CN107101915A - A kind of efficient charge device of nano-scale particle thing and method - Google Patents
A kind of efficient charge device of nano-scale particle thing and method Download PDFInfo
- Publication number
- CN107101915A CN107101915A CN201710262994.8A CN201710262994A CN107101915A CN 107101915 A CN107101915 A CN 107101915A CN 201710262994 A CN201710262994 A CN 201710262994A CN 107101915 A CN107101915 A CN 107101915A
- Authority
- CN
- China
- Prior art keywords
- outer sleeve
- cavity
- nano
- particle thing
- sample gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 33
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 230000005684 electric field Effects 0.000 claims description 7
- 239000013618 particulate matter Substances 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 230000008676 import Effects 0.000 claims 6
- 239000000463 material Substances 0.000 claims 4
- 239000007921 spray Substances 0.000 claims 4
- 238000000605 extraction Methods 0.000 claims 3
- 230000005611 electricity Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 5
- 239000007924 injection Substances 0.000 abstract description 5
- 230000007812 deficiency Effects 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 description 24
- 230000007423 decrease Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0038—Investigating nanoparticles
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
本发明涉及一种纳米级颗粒物高效荷电装置及方法。荷电装置包括同轴设置的高压电极、放电针、外套筒和外壳。外壳包括内部设有空腔的外壳本体、设置在外壳本体顶部且与空腔相连通的样气进口、接地电极、荷电颗粒物出口以及开设在外壳本体底部的第一开口。外套筒的中上段通过第一开口伸入到空腔内。外套筒包括内部设有放电腔室的外套筒本体、离子喷射口、设置在外套筒本体下端且与放电腔室相连通的洁净空气进口、牵引电极以及开设在外套筒本体底部的第二开口。高压电极的中上段和安装在高压电极顶部的放电针均位于放电腔室内,高压电极的下端与高压电源相连。本发明能够解决现有技术中存在的不足,实现纳米级颗粒物的高效荷电。
The invention relates to a high-efficiency charging device and method for nanoscale particles. The charging device includes a coaxial high-voltage electrode, a discharge needle, an outer sleeve and a shell. The casing includes a casing body with a cavity inside, a sample gas inlet arranged on the top of the casing body and communicated with the cavity, a ground electrode, an outlet for charged particles, and a first opening at the bottom of the casing body. The middle and upper section of the outer sleeve extends into the cavity through the first opening. The outer sleeve includes an outer sleeve body with a discharge chamber inside, an ion injection port, a clean air inlet arranged at the lower end of the outer sleeve body and communicated with the discharge chamber, a pulling electrode, and a second Open your mouth. The middle and upper section of the high-voltage electrode and the discharge needle installed on the top of the high-voltage electrode are located in the discharge chamber, and the lower end of the high-voltage electrode is connected with the high-voltage power supply. The invention can solve the deficiencies in the prior art and realize the high-efficiency charging of nano-scale particles.
Description
技术领域technical field
本发明涉及大气颗粒物荷电技术领域,具体涉及一种纳米级颗粒物高效荷电装置及方法。The invention relates to the technical field of atmospheric particle charging, in particular to a device and method for efficiently charging nanoscale particles.
