long as they are large enough to extend over the V-shaped ridges without exceeding the V-shaped ridges, because the initial V-groove etch in Fig. 3c does not affect the small and material 28 on the large ridges, as shown in Figure 2c. Although it may be desirable to keep the lines 30 and spaces 31 to a minimum size as shown in FIG. 3a, it may not be critical; Depths are kept as equal as possible. Thus, in another embodiment, the V-groove etch in Figure 3b can be followed by resist removal and a continuous V-groove etch if the line spacing can be maintained to tighter tolerances than the line width and spacing, Thus producing as many halves of the V-groove as twice as deep. In this case, the trenches formed in the Y direction can be enlarged to ensure proper fabrication of the solar antenna array.
太阳能天线阵列模板可以由部分或全部硅晶片制成。进一步预期,硅锭可以以必要的方向生长以被切成长面板,或者可以在沉积在玻璃上的或其它合适结构上的硅的长面板上进行单晶硅退火。进一步预期,模板的尺寸仅需要通过在太阳能天线阵列的制造中可靠使用和再利用的能力来确定。Solar antenna array templates can be made from part or all of silicon wafers. It is further contemplated that silicon ingots can be grown in the necessary orientation to be cut into long panels, or that monocrystalline silicon can be annealed on long panels of silicon deposited on glass or other suitable structures. It is further contemplated that the size of the template need only be determined by its ability to be reliably used and reused in the manufacture of solar antenna arrays.
现在参考图5a,5b,5c和5d,根据本发明一实施例的可以用于制造太阳能天线阵列的第一组步骤的X方向横截面的示例。图5a示出了将合适的导电材料沉积到模板50的V形槽上的结果,从而形成可能成为天线的导线51。这可以通过使用例如低压化学气相沉积(LPCVD)设备来实现。在一个实施例中,可以使用镍,因为它不会粘附到氮化硅模板上。为了形成可以处理太赫兹频率的金属氧化物金属(MOM)整流二极管,材料51的横截面可以形成为小于40nm的1/4圆半径,但是V形槽尺寸可以大得多,因为材料的量由沉积时间而不是V形槽的尺寸决定。形成合理的天线阵列可能需要使用加热的模板、振动模板或将金属沉积在高达45度角度的模板上,或者这些工艺的任何组合。聚合物材料52(例如聚酰胺)的层随后可以沉积在模板上,如图5b所示,然后可以被充分固化,以使聚合物材料52与导线51脱离模板,如图5c所示。可以在与天线垂直的X方向上进行剥离,以防止剥离过程中被破坏。然后,如图5d所示,可以在导线51上生长氧化物薄层53。天线端部的氧化物层可能薄于6nm。Referring now to Figures 5a, 5b, 5c and 5d, an example of an X-direction cross-section of a first set of steps that may be used to fabricate a solar antenna array according to an embodiment of the present invention. Figure 5a shows the result of depositing a suitable conductive material onto the V-shaped grooves of the template 50, forming a wire 51 which may become an antenna. This can be achieved using eg low pressure chemical vapor deposition (LPCVD) equipment. In one embodiment, nickel can be used because it does not adhere to the silicon nitride template. In order to form a metal-oxide-metal (MOM) rectifier diode that can handle terahertz frequencies, the cross-section of material 51 can be formed with a 1/4 circle radius smaller than 40 nm, but the V-groove size can be much larger because the amount of material is determined by The deposition time rather than the size of the V-groove is determined. Forming a reasonable antenna array may require the use of a heated template, vibrating the template, or depositing metal on the template at an angle of up to 45 degrees, or any combination of these processes. A layer of polymer material 52, such as polyamide, may then be deposited on the template, as shown in Figure 5b, and may then be cured sufficiently to allow the polymer material 52 and wires 51 to detach from the template, as shown in Figure 5c. The peeling can be performed in the X direction perpendicular to the antenna to prevent damage during the peeling process. A thin oxide layer 53 may then be grown on the wire 51 as shown in FIG. 5d. The oxide layer at the end of the antenna may be thinner than 6nm.
现在参考图6a,6b和6c,可以用于制造太阳能天线阵列的第二组步骤的Y方向横截面的示例。如图6a所示,当剥离了模板时,聚合物材料52可以从模板上的大的V形槽41和小的V形槽42(如图4所示)形成大的凹陷61和小的62凹陷。为了保持天线53与随后的金属沉积绝缘,然后可以在天线阵列上沉积薄的覆盖玻璃层60。在一个实施例中,可以添加短蚀刻以确保天线53的端部上的氧化物暴露。接下来,如图6b所示,电力线材料63可以被沉积和抛光以从天线阵列中除去无关的材料,留下不同的电力线,如图6b所示。可以沉积足够量的材料以填充小的凹限62,但仅部分填充大的凹陷61。在另一个实施例中,可以在沉积材料上沉积/生长非粘合材料的薄层,以允许抛光碎片容易地去除,并且可以在抛光之后添加另一个短蚀刻,以再次确保天线53的端部上的氧化物被暴露。如图6c所示,接地线材料65可以以类似于电力线的工艺的方式从阵列的部分沉积和抛光以形成接地线,如图6d所示。在另一个实施例中,电力线和接地线材料可以分别是可延展的金属,例如铝和金。Referring now to Figures 6a, 6b and 6c, there are examples of Y-direction cross-sections that can be used for the second set of steps in the manufacture of solar antenna arrays. As shown in Figure 6a, when the template is peeled off, the polymer material 52 can form a large depression 61 and a small 62 from the large V-shaped groove 41 and the small V-shaped groove 42 (as shown in Figure 4) on the template. sunken. To keep the antenna 53 insulated from subsequent metal deposition, a thin cover glass layer 60 may then be deposited over the antenna array. In one embodiment, a short etch may be added to ensure that the oxide on the end of the antenna 53 is exposed. Next, as shown in Figure 6b, a power line material 63 may be deposited and polished to remove extraneous material from the antenna array, leaving distinct power lines, as shown in Figure 6b. A sufficient amount of material can be deposited to fill the small concavities 62 but only partially fill the large recesses 61 . In another embodiment, a thin layer of non-adhesive material can be deposited/grown on top of the deposited material to allow easy removal of polishing debris and another short etch can be added after polishing to again secure the end of the antenna 53 The oxide on the is exposed. As shown in Figure 6c, ground line material 65 may be deposited and polished from portions of the array in a manner similar to the process for power lines to form ground lines, as shown in Figure 6d. In another embodiment, the power and ground wire materials may be malleable metals, such as aluminum and gold, respectively.
