CN107092790B - Electron cryo-microscopy three-dimensional density figure resolution detection method - Google Patents
Electron cryo-microscopy three-dimensional density figure resolution detection method Download PDFInfo
- Publication number
- CN107092790B CN107092790B CN201710255814.3A CN201710255814A CN107092790B CN 107092790 B CN107092790 B CN 107092790B CN 201710255814 A CN201710255814 A CN 201710255814A CN 107092790 B CN107092790 B CN 107092790B
- Authority
- CN
- China
- Prior art keywords
- film
- noise
- mask
- spectral power
- density map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 15
- 238000000386 microscopy Methods 0.000 title 1
- 230000003595 spectral effect Effects 0.000 claims abstract description 90
- 238000001228 spectrum Methods 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 32
- 239000012528 membrane Substances 0.000 claims abstract description 31
- 238000001493 electron microscopy Methods 0.000 claims description 7
- 238000001000 micrograph Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/80—Data visualisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Chemical & Material Sciences (AREA)
- Data Mining & Analysis (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明提供一种冷冻电镜三维密度图分辨率检测方法,包括步骤:输入冷冻电镜三维密度图和纯噪声三维密度图;生成掩膜集;利用各掩膜分别对纯噪声三维密度图进行分割分别获得第一膜内数据和第一膜外数据;计算第一膜内噪声谱功率和第一膜外噪声谱功率;计算获得线性参数集;利用各掩膜分别对冷冻电镜三维密度图进行分割分别获得第二膜内数据和第二膜外数据;根据第二膜内数据、第二膜外数据和线性参数集计算获得各掩膜所对应的第二膜内数据谱信噪比曲线图;根据第二膜内数据谱信噪比曲线图获得分辨率集,根据分辨率集绘制分辨率集三维曲面图;获得全局分辨率值。本发明的一种冷冻电镜三维密度图分辨率检测方法,具有简单、直观、操作便捷的优点。The invention provides a method for detecting the resolution of a three-dimensional density map of a cryo-electron microscope, comprising the steps of: inputting a three-dimensional density map of a cryo-electron microscope and a three-dimensional density map of pure noise; generating a mask set; Obtain the first intra-membrane data and the first extra-membrane data; calculate the first intra-membrane noise spectral power and the first extra-membrane noise spectral power; calculate and obtain a linear parameter set; use each mask to segment the cryo-EM 3D density map respectively. Obtain the second in-film data and the second out-of-film data; calculate and obtain the second in-film data spectrum signal-to-noise ratio curve corresponding to each mask according to the second in-film data, the second out-of-film data and the linear parameter set; The second in-film data spectrum signal-to-noise ratio curve graph obtains a resolution set, and draws a three-dimensional surface map of the resolution set according to the resolution set; obtains a global resolution value. The method for detecting the resolution of the three-dimensional density map of the cryo-electron microscope of the present invention has the advantages of simplicity, intuition and convenient operation.
Description
技术领域technical field
本发明涉及图像处理领域,尤其涉及一种冷冻电镜三维密度图分辨率检测方法。The invention relates to the field of image processing, in particular to a method for detecting the resolution of a three-dimensional density map of a cryo-electron microscope.