背景技术Background technique
对于基于颗粒物电迁移特性的粒谱分析仪器,获得颗粒物的已知电荷分布是进行粒径分级的前提。但由于大气中颗粒物的多样性和复杂性,模型分析结果与颗粒物实际荷电状况往往差别很大,因此,需要借助于颗粒物荷电器对颗粒物进行重新荷电。通常情况下,颗粒物的荷电效率随颗粒物粒径的减小而不断降低,尤其对于纳米级超细颗粒物,实现有效荷电更加困难。现有的大气细颗粒物高效荷电装置,是通过引入迁移电极,将自由电荷输送至颗粒物荷电区,该装置虽然大大降低荷电腔体内部的高压静电吸附损失,提高了大气细颗粒物的荷电效率;但由于放电针直接暴露在空气中,这样很容易导致放电针上有粒子沉积,影响放电针的电离效率,需要定期清理或者更换才能继续使用。除此之外,现有荷电装置中的离子流和样气流的方向一样,很多颗粒物直接随着气流直接从出口流出,没有和离子接触完成颗粒物的荷电过程。For particle spectrometers based on the electromigration characteristics of particles, obtaining the known charge distribution of particles is a prerequisite for particle size classification. However, due to the diversity and complexity of particulate matter in the atmosphere, the model analysis results are often very different from the actual charging status of the particulate matter. Therefore, it is necessary to recharge the particulate matter with the help of a particulate matter charger. Generally, the charging efficiency of particles decreases continuously with the decrease of particle size, especially for nano-scale ultrafine particles, it is more difficult to achieve effective charging. The existing high-efficiency charging device for atmospheric fine particles transports free charges to the particle charging area by introducing a transfer electrode. Although this device greatly reduces the high-voltage electrostatic adsorption loss inside the charging chamber, it improves the charge of atmospheric fine particles. Electrical efficiency; but because the discharge needle is directly exposed to the air, it is easy to cause particle deposition on the discharge needle, which affects the ionization efficiency of the discharge needle, and needs to be cleaned or replaced regularly before it can continue to be used. In addition, the direction of the ion flow in the existing charging device is the same as that of the sample air flow, and many particles directly flow out from the outlet along with the air flow, without contacting the ions to complete the charging process of the particles.
发明内容Contents of the invention
本发明的目的在于提供一种纳米级颗粒物高效荷电装置及方法,该装置及方法能够解决现有技术中存在的不足,实现纳米级颗粒物的高效荷电。The purpose of the present invention is to provide an efficient charging device and method for nano-scale particles, which can solve the deficiencies in the prior art and realize high-efficiency charging for nano-scale particles.
为实现上述目的,本发明采用了以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种纳米级颗粒物高效荷电装置,包括同轴设置的高压电极、放电针、外套筒和外壳;A high-efficiency charging device for nano-scale particles, including a coaxially arranged high-voltage electrode, a discharge needle, an outer sleeve and a casing;
所述外壳包括内部设有空腔的外壳本体、设置在外壳本体顶部且与空腔相连通的样气进口、设置在外壳本体顶部的接地电极、设置在外壳本体中下段且与空腔相连通的荷电颗粒物出口以及开设在外壳本体底部的第一开口;The housing includes a housing body with a cavity inside, a sample gas inlet arranged on the top of the housing body and connected to the cavity, a grounding electrode arranged on the top of the housing body, and arranged at the lower section of the housing body and communicated with the cavity. The charged particle outlet and the first opening at the bottom of the shell body;
所述外套筒的中上段通过第一开口伸入到空腔内;所述外套筒包括内部设有放电腔室的外套筒本体、开设在外套筒本体顶部的离子喷射口、设置在外套筒本体下端且与放电腔室相连通的洁净空气进口、设置在外套筒本体下端外壁上的牵引电极以及开设在外套筒本体底部的第二开口;The middle and upper section of the outer sleeve extends into the cavity through the first opening; the outer sleeve includes an outer sleeve body with a discharge chamber inside, an ion injection port set on the top of the outer sleeve body, and an outer sleeve body. The lower end of the sleeve body and the clean air inlet connected to the discharge chamber, the traction electrode arranged on the outer wall of the lower end of the outer sleeve body, and the second opening opened at the bottom of the outer sleeve body;
所述高压电极的中上段和安装在高压电极顶部的放电针均位于放电腔室内,高压电极的下端与高压电源相连。The middle and upper sections of the high-voltage electrode and the discharge needle installed on the top of the high-voltage electrode are all located in the discharge chamber, and the lower end of the high-voltage electrode is connected with a high-voltage power supply.
进一步的,所述放电腔室的上端为圆台状,下端为圆柱状。Further, the upper end of the discharge chamber is in the shape of a truncated cone, and the lower end is in the shape of a cylinder.