在制造过程的另一个实施例中,可以根据需要对模板进行清洁、修复并重新用于制造多个天线阵列。In another embodiment of the fabrication process, the template can be cleaned, repaired, and reused to fabricate multiple antenna arrays as needed.
应当注意,可以优化模板和相关联的天线阵列工艺的设计,以通过最小化模板和天线阵列工艺的成本来最小化制造工艺的总成本同时最大化模板再利用和天线阵列产量。It should be noted that the design of the template and associated antenna array process can be optimized to minimize the overall cost of the manufacturing process while maximizing template reuse and antenna array yield by minimizing the cost of the template and antenna array process.
在模板结构和天线阵列工艺的另一个实施例中,天线阵列的大部分可以被构造在模板上,并且只有进行抛光和给天线阵列施加保护层可以随后在将其从模板中取出之后完成。In another embodiment of the template structure and antenna array process, the majority of the antenna array can be constructed on the template, and only polishing and applying a protective layer to the antenna array can then be done after removing it from the template.
现在参考图12a,b和c,根据本发明一实施例的模板在其制造期间在Y方向上的横截面的示例。在这种情况下,如图12b所示,可以通过抗蚀剂120掩蔽来蚀刻垂直侧面V形槽123,首先如图12a所示,对电力线122和接地线121进行垂直蚀刻,随后如图12b所示进行V形槽123蚀刻。随后可以将抗蚀剂重新填充到V形槽125中并抛光以暴露硅124,如图12c所示。抗蚀剂可以用作随后的X方向蚀刻的蚀刻停止层。Referring now to Figures 12a, b and c, examples of cross-sections in the Y direction of a template according to an embodiment of the present invention during its manufacture. In this case, as shown in FIG. 12b, the vertical side V-shaped groove 123 can be etched by masking the resist 120. First, as shown in FIG. V-groove 123 etching is shown. Resist may then be refilled into V-groove 125 and polished to expose silicon 124, as shown in Figure 12c. The resist can be used as an etch stop for the subsequent X-direction etch.
现在参照图13a,b,c和d,根据本发明的一个实施例的模板在其制造期间在X方向上的示例的横截面。可以形成掩蔽的抗蚀剂图案130,其可以接着由V形槽蚀刻,如图13a所示。随后可以重新施加和抛光抗蚀剂,将抗蚀剂留在现有的V形槽132中,并且可以执行另一V形槽蚀刻,从而产生另一组V形槽133,如图13b所示。然后可以去除抗蚀剂,如图13c所示,并且可以将非粘合材料的薄层134施加到模板上,如图13d所示。与如图3a,b,c和d所示的先前X方向V形槽工艺不同,当前工艺不需要蚀刻停止层的沉积或其随后的剥离。Referring now to Figures 13a, b, c and d, exemplary cross-sections in the X direction of a template according to one embodiment of the present invention during its manufacture. A masked resist pattern 130 can be formed, which can then be etched by the V-grooves, as shown in Figure 13a. The resist can then be reapplied and polished, leaving the resist in the existing V-grooves 132, and another V-groove etch can be performed, resulting in another set of V-grooves 133, as shown in Figure 13b . The resist can then be removed, as shown in Figure 13c, and a thin layer 134 of non-adhesive material can be applied to the template, as shown in Figure 13d. Unlike previous X-direction V-groove processes as shown in Figures 3a, b, c and d, the current process does not require the deposition of an etch stop layer or its subsequent stripping.
现在参考图14,根据本发明的一个实施例的模板部分的示例的顶部剖视图。在这种情况下,虽然天线X方向V形槽140可以与图4所示的那些40大致相同,但是V形槽141和142可以与图4中所示的V形脊41和42相反。在将已制成的天线阵列从模板中取出之前,这有助于电力线和接地线在模板上的沉积。Referring now to FIG. 14 , a top cross-sectional view of an example of a formwork portion according to one embodiment of the present invention. In this case, although the antenna X-direction V-shaped grooves 140 may be substantially the same as those 40 shown in FIG. 4 , the V-shaped grooves 141 and 142 may be opposite to the V-shaped ridges 41 and 42 shown in FIG. 4 . This facilitates the deposition of power and ground lines on the formwork before the fabricated antenna array is removed from the formwork.