背景技术Background technique
作为一项新兴技术,冷冻电镜(Cryo-EM)技术近年来迅速发展并取得了卓越的成就,越来越多大分子通过冷冻电镜技术重构得到亚纳米级三维结构。结构生物领域传统的三维重构技术,如x-射线三维重构技术和核磁共振三维重构技术(NMR),各自有其固有缺陷,如x-射线技术只能对晶体进行研究,不能对非晶体进行三维重构;核磁共振技术不能对大分子量(超过100KDa)的分子进行三维重构。相比之下,冷冻电镜技术具有显著的优势:(1)对研究样本没有结晶要求,对晶体和非晶体都可进行三维重构;(2)对研究样本没有分子量限制,可对大分子量的生物分子进行三维重构;(3)对样品进行快速冷冻,使样品中的水处于玻璃态,生物分子非常接近生理状态;(4)样本中的生物分子处于生理过程的不同阶段,可研究生理过程中生物分子的动态演化过程等。冷冻电镜技术显著的优越性使其具有广阔的发展前景。As an emerging technology, cryo-electron microscopy (Cryo-EM) technology has developed rapidly in recent years and has achieved remarkable achievements. More and more macromolecules are reconstructed by cryo-electron microscopy technology to obtain sub-nanometer three-dimensional structures. Traditional three-dimensional reconstruction techniques in the field of structural biology, such as x-ray three-dimensional reconstruction technology and nuclear magnetic resonance three-dimensional reconstruction technology (NMR), have their own inherent defects, such as x-ray technology can only study crystals, not non-ferrous metals. Crystals undergo three-dimensional reconstruction; NMR techniques cannot perform three-dimensional reconstruction of molecules with large molecular weights (over 100KDa). In contrast, cryo-electron microscopy has significant advantages: (1) there is no crystallization requirement for the research sample, and three-dimensional reconstruction can be performed on both crystal and amorphous; (2) there is no molecular weight limit for the research sample, and it can be used for large molecular weight Three-dimensional reconstruction of biomolecules; (3) Rapid freezing of the sample, so that the water in the sample is in a glass state, and the biomolecules are very close to the physiological state; (4) The biomolecules in the sample are in different stages of the physiological process, which can be used to study physiological The dynamic evolution of biomolecules in the process, etc. The remarkable advantages of cryo-EM technology make it have broad development prospects.
利用冷冻电镜技术进行三维重构的主要方法是单颗粒重构(SPR)。单颗粒重构的流程如下:(1)冷冻样品制备;(2)电镜成像采集;(3)电镜图像处理,包括:CTF校正,颗粒挑选等;(4)三维重构,包括对颗粒进行分类、平均,构建初始模型,迭代优化最终模型等。单颗粒重构得到生物分子的三维密度图后,对重构模型的质量进行评估,即分辨率检测,具有重要的意义:有助于比较重构算法的优劣,促进不同技术的融合交流,促进冷冻电镜技术的发展,促进结构生物学的发展等。The main method for 3D reconstruction using cryo-EM is single particle reconstruction (SPR). The process of single particle reconstruction is as follows: (1) Frozen sample preparation; (2) Electron microscope image acquisition; (3) Electron microscope image processing, including: CTF correction, particle selection, etc.; (4) 3D reconstruction, including particle classification , averaging, building an initial model, iteratively optimizing the final model, etc. After single particle reconstruction obtains the 3D density map of biomolecules, it is of great significance to evaluate the quality of the reconstructed model, that is, resolution detection: it helps to compare the advantages and disadvantages of reconstruction algorithms, and promotes the integration and communication of different technologies. Promote the development of cryo-electron microscopy technology, promote the development of structural biology, etc.
目前常用的分辨率检测方法有傅里叶壳相关(Fourier shell correlation,FSC)方法和谱信噪比(Spectral signal-to-noise ratio,SSNR)方法。通过FSC方法检测分辨率需要将颗粒数据集随机分成两个半数据集,对这两个半数据集进行三维重构,然后计算两个半数据集重构结果在傅里叶空间的相关性,得到FSC 曲线,通过阈值截断,得到最终的全局分辨率。使用FSC方法进行分辨率检测存在以下缺点:(1)该方法检测的实际上是重构算法的可重复性,与传统的分辨率检测意义不同,阈值的选取没有直观的含义,目前依然存在较大争议; (2)该方法易受噪声影响,由于高频部分的噪声多,该方法在计算时,往往会将噪声的相关性作为颗粒相关性来计算,出现过拟合现象;(3)该方法需要将颗粒数据集分成两个半数据集并分别进行三维重构,半数据集的重构质量低于全部数据集的重构质量,据此计算出的分辨率与全部数据集的重构结果分辨率不符,且计算过程冗余。At present, the commonly used resolution detection methods include Fourier shell correlation (FSC) method and Spectral signal-to-noise ratio (SSNR) method. To detect the resolution by the FSC method, the particle dataset needs to be randomly divided into two half datasets, three-dimensional reconstruction of the two half datasets is performed, and then the correlation between the reconstruction results of the two half datasets in the Fourier space is calculated, The FSC curve is obtained, and the final global resolution is obtained by threshold truncation. Using the FSC method for resolution detection has the following disadvantages: (1) What this method detects is actually the repeatability of the reconstruction algorithm. Different from the traditional resolution detection, the selection of the threshold has no intuitive meaning. (2) This method is easily affected by noise. Since there is a lot of noise in the high-frequency part, this method often calculates the correlation of the noise as the particle correlation when calculating, and the phenomenon of over-fitting occurs; (3) This method needs to divide the particle data set into two half data sets and perform 3D reconstruction respectively. The reconstruction quality of the half data set is lower than that of the whole data set. The resolution of the structural results does not match, and the calculation process is redundant.