进一步的,所述外套筒与第一开口之间设有绝缘环;所述绝缘环采用聚四氟乙烯材质。Further, an insulating ring is provided between the outer sleeve and the first opening; the insulating ring is made of polytetrafluoroethylene.
进一步的,所述高压电极的下端通过绝缘套筒安装在第二开口处;所述绝缘套筒采用聚四氟乙烯材质。Further, the lower end of the high-voltage electrode is installed at the second opening through an insulating sleeve; the insulating sleeve is made of polytetrafluoroethylene.
进一步的,所述外壳本体、外套筒本体、样气进口和洁净空气进口均采用不锈钢材质。Further, the shell body, the outer sleeve body, the sample gas inlet and the clean air inlet are all made of stainless steel.
进一步的,所述绝缘套筒与外套筒之间设有密封圈。Further, a sealing ring is provided between the insulating sleeve and the outer sleeve.
进一步的,所述放电针采用钨材质。Further, the discharge needle is made of tungsten.
进一步的,所述高压电极、牵引电极和接地电极均采用铜材质。Further, the high voltage electrode, the traction electrode and the ground electrode are all made of copper.
本发明还涉及一种上述纳米级颗粒物高效荷电装置的荷电方法,该方法包括以下步骤:The present invention also relates to a charging method of the above-mentioned high-efficiency charging device for nano-scale particles, the method comprising the following steps:
(1)洁净空气流由洁净空气进口进入到放电腔室中;(1) The clean air flow enters the discharge chamber from the clean air inlet;
(2)通过高压电源将高压电极的端部接入高压,放电针的尖端产生尖端放电,从而使进入到放电腔室中的洁净空气流发生电离,产生大量的离子;(2) The end of the high-voltage electrode is connected to high voltage through a high-voltage power supply, and the tip of the discharge needle generates a tip discharge, thereby ionizing the clean air flow entering the discharge chamber and generating a large number of ions;
(3)将牵引电极的端部接入牵引电压,在外壳的空腔中形成牵引电场;(3) Connect the end of the traction electrode to the traction voltage to form a traction electric field in the cavity of the casing;
(4)在未被电离的洁净空气流的推动下,放电腔室中的离子通过离子喷射口进入到外壳的空腔中,并且在牵引电场的作用下,离子加速向上运动;(4) Under the impetus of the unionized clean air flow, the ions in the discharge chamber enter the cavity of the shell through the ion injection port, and under the action of the traction electric field, the ions accelerate upward;
(5)样气由样气进口进入到外壳的空腔中;(5) The sample gas enters the cavity of the shell from the sample gas inlet;
(6)在外壳的空腔中,离子和样气发生碰撞,离子附着在样气中的颗粒物上,使颗粒物带电,从而得到带电颗粒物;(6) In the cavity of the shell, the ions collide with the sample gas, and the ions are attached to the particles in the sample gas to charge the particles, thereby obtaining charged particles;
(7)在样气气流的作用下,带电颗粒物由荷电颗粒物出口流出。(7) Under the action of the sample gas flow, the charged particles flow out from the outlet of the charged particles.
和现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明将洁净的空气通入到放电腔室中,且通过对样气流量及洁净空气流流量进行设置,使样气不会进入到放电腔室中,从而使放电针不会被污染,保证了放电的稳定性,使本发明所述的荷电装置可以长期工作。本发明通过将放电腔室和样气与离子结合的腔室隔开,保证放电针不会被污染,确保放电的稳定性,从而保证离子浓度的稳定性。(1) The present invention passes clean air into the discharge chamber, and by setting the flow rate of the sample gas and the clean air flow, the sample gas will not enter the discharge chamber, so that the discharge needle will not be The pollution ensures the stability of the discharge, so that the charging device of the present invention can work for a long time. The invention separates the discharge chamber from the chamber where the sample gas is combined with ions to ensure that the discharge needle will not be polluted and the stability of the discharge is ensured, thereby ensuring the stability of the ion concentration.