现在参考图15a至f,本发明一实施例的天线阵列在制造期间在模板上的横截面示例。最初,如图15a所示,可将合适的导电材料(例如镍)沉积到模板上以形成天线151,包括沟槽152的底部,其后面可以是薄氧化物步骤。接下来,如图15b所示,可以沉积覆盖玻璃153,其至少可以到X方向V形槽的顶部。在一个实施例中,可以添加短蚀刻以确保天线151的端部上的氧化物被暴露。理想地,其下面的玻璃和导电层可以被选择为不粘附到在模板上的非粘附层134,如图13d所示。任选地,如果用于电力线和接地线的导电材料不容易从现有的非粘合层去除,则在下一步骤中,可沉积另一非粘合材料的薄层154,如图15c所示。然后,以与图6a,b和c所示的过程相同的方式,图15d所示的电力线155的导电材料和图15e所示的接地线156可以分别进行沉积和抛光(根据需要)。然后,如图15f所示,可以沉积柔性聚合物157,以形成用于将天线阵列从模板剥离的背衬。Reference is now made to Figures 15a-f, cross-sectional illustrations of an antenna array on a template during fabrication of an embodiment of the present invention. Initially, as shown in Figure 15a, a suitable conductive material such as nickel may be deposited onto the template to form the antenna 151, including the bottom of the trench 152, which may be followed by a thin oxide step. Next, as shown in Figure 15b, a cover glass 153 can be deposited, which can at least reach the top of the X-direction V-shaped groove. In one embodiment, a short etch may be added to ensure that the oxide on the end of the antenna 151 is exposed. Ideally, the underlying glass and conductive layers can be chosen not to adhere to the non-adhesive layer 134 on the template, as shown in Figure 13d. Optionally, in the next step, another thin layer 154 of non-adhesive material can be deposited if the conductive material for the power and ground lines is not easily removable from the existing non-adhesive layer, as shown in Figure 15c . Then, in the same manner as the process shown in Figures 6a, b and c, the conductive material for the power line 155 shown in Figure 15d and the ground line 156 shown in Figure 15e can be deposited and polished (as required) respectively. Then, as shown in Figure 15f, a flexible polymer 157 may be deposited to form a backing for peeling the antenna array from the template.
现在参考图16a,根据本发明的一个实施例的具有添加的覆盖玻璃层从模板剥离并翻转的天线阵列的横截面示例。可选地,可以抛光该厚盖玻璃以去除不必要的层至电力导电材料162和接地导电材料161,如图16b所示,并且可以添加额外的钝化材料163以覆盖暴露的导电材料,如图16c所示。应当注意,在该制造过程中可以使用与第一过程中描述的相同的材料和步骤,并且可以添加其它制造步骤,或者可以根据需要修改本文所描述的步骤以改善天线阵列的产量,或保存模板。Referring now to FIG. 16a, a cross-sectional illustration of an antenna array with an added cover glass layer peeled from the template and flipped over, according to one embodiment of the present invention. Optionally, the thick cover glass can be polished to remove unnecessary layers to the power conductive material 162 and ground conductive material 161, as shown in Figure 16b, and additional passivation material 163 can be added to cover the exposed conductive material, as Figure 16c shows. It should be noted that the same materials and steps as described in the first process can be used in this fabrication process, and other fabrication steps can be added, or the steps described herein can be modified as needed to improve the yield of the antenna array, or to save the template .
现在参考图7,根据本发明一实施例的已完成的太阳能天线阵列的示例的Y横截面。在这种情况下,可以添加透明覆盖层75以保护阵列,并且固体背板74可以附接到聚合物材料52以使结构更加坚硬。由于在天线上生长的氧化物,天线53和接地线65之间可能存在MOM二极管71,并且另外的MOM二极管72可能存在于天线53和电力线63之间。在另一个实施例中,背板74可以是用于反射未被天线阵列吸收的光的反射镜。在另一个实施例中,背板74可以是导电接地平面,并且可以调节聚合物材料52的厚度使得天线阵列可以用作最佳带状线天线阵列。Referring now to FIG. 7 , a Y cross-section of an example of a completed solar antenna array according to an embodiment of the present invention. In this case, a transparent cover layer 75 can be added to protect the array, and a solid backplane 74 can be attached to the polymer material 52 to make the structure more rigid. There may be a MOM diode 71 between the antenna 53 and the ground line 65 and a further MOM diode 72 may be present between the antenna 53 and the power line 63 due to the oxide grown on the antenna. In another embodiment, the back plate 74 may be a mirror for reflecting light not absorbed by the antenna array. In another embodiment, the backplane 74 can be a conductive ground plane, and the thickness of the polymer material 52 can be adjusted so that the antenna array can function as an optimal stripline antenna array.
现在参考图8,其反映了本发明另一实施例的示例。太阳能天线阵列80可以最佳地吸收沿着天线方向(例如,Y方向)偏振的光,其通常仅为太阳光能量的1/2。来自太阳的随机偏振光的其它组分,例如X组分,可以通过太阳能天线阵列传输或从太阳能天线阵列反射。因此,在另一实施例中,两个这样的太阳能天线阵列80和82可以用光旋转材料81夹在一起,诸如在它们之间设置液晶。此外,反射材料层83可以附着到结构的背面,以将剩余的光反射回夹层阵列。进一步预期,如图7所示的聚合物材料52和导电接地背板74可以是光学透明的并且可以包括在这种夹层结构中。Reference is now made to Figure 8, which reflects an example of another embodiment of the present invention. The solar antenna array 80 can optimally absorb light polarized along the antenna direction (eg, Y direction), which is generally only 1/2 the energy of sunlight. Other components of randomly polarized light from the sun, such as the X component, can be transmitted through or reflected from the solar antenna array. Thus, in another embodiment, two such solar antenna arrays 80 and 82 may be sandwiched together with a light rotating material 81, such as a liquid crystal disposed between them. Additionally, a layer 83 of reflective material may be attached to the back of the structure to reflect remaining light back into the interlayer array. It is further contemplated that polymeric material 52 and conductive ground backplane 74 as shown in FIG. 7 may be optically transparent and may be included in such a sandwich structure.
在本发明的另一个实施例中,材料81可以是光学透明的,并且如图10所示的两个太阳能天线阵列101和102可以彼此垂直夹持,如在重叠部分100中可以看到的。In another embodiment of the invention, the material 81 may be optically transparent and the two solar antenna arrays 101 and 102 as shown in FIG.