SSNR方法计算三维密度图在频域的信号与噪声的功率比,然后通过阈值截断,计算全局分辨率。与FSC方法相比,计算分辨率时使用的阈值有明确的含义,如常取1作为阈值,此时信号功率等于噪声功率。现有的计算SSNR 的方法是将三维密度图进行再投影,投影空间的图像被认为是去噪后的图像,用原始图像减去投影图像得到噪声图像,然后使用由纯噪声三维密度图得到的噪声衰减因子,对投影图像的信号功率和噪声功率进行修正,最后由修正后的投影图像信号功率比修正后的噪声功率得到三维密度图的谱信噪比。使用现有方法计算SSNR是在二维空间考虑三维空间的信噪比,不具有直观性,计算结果依赖于再投影过程,且计算过程中需要原始数据集。The SSNR method calculates the signal-to-noise power ratio of the three-dimensional density map in the frequency domain, and then truncates it through a threshold to calculate the global resolution. Compared with the FSC method, the threshold used in calculating the resolution has a clear meaning. As usual, 1 is taken as the threshold. At this time, the signal power is equal to the noise power. The existing method for calculating SSNR is to re-project the 3D density map. The image in the projected space is considered as the denoised image, subtract the projection image from the original image to obtain the noise image, and then use the noise image obtained from the pure noise 3D density map. The noise attenuation factor is used to correct the signal power and noise power of the projected image. Finally, the spectral signal-to-noise ratio of the three-dimensional density map is obtained from the corrected noise power of the projected image signal power. Using the existing method to calculate the SSNR is to consider the signal-to-noise ratio of the three-dimensional space in the two-dimensional space, which is not intuitive. The calculation result depends on the re-projection process, and the original data set is required in the calculation process.
冷冻电镜技术正处于快速发展阶段,且具有广阔的应用前景,而现有的冷冻电镜三维密度图分辨率检测方法都存在较大缺陷,因此需要提出一种新的分辨率检测方法。The cryo-electron microscope technology is in the stage of rapid development and has broad application prospects. However, the existing cryo-electron microscopy three-dimensional density map resolution detection methods have major defects, so it is necessary to propose a new resolution detection method.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术中的不足,本发明提供一种冷冻电镜三维密度图分辨率检测方法,在三维空间中直接计算三维密度图的谱信噪比,不需要再投影过程,具有简单、直观、操作便捷的优点。In view of the above-mentioned deficiencies in the prior art, the present invention provides a method for detecting the resolution of a three-dimensional density map of a cryo-electron microscope, which directly calculates the spectral signal-to-noise ratio of a three-dimensional density map in a three-dimensional space, does not require a reprojection process, and has simple, intuitive, and The advantage of convenient operation.