(2)本发明通过使样气从整个装置的顶部通入,使洁净空气流在样气通入口下方的放电腔室中发生电离,从而使洁净空气流电离后产生的正负离子和样气中颗粒物发生相对运动,从而发生碰撞。而且本发明通过引入牵引电场,加速正负离子的运动,可以增加离子和颗粒物碰撞的机会,提高颗粒物的荷电效率。(2) In the present invention, the clean air flow is ionized in the discharge chamber below the sample gas inlet by passing the sample gas from the top of the entire device, so that the positive and negative ions generated after the clean air flow is ionized and in the sample gas Particles move relative to each other and collide. Moreover, the present invention accelerates the movement of positive and negative ions by introducing a traction electric field, which can increase the chance of collision between ions and particles, and improve the charging efficiency of particles.
附图说明Description of drawings
图1是本发明中纳米级颗粒物高效荷电装置的结构示意图。Fig. 1 is a schematic structural view of a device for efficiently charging nanoscale particles in the present invention.
其中:in:
1、高压电极,2、绝缘套筒,3、外套筒,4、牵引电极,5、放电针,6、荷电颗粒物出口,7、外壳,8、接地电极,9、绝缘环,10、样气进口,11、洁净空气进口,12、密封圈。1. High voltage electrode, 2. Insulating sleeve, 3. Outer sleeve, 4. Traction electrode, 5. Discharge needle, 6. Charged particle outlet, 7. Shell, 8. Grounding electrode, 9. Insulating ring, 10. Sample gas inlet, 11, clean air inlet, 12, sealing ring.
具体实施方式detailed description
下面结合附图对本发明做进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
如图1所示的一种纳米级颗粒物高效荷电装置,包括同轴设置的高压电极1、放电针5、外套筒3和外壳7。As shown in FIG. 1 , an efficient charging device for nanoscale particles includes a coaxial high-voltage electrode 1 , a discharge needle 5 , an outer sleeve 3 and a casing 7 .
所述外壳7包括内部设有空腔的外壳本体、设置在外壳本体顶部且与空腔相连通的样气进口10、设置在外壳本体顶部的接地电极8、设置在外壳本体中下段且与空腔相连通的荷电颗粒物出口6以及开设在外壳本体底部的第一开口。The housing 7 includes a housing body with a cavity inside, a sample gas inlet 10 arranged on the top of the housing body and connected to the cavity, a ground electrode 8 arranged on the top of the housing body, and a ground electrode 8 arranged at the middle and lower section of the housing body and connected to the cavity. The cavity is connected with the charged particle outlet 6 and the first opening at the bottom of the shell body.
所述外套筒3的中上段通过第一开口伸入到空腔内。所述外套筒3包括内部设有放电腔室的外套筒本体、开设在外套筒本体顶部的离子喷射口、设置在外套筒本体下端且与放电腔室相连通的洁净空气进口11、设置在外套筒本体下端外壁上的牵引电极4以及开设在外套筒本体底部的第二开口。牵引电极的引入可以加速离子的运动,从而增加离子和颗粒物碰撞的机会,使颗粒物更容易带上电。The middle and upper section of the outer sleeve 3 protrudes into the cavity through the first opening. The outer sleeve 3 includes an outer sleeve body with a discharge chamber inside, an ion injection port provided on the top of the outer sleeve body, a clean air inlet 11 arranged at the lower end of the outer sleeve body and communicated with the discharge chamber, a set The pulling electrode 4 on the outer wall at the lower end of the outer sleeve body and the second opening opened at the bottom of the outer sleeve body. The introduction of the pull electrode can accelerate the movement of ions, thereby increasing the chance of collision between ions and particles, making particles more easily charged.
所述高压电极1的中上段和螺纹连接在高压电极1顶部的放电针5均位于放电腔室内,高压电极1的下端与高压电源相连。The middle and upper sections of the high-voltage electrode 1 and the discharge needle 5 screwed to the top of the high-voltage electrode 1 are located in the discharge chamber, and the lower end of the high-voltage electrode 1 is connected to a high-voltage power supply.