现在参考图9,本发明一实施例的太阳能天线阵列的示例的一部分的俯视图。虽然可见光中的最高能量通常在光谱的蓝绿色部分(波长约500nm),但是期望吸收尽可能多的可见光谱。因此,期望改变天线长度以覆盖大部分可见光谱,例如从400nm至720nm。这可以通过改变来回穿过阵列的相应各排天线的尺寸来实现,从两个100nm的1/4波长部分的每一个92上升到两个180nm的1/4波长部分或者如果不向该阵列添加接地平面则为这些尺寸的两倍。图9中的图形90可以用于以八个相等的步骤覆盖从400nm到720nm的光谱,尽管在步长中有更精细的变化并且在重复之前可能发生更多的步骤,使得棱镜可以用于将适当频率的光导向到最容易接受的天线上。Referring now to FIG. 9 , a top view of a portion of an example solar antenna array in accordance with an embodiment of the present invention. While the highest energy in visible light is typically in the blue-green portion of the spectrum (wavelength around 500 nm), it is desirable to absorb as much of the visible spectrum as possible. Therefore, it is desirable to vary the antenna length to cover most of the visible spectrum, for example from 400nm to 720nm. This can be accomplished by changing the dimensions of the respective rows of antennas going back and forth across the array, going from two 1/4 wavelength sections of 100nm each 92 up to two 1/4 wavelength sections of 180nm or if not adding The ground plane is twice these dimensions. The graph 90 in FIG. 9 can be used to cover the spectrum from 400nm to 720nm in eight equal steps, although there are finer variations in the step size and more steps may occur before repeating, so that the prism can be used to Light of the appropriate frequency is directed to the most receptive antenna.
本领域技术人员将理解,本发明中描述的尺寸可能难以制造,并且可能容易发生缺陷,特别是在天线和电力线或接地线之间的断路电路(“断路”)和/或短路电路(“短路”)中。Those skilled in the art will appreciate that the dimensions described in this disclosure may be difficult to manufacture and may be prone to defects, particularly open circuits (“open circuits”) and/or short circuits (“short circuits”) between the antenna and power or ground lines. ")middle.
现在参考图11a,根据本发明的一个实施例的天线阵列的示例的一部分的示图,其中天线阵列被示出为具有不良二极管,该不良二极管被描述为电阻器,将天线随机连接到电源112或者接地113。在一些情况下,天线111可以具有两个短路二极管。这种缺陷可能会在电力线和接地线之间产生短路或部分短路。Referring now to FIG. 11 a , a diagram of a portion of an example of an antenna array according to an embodiment of the present invention, wherein the antenna array is shown with bad diodes depicted as resistors randomly connecting the antennas to the power supply 112 Or ground 113. In some cases, antenna 111 may have two shorted diodes. This defect can create a short or partial short between the power and ground wires.
在另一个实施例中,可以通过在接地线和电力线之间施加足以迫使单个隧道二极管超过其负电阻但不足以导通良好的一对二极管的电压来测试和固定天线阵列。这可以选择性地驱动电流通过短路的有缺陷的二极管,从而可以以类似于保险丝的方式充分地加热电阻器以打开短路,从而可以消除电源和地之间的短路,In another embodiment, the antenna array can be tested and fixed by applying a voltage between the ground and power lines sufficient to force a single tunnel diode beyond its negative resistance but not sufficient to conduct on a good pair of diodes. This selectively drives current through a shorted defective diode, heating the resistor sufficiently to open the short in a manner similar to a fuse, so that the short between power and ground can be removed,
现在参考图11b,根据本发明的一个实施例的天线阵列的示例的一部分的示意图,其中天线阵列被示出为具有缺陷二极管,该缺陷二极管被熔断并描绘为开路电容器115,从而将天线元件随机连接到电源112或接地113。在具有两个短路二极管114的天线中,电阻器中最弱的一个可能会熔断116,从而消除短路。Reference is now made to FIG. 11 b , a schematic diagram of a portion of an example of an antenna array according to an embodiment of the present invention, wherein the antenna array is shown with a defective diode that is fused and depicted as an open circuit capacitor 115 , thereby randomizing the antenna elements. Connect to power supply 112 or ground 113 . In an antenna with two shorted diodes 114, the weakest of the resistors may fuse 116, eliminating the short.
在另一个实施例中,天线元件可以足够靠近地相互间隔开,以便由于消除随机有缺陷的天线而通过阵列使电力生产的降级(degradation)最小化。In another embodiment, the antenna elements may be spaced close enough to each other to minimize degradation in power production through the array due to the elimination of random defective antennas.
在本发明的另一个实施例中,天线可以由在电力线和接地线之间生长的碳纳米管构成。在这种情况下,模板可以主要由相同深度的V形槽构成。In another embodiment of the present invention, the antenna may consist of carbon nanotubes grown between the power line and the ground line. In this case, the template can consist essentially of V-shaped grooves of the same depth.