为了实现上述目的,本发明提供一种冷冻电镜三维密度图分辨率检测方法,包括步骤:In order to achieve the above purpose, the present invention provides a method for detecting the resolution of a three-dimensional density map of cryo-electron microscopy, comprising the steps of:
S1:输入一冷冻电镜三维密度图和所述冷冻电镜三维密度图的一纯噪声三维密度图;S1: input a three-dimensional density map of cryo-electron microscope and a three-dimensional density map of pure noise of the three-dimensional density map of cryo-electron microscope;
S2:根据所述冷冻电镜三维密度图生成一掩膜集,所述掩膜集包括n个大小不同的掩膜,n为大于零的整数;S2: generate a mask set according to the three-dimensional density map of the cryo-electron microscope, where the mask set includes n masks of different sizes, where n is an integer greater than zero;
S3:利用各所述掩膜分别对所述纯噪声三维密度图进行分割分别获得所述纯噪声三维密度图的与各所述掩膜对应的一第一膜内数据和一第一膜外数据;S3: Segment the pure noise three-dimensional density map by using each of the masks to obtain a first in-film data and a first out-of-film data corresponding to each of the masks of the pure noise three-dimensional density map, respectively. ;
S4:根据所述第一膜内数据和所述第一膜外数据计算各所述掩膜对应的一第一膜内噪声谱功率和一第一膜外噪声谱功率;S4: Calculate a first in-film noise spectral power and a first out-of-film noise spectral power corresponding to each of the masks according to the first in-film data and the first out-of-film data;
S5:根据各组所述第一膜内噪声谱功率和所述第一膜外噪声谱功率计算获得一线性参数集λp;S5: Calculate and obtain a linear parameter set λ p according to the first in-film noise spectral power and the first out-of-film noise spectral power in each group;
其中,0≤p≤n,且p为整数,为第p掩膜所对应的第一膜内噪声谱功率,为第p掩膜所对应的第一膜外噪声谱功率;λp为线性拟合参数;where 0≤p≤n, and p is an integer, is the first in-film noise spectral power corresponding to the p-th mask, is the first out-of-film noise spectral power corresponding to the p-th mask; λ p is the linear fitting parameter;
S6:利用各所述掩膜分别对所述冷冻电镜三维密度图进行分割分别获得所述冷冻电镜三维密度图的与各所述掩膜对应的一第二膜内数据和一第二膜外数据;S6: Segment the cryo-EM 3D density map by using each of the masks to obtain a second intra-membrane data and a second extra-membrane data corresponding to each mask of the cryo-EM 3-D density map, respectively. ;
S7:根据所述第二膜内数据、所述第二膜外数据和所述线性参数集计算获得各掩膜所对应的第二膜内数据谱信噪比曲线图;S7: Calculate and obtain a spectral signal-to-noise ratio curve of the second in-film data corresponding to each mask according to the second in-film data, the second out-of-film data and the linear parameter set;
S8:根据所述第二膜内数据谱信噪比曲线图获得一分辨率集,并根据所述分辨率集绘制一分辨率集三维曲面图;S8: obtaining a resolution set according to the second in-film data spectrum signal-to-noise ratio curve, and drawing a three-dimensional surface graph of the resolution set according to the resolution set;
S9:根据所述分辨率集三维曲面图计算获得所述冷冻电镜三维密度图的一全局分辨率值。S9: Calculate and obtain a global resolution value of the three-dimensional density map of the cryo-electron microscope according to the three-dimensional surface map of the resolution set.
优选地,所述掩膜采用二值掩膜,所述二值掩膜包括一掩膜区域,所述掩膜区域内的值为1,所述掩膜区域外的值为0。Preferably, the mask adopts a binary mask, the binary mask includes a mask area, the value inside the mask area is 1, and the value outside the mask area is 0.
优选地,在所述S2步骤中,通过在一透射电子显微镜图像处理软件中设置并调整一三维密度图的密度等值面阈值参数和一向外扩展的高斯层数参数,处理所述冷冻电镜三维密度图,获得所述掩膜集。Preferably, in the step S2, the three-dimensional cryo-electron microscope is processed by setting and adjusting a density isosurface threshold parameter of a three-dimensional density map and an outwardly expanding Gaussian layer parameter in a transmission electron microscope image processing software. density map to obtain the mask set.