进一步的,所述放电腔室的上端为圆台状或圆锥状,下端为圆柱状。通过将放电腔室的上端设计为圆台状或圆锥状,能够使气流出口处的直径由大逐渐变小,加速离子运动的速度。Further, the upper end of the discharge chamber is in the shape of a truncated cone or a cone, and the lower end is in the shape of a cylinder. By designing the upper end of the discharge chamber into a frustoconical or conical shape, the diameter of the air outlet can be gradually reduced from large to accelerated ion movement speed.
进一步的,所述外套筒3与第一开口之间设有绝缘环9;所述绝缘环9采用聚四氟乙烯材质。Further, an insulating ring 9 is provided between the outer sleeve 3 and the first opening; the insulating ring 9 is made of polytetrafluoroethylene.
进一步的,所述高压电极1的下端通过绝缘套筒2安装在第二开口处;所述绝缘套筒2采用聚四氟乙烯材质。绝缘套筒将高压电极和外套筒隔开,保证外套筒绝缘,操作安全。Further, the lower end of the high-voltage electrode 1 is installed at the second opening through an insulating sleeve 2; the insulating sleeve 2 is made of polytetrafluoroethylene. The insulating sleeve separates the high-voltage electrode from the outer sleeve to ensure insulation of the outer sleeve and safe operation.
进一步的,所述外壳本体、外套筒本体、样气进口10和洁净空气进口11均采用不锈钢材质。Further, the shell body, outer sleeve body, sample gas inlet 10 and clean air inlet 11 are all made of stainless steel.
进一步的,所述绝缘套筒2与外套筒3之间设有密封圈12。Further, a sealing ring 12 is provided between the insulating sleeve 2 and the outer sleeve 3 .
进一步的,所述放电针5采用钨材质。Further, the discharge needle 5 is made of tungsten.
进一步的,所述高压电极1、牵引电极4和接地电极8均采用铜材质。Further, the high voltage electrode 1, the pulling electrode 4 and the ground electrode 8 are all made of copper.
本发明还涉及一种上述纳米级颗粒物高效荷电装置的荷电方法,该方法包括以下步骤:The present invention also relates to a charging method of the above-mentioned high-efficiency charging device for nano-scale particles, the method comprising the following steps:
(1)洁净空气流以每分钟0.5升的流量由洁净空气进口进入到放电腔室中;(1) The clean air flow enters the discharge chamber from the clean air inlet at a flow rate of 0.5 liters per minute;
(2)通过高压电源将高压电极的端部接入5千伏正或负高压,放电针的尖端产生尖端放电,从而使进入到放电腔室中的洁净空气流发生电离,产生大量的正或负离子;(2) The end of the high-voltage electrode is connected to a positive or negative high voltage of 5 kV through a high-voltage power supply, and the tip of the discharge needle generates a tip discharge, thereby ionizing the clean air flow entering the discharge chamber and generating a large amount of positive or negative negative ions;
(3)将牵引电极的端部接入20伏牵引电压,在外壳上端的空腔中形成牵引电场;(3) Connect the end of the traction electrode to a 20V traction voltage to form a traction electric field in the cavity at the upper end of the casing;
(4)在未被电离的洁净空气流的推动下,放电腔室中的正或负离子通过离子喷射口进入到外壳上端的空腔中,并且在牵引电场的作用下,正或负离子加速向上运动;(4) Under the impetus of the unionized clean air flow, the positive or negative ions in the discharge chamber enter the cavity at the upper end of the shell through the ion injection port, and under the action of the traction electric field, the positive or negative ions accelerate upward movement ;
(5)样气以每分钟1.5升的流量由样气进口进入到外壳的空腔中;(5) The sample gas enters the cavity of the shell from the sample gas inlet at a flow rate of 1.5 liters per minute;
(6)在外壳的空腔中,正或负离子和样气以相反的方向发生碰撞,正或负离子附着在样气中的颗粒物上,使颗粒物带上正电或负电,从而得到带电颗粒物。通过对洁净空气流的流量进行设置,能够确保样气不会进入到绝缘套筒上端的圆台状放电腔室中,确保放电针不会被污染。(6) In the cavity of the shell, the positive or negative ions collide with the sample gas in opposite directions, and the positive or negative ions attach to the particles in the sample gas, making the particles positively or negatively charged, thereby obtaining charged particles. By setting the flow rate of the clean air flow, it can be ensured that the sample gas will not enter the frustum-shaped discharge chamber at the upper end of the insulating sleeve, and the discharge needle will not be polluted.