现在参考图18a至18d的模板制造示例的横截面。可以将规则的宽度图案暴露于抗蚀剂181中,并且可执行短的垂直等离子体蚀刻,然后进行随后的V形槽蚀刻,从而留下位于残余抗蚀剂之间的第一组V形槽180。可选地,可以使用掺磷晶片来构造模板,并且可以在初始V形槽上执行选择性氮掺杂扩散188。此后,清洁的晶片可以涂覆有诸如氮化硅(SiN)或碳化硅(SiC)的非粘合材料的薄层,涂覆第一组V形槽183和晶片的顶表面,如图18b所示。在抛光晶片以去除未蚀刻表面182上的非粘合材料之后,蚀刻第二组V形槽184,留下第一组185被非粘合材料保护,如图18c所示。最后,可以向晶片添加非粘性材料附加层,覆盖所有V形槽186,如图18d所示。第一组V形槽187可以比第二组V形槽蚀刻得更宽,以补偿非粘合材料的不同厚度。Reference is now made to Figures 18a to 18d for cross-sections of examples of formwork fabrication. A regular width pattern can be exposed to the resist 181 and a short vertical plasma etch can be performed followed by a subsequent V-groove etch leaving a first set of V-grooves between the remaining resist 180. Alternatively, a phosphorous doped wafer can be used to construct the template, and a selective nitrogen doping diffusion 188 can be performed on the initial V-groove. Thereafter, the cleaned wafer may be coated with a thin layer of non-adhesive material such as silicon nitride (SiN) or silicon carbide (SiC), coating the first set of V-grooves 183 and the top surface of the wafer, as shown in FIG. 18b Show. After polishing the wafer to remove the non-adhesive material on the unetched surface 182, the second set of V-grooves 184 are etched, leaving the first set 185 protected by the non-adhesive material, as shown in Figure 18c. Finally, an additional layer of non-stick material can be added to the wafer, covering all of the V-grooves 186, as shown in Figure 18d. The first set of V-shaped grooves 187 may be etched wider than the second set of V-shaped grooves to compensate for the different thicknesses of the non-bonded material.
可选地,不同的非粘合材料(例如氮化硅和碳化硅)可以分别沉积在第一组V形槽185中和第二组V形槽184中。所形成的模板包含电源190和接地192V形槽指状件,每一个以相互连接的方式连接到电源191和地面193V形槽带,在指状件的另一端具有交替的断裂194和195,如图19A所示。还可以想到,用于电力线196和接地线197的V形槽指状件可以在水平和垂直方向上变化,如图19b所示Alternatively, different non-adhesive materials such as silicon nitride and silicon carbide may be deposited in the first set of V-shaped grooves 185 and in the second set of V-shaped grooves 184, respectively. The template formed comprises power 190 and ground 192 V-groove fingers, each connected in interconnected fashion to power 191 and ground 193 V-groove strips, with alternating breaks 194 and 195 at the other end of the fingers, as Figure 19A shows. It is also conceivable that the V-groove fingers for the power lines 196 and ground lines 197 can be varied horizontally and vertically, as shown in Figure 19b
现在参考图20a至20d,根据本发明的一个实施例的天线阵列在其制造期间的示例的横截面。最初,诸如铁、镍或其它一些磁性金属的碳纳米管催化剂可以被电弧溅射到模版上,在V形槽中形成一层小的可选的氧化球。诸如金、银、铝或一些其它合适的金属或合金的导体可以沉积在V形槽中,使得催化球201可以悬挂在导体202的边缘上,如图20a所示。或者,在模板中的两组V形槽之间产生的PN二极管是反向偏置的,其可以选择性地将碳纳米管催化剂沉积在一些V形槽207中。例如聚酰胺或一些其它合适的材料的聚合物203然后可以涂覆在模板上,如图20b所示。在固化聚合物203之后,整个结构可以从模板中去除。任选地,氧化球205可以被回蚀,从而暴露催化球的金属,如图20c所示。此后,电力线和接地线可以被加热并且分别充电到负电压和正电压,可以施加可选的磁场,并且可以将烃(诸如甲烷或乙炔)引入到沉积室中,以在电力线和接地线之间生长碳纳米管,如图20d所示。纳米管可以从带负电荷的电力线上的催化球生长到带正电荷的接地线208上的金属。在将纳米管连接到导体之后,导体可以被加热,这可使碳纳米管退火成导电材料。Reference is now made to Figures 20a to 2Od, cross-sections of examples of an antenna array according to an embodiment of the present invention during its manufacture. Initially, a carbon nanotube catalyst such as iron, nickel, or some other magnetic metal can be arc-sputtered onto the stencil, forming a layer of small optional oxide spheres in the V-shaped grooves. A conductor such as gold, silver, aluminum or some other suitable metal or alloy can be deposited in the V-shaped groove so that the catalytic ball 201 can hang over the edge of the conductor 202, as shown in Figure 20a. Alternatively, a PN diode created between two sets of V-shaped grooves in the template is reverse biased, which can selectively deposit carbon nanotube catalyst in some of the V-shaped grooves 207 . A polymer 203 such as polyamide or some other suitable material can then be coated on the template as shown in Figure 20b. After curing the polymer 203, the entire structure can be removed from the template. Optionally, the oxide balls 205 may be etched back, thereby exposing the metal of the catalytic balls, as shown in Figure 20c. Thereafter, the power and ground wires can be heated and charged to negative and positive voltages respectively, an optional magnetic field can be applied, and hydrocarbons such as methane or acetylene can be introduced into the deposition chamber to grow between the power and ground wires carbon nanotubes, as shown in Figure 20d. Nanotubes can grow from catalytic spheres on the negatively charged electric field line to the metal on the positively charged ground line 208 . After the nanotubes are attached to the conductor, the conductor can be heated, which anneals the carbon nanotubes into a conductive material.