优选地,所述S3步骤进一步包括步骤:Preferably, the S3 step further comprises the steps:
将所述纯噪声三维密度图在三维空间每个坐标上的值与当前所述掩膜相应坐标上的值相乘,获得当前掩膜所对应的所述第一膜内数据;Multiplying the value of the pure noise three-dimensional density map on each coordinate in the three-dimensional space by the value on the corresponding coordinate of the current mask to obtain the first in-film data corresponding to the current mask;
将所述纯噪声三维密度图减去所述第一膜内数据,获得当前掩膜所对应的所述第一膜外数据;subtracting the first in-film data from the pure noise three-dimensional density map to obtain the first out-of-film data corresponding to the current mask;
重复步骤,直至获得所有所述掩膜所对应的所述第一膜内数据和所述第一膜外数据。The steps are repeated until the first in-film data and the first out-of-film data corresponding to all the masks are obtained.
优选地,所述S4步骤进一步包括步骤:Preferably, the S4 step further comprises the steps:
将当前所述掩膜所对应的所述第一膜内数据通过傅里叶变换转换到一第一频率空间;将当前所述掩膜所对应的所述第一膜外数据通过傅里叶变换转换到一第二频率空间;Converting the first in-film data corresponding to the current mask to a first frequency space through Fourier transform; converting the first out-of-film data corresponding to the current mask through Fourier transform convert to a second frequency space;
分别在所述第一频率空间和所述第二频率空间内建立一球壳模型shell(s), s为所述球壳模型的半径;A spherical shell model shell(s) is established in the first frequency space and the second frequency space respectively, where s is the radius of the spherical shell model;
根据一公式(2)计算当前所述掩膜所对应的所述第一膜内噪声谱功率和所述第一膜外噪声谱功率:Calculate the first in-film noise spectral power and the first out-of-film noise spectral power corresponding to the current mask according to a formula (2):
其中,RPS(s)为谱功率;当RPS(s)为所述第一膜内噪声谱功率时,Ks为所述第一频率空间内所述球壳模型上的点的坐标,所述Ns为所述第一频率空间内所述球壳模型上的点的数量,M(Ks)为所述第一膜内数据的傅里叶变换;Wherein, RPS(s) is the spectral power; when RPS( s ) is the spectral power of the noise in the first membrane, Ks is the coordinates of the point on the spherical shell model in the first frequency space, and the N s is the number of points on the spherical shell model in the first frequency space, and M(K s ) is the Fourier transform of the data in the first membrane;
当RPS(s)为所述第一膜外噪声谱功率时,Ks为所述第二频率空间内所述球壳模型上的点的坐标,所述Ns为所述第二频率空间内所述球壳模型上的点的数量,M(Ks)为所述第一膜外数据的傅里叶变换。When RPS(s) is the spectral power of the first out-of-membrane noise, K s is the coordinates of a point on the spherical shell model in the second frequency space, and N s is the inner The number of points on the spherical shell model, M(K s ) is the Fourier transform of the first out-of-membrane data.
优选地,所述S7步骤进一步包括步骤:Preferably, the S7 step further comprises the steps of:
S71:将当前所述掩膜所对应的所述第二膜内数据通过傅里叶变换转换到一第三频率空间;将当前所述掩膜所对应的所述第二膜外数据通过傅里叶变换转换到一第四频率空间;S71: Convert the second in-film data corresponding to the current mask to a third frequency space through Fourier transform; convert the second out-of-film data corresponding to the current mask through Fourier transform The leaf transform transforms into a fourth frequency space;
S72:分别在所述第三频率空间和所述第四频率空间内建立一球壳模型 shell(s),s为所述球壳模型的半径;S72: respectively establish a spherical shell model shell(s) in the third frequency space and the fourth frequency space, where s is the radius of the spherical shell model;
S73:根据所述公式(2)计算当前所述掩膜所对应的一第二膜内信号和噪声加和的谱功率和一第二膜外噪声谱功率:S73: Calculate the spectral power of the sum of a second in-film signal and noise and a second out-of-film noise spectral power corresponding to the current mask according to the formula (2):