(7)在样气气流的作用下,带电颗粒物由荷电颗粒物出口流出。(7) Under the action of the sample gas flow, the charged particles flow out from the outlet of the charged particles.
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-mentioned embodiments are only descriptions of preferred implementations of the present invention, and are not intended to limit the scope of the present invention. Variations and improvements should fall within the scope of protection defined by the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710262994.8A CN107101915A (en) | 2017-04-20 | 2017-04-20 | A kind of efficient charge device of nano-scale particle thing and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710262994.8A CN107101915A (en) | 2017-04-20 | 2017-04-20 | A kind of efficient charge device of nano-scale particle thing and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107101915A true CN107101915A (en) | 2017-08-29 |
Family
ID=59656655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710262994.8A Pending CN107101915A (en) | 2017-04-20 | 2017-04-20 | A kind of efficient charge device of nano-scale particle thing and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107101915A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108918358A (en) * | 2018-07-17 | 2018-11-30 | 中煤科工集团重庆研究院有限公司 | Particulate matter particle size distribution detection system and method based on DMA |
CN109085097A (en) * | 2018-06-07 | 2018-12-25 | 中国科学院合肥物质科学研究院 | It is a kind of to integrate charged and classification technique superfine particulate matter analyzer |
CN109854956A (en) * | 2018-12-29 | 2019-06-07 | 江苏苏净集团有限公司 | A kind of sampling high pressure gas diffuser |
CN111443289A (en) * | 2020-05-09 | 2020-07-24 | 北京华科兴盛电力工程技术有限公司 | Ion chamber realized by utilizing gas specific gas flow mode |
CN112007757A (en) * | 2019-05-30 | 2020-12-01 | 中国科学院过程工程研究所 | A charging nozzle, a precharging device including the same, and a method for charging dust-laden flue gas using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1371306A (en) * | 1999-08-30 | 2002-09-25 | 东芝开利株式会社 | Air cleaner |
CN101155458A (en) * | 2007-09-11 | 2008-04-02 | 天津大学 | Aerosol Static Neutralizer |
CN101212128A (en) * | 2006-12-28 | 2008-07-02 | 财团法人工业技术研究院 | Corona discharge device and particle charging device using the same |
CN101581698A (en) * | 2009-06-23 | 2009-11-18 | 中国科学院安徽光学精密机械研究所 | Aerosol field ionization electric charge source device |
CN103476195A (en) * | 2013-09-13 | 2013-12-25 | 中国科学院合肥物质科学研究院 | Device and method for enhancing high-efficient charging of atmospheric fine particles |
CN205731630U (en) * | 2016-06-13 | 2016-11-30 | 江苏乐居乐家网络科技有限公司 | A kind of particulate matter window electric installation for air purifier |
-
2017
- 2017-04-20 CN CN201710262994.8A patent/CN107101915A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1371306A (en) * | 1999-08-30 | 2002-09-25 | 东芝开利株式会社 | Air cleaner |
CN101212128A (en) * | 2006-12-28 | 2008-07-02 | 财团法人工业技术研究院 | Corona discharge device and particle charging device using the same |
CN101155458A (en) * | 2007-09-11 | 2008-04-02 | 天津大学 | Aerosol Static Neutralizer |
CN101581698A (en) * | 2009-06-23 | 2009-11-18 | 中国科学院安徽光学精密机械研究所 | Aerosol field ionization electric charge source device |
CN103476195A (en) * | 2013-09-13 | 2013-12-25 | 中国科学院合肥物质科学研究院 | Device and method for enhancing high-efficient charging of atmospheric fine particles |