现在参考图21a至21d,根据本发明另一个实施例的天线阵列在其制造期间的示例的横截面。在该实施例中,如图21a所示,V形槽可以仅填充由聚合物212覆盖的导体211并从模板上移除。电力线和接地线可以分别被充电到负电压和正电压,并且带电氧化的催化球可以选择性地沉积在接地线213上,使得电力线214远离催化球,如图21b所示。此后,如图21c所示,任选地,暴露的氧化物可以从催化球215上蚀刻掉。随后,碳纳米管218可以从接地线朝向电力线上的金属的相反方向生长,将催化球载持在碳纳米管的尖端上,使得最短的碳纳米管217可以先连接,而较长的碳纳米管218可以稍后连接,如图21d所示。所述导体,催化球和薄氧化物可以形成金属氧化物金属(MOM)二极管。以这种方式,如图17所示,整流MOM二极管171可连接到电力线173和天线170,而天线172的另一端可连接到接地线。催化球的直径可以决定纳米管的直径,碳纳米管的结构或手征性(chirality)可以部分地由施加的磁场决定,并且纳米管的生长方向可以由电力线和接地线之间的电场决定,其连接按其长度的顺序连续进行,如图21d所示。Reference is now made to Figures 21a to 21d, cross-sections of examples of an antenna array according to another embodiment of the present invention during its manufacture. In this embodiment, as shown in Fig. 21a, the V-grooves may only be filled with conductors 211 covered by polymer 212 and removed from the template. The power line and the ground line can be charged to negative and positive voltages, respectively, and the charged oxidized catalytic balls can be selectively deposited on the ground line 213 so that the power line 214 is away from the catalytic balls, as shown in Figure 21b. Thereafter, optionally, the exposed oxide may be etched away from the catalytic ball 215, as shown in Figure 21c. Subsequently, the carbon nanotubes 218 can grow from the ground line towards the opposite direction of the metal on the power line, and the catalytic balls are supported on the tips of the carbon nanotubes, so that the shortest carbon nanotubes 217 can be connected first, and the longer carbon nanotubes Tube 218 can be connected later, as shown in Figure 21d. The conductor, catalytic spheres and thin oxide can form a metal oxide metal (MOM) diode. In this way, as shown in FIG. 17, the rectifying MOM diode 171 can be connected to the power line 173 and the antenna 170, and the other end of the antenna 172 can be connected to the ground line. The diameter of the catalytic sphere can determine the diameter of the nanotube, the structure or chirality of the carbon nanotube can be determined in part by the applied magnetic field, and the growth direction of the nanotube can be determined by the electric field between the electric force line and the ground line, Its connection is performed continuously in the order of its length, as shown in Fig. 21d.
现在参考图24,本发明一个实施例的天线阵列示例的注释横截面。天线吸收电磁频率的效率可能会显著地降低,电磁频率越过天线的理想频率越远,或者电磁波越远离天线。这些效应显著地限制了具有不同长度的规则的二维天线阵列的效率。为了吸收最佳量的可见光和红外太阳能,天线需要在长度80纳米和460纳米之间变化。纳米管可以在电场方向上生长到80纳米和460纳米之间的距离,所述电场可以施加在包含催化球的导体之间。生长量与电场的强度和催化球的密度相关,催化球的密度可以被选择以使所得天线的效率最大化。太阳能天线阵列的电力线和接地线可以通过使用具有V形槽的模板沉积~190纳米的催化球和金属241,然后沉积~40纳米的绝缘聚合物242来构造,所述V形槽可以使用廉价的具有~1/2微米尺寸的掩模来构造,并且可以涂覆有氮化硅,碳化硅和/或与沉积导体不粘合的一些其它材料。由于涂层和任何可选的蚀刻,所得到的电力线和接地线可能比原始蚀刻的V形槽更浅~20纳米240。Referring now to FIG. 24, an annotated cross-section of an example antenna array of one embodiment of the present invention. The efficiency with which an antenna absorbs electromagnetic frequencies may decrease significantly the farther the electromagnetic frequency is from the antenna's ideal frequency, or the farther the electromagnetic wave is from the antenna. These effects significantly limit the efficiency of regular two-dimensional antenna arrays with different lengths. To absorb the optimal amount of visible and infrared solar energy, the antenna needs to vary in length between 80 nanometers and 460 nanometers. The nanotubes can be grown to a distance between 80 nanometers and 460 nanometers in the direction of an electric field that can be applied between the conductors containing the catalytic spheres. The amount of growth is related to the strength of the electric field and the density of the catalytic spheres, which can be chosen to maximize the efficiency of the resulting antenna. The power and ground lines of a solar antenna array can be constructed by depositing ~190 nm of catalytic spheres and metal 241 followed by ~40 nm of insulating polymer 242 using a template with V-shaped grooves that can be fabricated using inexpensive Masks with ~1/2 micron dimensions are constructed and may be coated with silicon nitride, silicon carbide, and/or some other material that does not adhere to the deposited conductor. Due to the coating and any optional etching, the resulting power and ground lines may be ~20 nm shallower than the original etched V-groove 240 .
现在参考图22a和22b,对应于图19a和19b所示的模板部分的太阳能阵列上的电力线和接地线的两个不同配置的俯视图。在任一种配置中,阵列被限制为排列V形槽的尺寸,因为导电性需要电力线和接地线的高度在整个阵列中保持相同。在图22a所示的一种配置中,所述阵列可以由电力线220和接地线221的交替的指状件组成,具有垂直的线束222和223以及根据需要的可能的多个线束224和225,这可以保持低电流密度和电阻。在另一种配置中,所述阵列可以包含电力线226和接地线227的指状件的变化图案,其可以局部平衡纳米管天线的水平和垂直方向,如图22b所示。这种构造可以消除对夹在一起的两个垂直对准的面板的需要。Referring now to Figures 22a and 22b, top views of two different configurations of power and ground wires on a solar array corresponding to the template sections shown in Figures 19a and 19b. In either configuration, the array is limited to the size of the aligned V-grooves because conductivity requires the height of the power and ground lines to remain the same throughout the array. In one configuration shown in Figure 22a, the array may consist of alternating fingers of power lines 220 and ground lines 221, with vertical strands 222 and 223 and possibly multiple strands 224 and 225 as required, This keeps current density and resistance low. In another configuration, the array can contain a varying pattern of fingers of power lines 226 and ground lines 227 that can locally balance the horizontal and vertical directions of the nanotube antennas, as shown in Figure 22b. This configuration can eliminate the need for two vertically aligned panels clipped together.
还可以预期,在对电力线和接地线进行初始充电之前,可以将探针衬垫和较大的线分开沉积在阵列上。It is also contemplated that the probe pads and larger wires may be deposited separately on the array prior to the initial charging of the power and ground wires.
此外,预期导体可以是银、铝、铂或另一种可以在与氧化催化球的工艺步骤相同或相邻的工艺步骤中被氧化的合金。然后在电力线和接地线之间生长碳纳米管然后可以在电力线和碳纳米管天线的末端之间形成MOM二极管,并且在接地线和碳纳米管天线的另一端之间的碳金属氧化物金属二极管类似于图1所示的结构。Furthermore, it is contemplated that the conductor may be silver, aluminum, platinum, or another alloy that may be oxidized in the same process step as or adjacent to that of oxidizing the catalytic balls. Carbon nanotubes are then grown between the power line and the ground line and then a MOM diode can be formed between the power line and the end of the carbon nanotube antenna, and a carbon metal oxide metal diode between the ground line and the other end of the carbon nanotube antenna Similar to the structure shown in Figure 1.
还可以设想,图11a和b所示的测试和熔断短路装置的方法可以应用于碳纳米管天线,从而断开有缺陷的天线的至少一端。现在参考图23,具有缺陷碳纳米管天线的天线阵列的示例的横截面。在构建太阳能天线阵列之后,一些单独的纳米管可能不完全地或不正确地连接到电力线230和/或接地线231。它们可以使用以下步骤进行测试和校正:It is also conceivable that the method of testing and fusing the short circuit shown in Figures 11a and b could be applied to carbon nanotube antennas, thereby disconnecting at least one end of a defective antenna. Referring now to FIG. 23 , a cross-section of an example of an antenna array with defective carbon nanotube antennas. After building the solar antenna array, some individual nanotubes may not be fully or incorrectly connected to the power line 230 and/or the ground line 231 . They can be tested and corrected using the following steps:
A:将太阳能电池阵列倒置,A: Turn the solar array upside down,
B.使电力线和接地线都接地,B. Ground both the power line and the ground line,
C.在天线阵列下方和穿过天线阵列移动带正电荷电源,使得松散的纳米管被拉到其连接的电力线或接地线一侧的后面,从而破坏纳米管的自由,以及C. moving the positively charged power source under and across the antenna array such that the loose nanotubes are pulled behind the side of the power line or ground line to which they are attached, thereby destroying the freedom of the nanotubes, and
D.移除破坏阵列的任何松散的纳米管。D. Remove any loose nanotubes that disrupt the array.
在本发明的另一个实施例中,更大的结构可以支撑阵列上的盖板,以保护天线、电力线以及接地线不受外部环境的影响。现在参考图25,具有盖板的天线阵列的示例的横截面。通过在模板的外部蚀刻大的V形槽,可以由聚酰胺形成大的板线251。也可以在模板周期性地蚀刻大的V形槽正方形,这可以在天线阵列250上的电力线和接地线253之间产生大的聚酰胺锥体或柱252的规则阵列,在该阵列250上可放置支撑透明玻璃(或其他足够透明以允许光通过的材料)板254以保护天线阵列。可选地,如果聚酰胺足够透明,则可以用反射镜代替玻璃板,反射镜可以将可能通过聚酰胺进入阵列的光反射回天线。In another embodiment of the invention, a larger structure can support a cover plate over the array to protect the antennas, power lines, and ground lines from the external environment. Referring now to FIG. 25 , a cross-section of an example of an antenna array with a cover plate. Large plate lines 251 can be formed from polyamide by etching large V-shaped grooves on the outside of the template. It is also possible to periodically etch large squares of V-shaped grooves in the template, which can create a regular array of large polyamide cones or posts 252 between the power and ground lines 253 on the antenna array 250 on which the A supporting clear glass (or other material transparent enough to allow light through) plate 254 is placed to protect the antenna array. Optionally, if the polyamide is sufficiently transparent, the glass plate can be replaced by a mirror that can reflect light that might enter the array through the polyamide back to the antenna.