CN205731630U (en) * | 2016-06-13 | 2016-11-30 | 江苏乐居乐家网络科技有限公司 | A kind of particulate matter window electric installation for air purifier |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109085097A (en) * | 2018-06-07 | 2018-12-25 | 中国科学院合肥物质科学研究院 | It is a kind of to integrate charged and classification technique superfine particulate matter analyzer |
CN109085097B (en) * | 2018-06-07 | 2021-02-02 | 中国科学院合肥物质科学研究院 | An ultrafine particle analyzer with integrated charging and classification technology |
CN108918358A (en) * | 2018-07-17 | 2018-11-30 | 中煤科工集团重庆研究院有限公司 | Particulate matter particle size distribution detection system and method based on DMA |
CN109854956A (en) * | 2018-12-29 | 2019-06-07 | 江苏苏净集团有限公司 | A kind of sampling high pressure gas diffuser |
CN109854956B (en) * | 2018-12-29 | 2024-02-27 | 江苏苏净集团有限公司 | High-pressure gas diffuser for sampling |
CN112007757A (en) * | 2019-05-30 | 2020-12-01 | 中国科学院过程工程研究所 | A charging nozzle, a precharging device including the same, and a method for charging dust-laden flue gas using the same |
CN111443289A (en) * | 2020-05-09 | 2020-07-24 | 北京华科兴盛电力工程技术有限公司 | Ion chamber realized by utilizing gas specific gas flow mode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107101915A (en) | A kind of efficient charge device of nano-scale particle thing and method | |
CN104056721B (en) | The clean corona gas ionization neutralized for electrostatic | |
CN107138277B (en) | The unipolarity particulate matter charge device and method of integrated free ion trapping function | |
CN101581698B (en) | Aerosol field ionization electric charge source device | |
EA025811B1 (en) | Apparatus for monitoring particles in an aerosol | |
CN103476195B (en) | A kind ofly improve the efficiently charged device and method of airborne fine particulate matter | |
CN201415153Y (en) | Fine wood dust electrostatic precipitator | |
CN106000654B (en) | A kind of particle reversely feeds friction electrical selection separator | |
CN109174456B (en) | Device and method for atomizing wet electrostatic dust collection | |
CN106492988A (en) | A kind of microchannel anode water fog removing device | |
CN201079750Y (en) | Electric dust collector with wide distance electric field | |
CN108080166A (en) | The two-stage Charged atomization nozzle that a kind of induc- tion charging is combined with corona charging | |
CN205815928U (en) | Franklinic electricity coalescer | |
CN201995195U (en) | Ion air gun | |
CN208131312U (en) | A kind of two-stage Charged atomization spray head of induc- tion charging in conjunction with corona charging | |
CN205797493U (en) | A kind of tubular type backflow Double-region electrostatic dust collector | |
CN104456751A (en) | Ion wind generating device | |
CN203874903U (en) | Wet-type electric filtration device with high gas speed and high efficiency for deeply treating PM2.5 | |
CN202292940U (en) | Woodiness dust cyclone electrostatic precipitator | |
CN106014547A (en) | Device for purifying automobile exhaust through charged fine water spray | |
CN102343307B (en) | Charge device | |
CN113369017B (en) | A Continuous Generation System of Discrete Microparticles Charged with Electrostatic | |
CN107570343B (en) | A gas-liquid two-fluid electrostatic atomization device | |
CN103817004A (en) | High gas speed and high efficiency wet-type electrofiltration device for deep treatment of PM2.5 | |
CN206716631U (en) | High Frequency Ion Air Gun |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170829 |