本领域技术人员可以理解,本发明不受上文特别示例和描述的内容的限制。更确切地说,本发明的范围包括上文描述的各种特征的组合和子组合以及本领域技术人员在阅读前面的描述将会想到的并且不属于现有技术的修改和变化。Those skilled in the art can understand that the present invention is not limited by the contents specifically exemplified and described above. Rather, the scope of the present invention includes combinations and sub-combinations of the various features described above as well as modifications and variations that would occur to those skilled in the art upon reading the foregoing description and which do not belong to the prior art.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010368277.5A CN111599880B (en) | 2014-12-24 | 2015-11-10 | Solar antenna array and its manufacture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/582,747 US20150155396A1 (en) | 2012-04-24 | 2014-12-24 | Solar antenna array and its fabrication |
US14/582,747 | 2014-12-24 | ||
PCT/US2015/059852 WO2016105679A1 (en) | 2014-12-24 | 2015-11-10 | Solar antenna array and its fabrication |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010368277.5A Division CN111599880B (en) | 2014-12-24 | 2015-11-10 | Solar antenna array and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107112379A true CN107112379A (en) | 2017-08-29 |
Family
ID=56151310
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010368277.5A Active CN111599880B (en) | 2014-12-24 | 2015-11-10 | Solar antenna array and its manufacture |
CN201580071231.4A Pending CN107112379A (en) | 2014-12-24 | 2015-11-10 | Solar energy aerial array and its manufacture |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010368277.5A Active CN111599880B (en) | 2014-12-24 | 2015-11-10 | Solar antenna array and its manufacture |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3238275A4 (en) |
CN (2) | CN111599880B (en) |
TW (1) | TWI709251B (en) |
WO (1) | WO2016105679A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050112049A1 (en) * | 2001-12-18 | 2005-05-26 | William Hofmeister | Methods of direct growth of carbon nanotubes on catalytic surfaces |
US20050214198A1 (en) * | 2004-01-02 | 2005-09-29 | Samsung Electronics Co., Ltd. | Method of isolating semiconducting carbon nanotubes |
US20110163920A1 (en) * | 2010-01-04 | 2011-07-07 | Cutler Paul A | Method and apparatus for an optical frequency rectifier |
US20130276861A1 (en) * | 2012-04-24 | 2013-10-24 | Laurence H. Cooke | Solar antenna array and its fabrication |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070240757A1 (en) * | 2004-10-15 | 2007-10-18 | The Trustees Of Boston College | Solar cells using arrays of optical rectennas |
JP2009506546A (en) * | 2005-08-24 | 2009-02-12 | ザ トラスティーズ オブ ボストン カレッジ | Apparatus and method for solar energy conversion using nanoscale co-metallic structures |
US20120206085A1 (en) * | 2007-04-11 | 2012-08-16 | Carbon Design Innovations, Inc. | Carbon nanotube solar power collection device |
US9018616B2 (en) * | 2008-07-25 | 2015-04-28 | Ramot At Tel-Aviv University Ltd. | Rectifying antenna device with nanostructure diode |
KR101595755B1 (en) * | 2008-10-03 | 2016-02-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
JP4845988B2 (en) * | 2009-03-30 | 2011-12-28 | 株式会社豊田中央研究所 | Antenna device |
KR20110018764A (en) * | 2009-08-18 | 2011-02-24 | 삼성전자주식회사 | Solar cell and nanowire formation method comprising nanowires |
US20120186635A1 (en) * | 2011-01-26 | 2012-07-26 | Eastman Craig D | High efficiency electromagnetic radiation collection method and device |
US8847824B2 (en) * | 2012-03-21 | 2014-09-30 | Battelle Energy Alliance, Llc | Apparatuses and method for converting electromagnetic radiation to direct current |
-
2015
- 2015-11-10 WO PCT/US2015/059852 patent/WO2016105679A1/en active Application Filing
- 2015-11-10 EP EP15873906.0A patent/EP3238275A4/en not_active Withdrawn
- 2015-11-10 CN CN202010368277.5A patent/CN111599880B/en active Active
- 2015-11-10 CN CN201580071231.4A patent/CN107112379A/en active Pending
- 2015-11-13 TW TW104137565A patent/TWI709251B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050112049A1 (en) * | 2001-12-18 | 2005-05-26 | William Hofmeister | Methods of direct growth of carbon nanotubes on catalytic surfaces |
US20050214198A1 (en) * | 2004-01-02 | 2005-09-29 | Samsung Electronics Co., Ltd. | Method of isolating semiconducting carbon nanotubes |
US20110163920A1 (en) * | 2010-01-04 | 2011-07-07 | Cutler Paul A | Method and apparatus for an optical frequency rectifier |
US20130276861A1 (en) * | 2012-04-24 | 2013-10-24 | Laurence H. Cooke | Solar antenna array and its fabrication |
Also Published As
Publication number | Publication date |
---|---|
TWI709251B (en) | 2020-11-01 |
WO2016105679A1 (en) | 2016-06-30 |
EP3238275A4 (en) | 2018-10-10 |
EP3238275A1 (en) | 2017-11-01 |
CN111599880A (en) | 2020-08-28 |
CN111599880B (en) | 2024-06-04 |
TW201624746A (en) | 2016-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150155396A1 (en) | Solar antenna array and its fabrication | |
US9960480B2 (en) | Solar antenna array and its fabrication | |
CN109841693B (en) | A passivation contact structure and solar cell | |
CN103563090B (en) | For the equally distributed self assembly tapered pole of high performance solar batteries | |
US9917217B2 (en) | Solar antenna array and its fabrication and uses | |
JP2008300440A (en) | Solar cell and solar cell module | |
CN105679846B (en) | Photoelectric conversion device | |
CN107408583B (en) | Solar cell, manufacturing method thereof, and solar cell module | |
JP2012064839A (en) | Crystal silicon based solar cell and method of manufacturing the same | |
CN110010717A (en) | Embedded Integrated GaN Micro Line Array MSM UV Photodetector | |
US10243094B2 (en) | Method for producing a conductive multiple substrate stack | |
CN111599880B (en) | Solar antenna array and its manufacture | |
WO2011159578A2 (en) | Methods of fabricating optoelectronic devices using semiconductor-particle monolayers and devices made thereby | |
CN107851718B (en) | Solar Antenna Array and Its Fabrication and Application | |
US20180026149A1 (en) | Solar antenna array fabrication | |
CN110050352B (en) | Method for manufacturing high-efficiency solar cell | |
WO2016072415A1 (en) | Photoelectric conversion element | |
US8466447B2 (en) | Back contact to film silicon on metal for photovoltaic cells | |
CN119654061B (en) | Memristor with sub-1 nanometer x sub-1 nanometer electrode and preparation method thereof | |
TWI511306B (en) | Forming graded index lens in an all atmospheric pressure printing process to form photovoltaic panels | |
CN107438893B (en) | Method for fabricating devices containing Schottky diodes by means of printing technology | |
JP3995139B2 (en) | Solar cell manufacturing method and solar cell | |
CN117558781A (en) | Semiconductor bare chip, substrate, manufacturing method, solar cell and photovoltaic module | |
CN103348491A (en) | Method to form device by constructing support element on thin semiconductor lamina | |
US20170309765A1 (en) | Incremental solar antenna array fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170829 |
|
WD01 | Invention patent application deemed withdrawn after publication |