当RPS(s)为所述第二膜内信号和噪声加和的谱功率时,Ks为所述第三频率空间内所述球壳模型上的点的坐标,所述Ns为所述第三频率空间内所述球壳模型上的点的数量,M(Ks)为所述第二膜内数据的傅里叶变换;When RPS(s) is the spectral power of the sum of signal and noise in the second membrane, K s is the coordinates of a point on the spherical shell model in the third frequency space, and N s is the The number of points on the spherical shell model in the third frequency space, M(K s ) is the Fourier transform of the data in the second membrane;
当RPS(s)为所述第二膜外噪声谱功率时,Ks为所述第四频率空间内所述球壳模型上的点的坐标,所述Ns为所述第四频率空间内所述球壳模型上的点的数量,M(Ks)为所述第二膜外数据的傅里叶变换;When RPS(s) is the spectral power of the second out-of-membrane noise, K s is the coordinates of a point on the spherical shell model in the fourth frequency space, and N s is the inner The number of points on the spherical shell model, M(K s ) is the Fourier transform of the second out-of-membrane data;
S74:利用一公式(3)、所述线性参数集λp和所述第二膜外噪声谱功率估算所述冷冻电镜三维密度图的一第二膜内噪声谱功率:S74: Using a formula (3), the linear parameter set λ p and the second out-of-film noise spectral power to estimate a second in-film noise spectral power of the cryo-EM three-dimensional density map:
RPSnp(s)=λp·RPSop(s) (3);RPS np (s) = λ p · RPS op (s) (3);
其中,RPSnp(s)为第p掩膜所对应的所述第二膜内噪声谱功率;RPSop(s) 为第p掩膜所对应的所述第二膜外噪声谱功率;Wherein, RPS np (s) is the second in-film noise spectral power corresponding to the pth mask; RPS op (s) is the second out-of-film noise spectral power corresponding to the pth mask;
S75:将所述第二膜内信号和噪声加和的谱功率减去所述第二膜内噪声谱功率计算获得所述冷冻电镜三维密度图的一第二膜内信号谱功率RPSsp(s):S75: Calculate the spectral power of the second in-film signal by subtracting the spectral power of the second in-film noise from the summed spectral power of the second in-film signal and noise to obtain a second in-film signal spectral power RPS sp (s ):
RPSsp(s)=RPSip(s)-RPSnp(s) (4);RPS sp (s) = RPS ip (s) - RPS np (s) (4);
其中,RPSip(s)为第p掩膜所对应的所述第二膜内信号和噪声加和的谱功率;RPSnp(s)为第p掩膜所对应的所述第二膜内噪声谱功率;Wherein, RPS ip (s) is the spectral power of the sum of the second in-film signal and noise corresponding to the p-th mask; RPS np (s) is the second in-film noise corresponding to the p-th mask spectral power;
S76:根据所述第二膜内信号谱功率和所述第二膜内噪声谱功率计算一第二膜内数据谱信噪比,绘制当前掩膜所对应的所述第二膜内数据谱信噪比曲线图;S76: Calculate a signal-to-noise ratio of a second in-film data spectrum according to the second in-film signal spectral power and the second in-film noise spectral power, and draw the second in-film data spectral signal corresponding to the current mask Noise ratio curve;
S77:重复步骤S71~S76直至绘制获得所有掩膜所对应的所述第二膜内数据谱信噪比曲线图。S77: Repeat steps S71-S76 until the second in-film data spectrum signal-to-noise ratio curves corresponding to all the masks are obtained.
优选地,所述第二膜内数据谱信噪比满足公式(5):Preferably, the signal-to-noise ratio of the data spectrum in the second film satisfies the formula (5):
其中,SSNRp(s)为第p掩膜所对应的所述第二膜内数据谱信噪比。Wherein, SSNR p (s) is the signal-to-noise ratio of the second in-film data spectrum corresponding to the p-th mask.
优选地,所述绘制当前掩膜所对应的所述第二膜内数据谱信噪比曲线图步骤中:将所述第二膜内数据谱信噪比取对数,获得所述第二膜内数据谱信噪比曲线图的纵坐标,将所述第二膜内数据谱信噪比所对应的所述球壳模型的半径作为所述第二膜内数据谱信噪比曲线图的横坐标,形成所述第二膜内数据谱信噪比曲线图。Preferably, in the step of drawing the second in-film data spectrum signal-to-noise ratio curve graph corresponding to the current mask: taking the logarithm of the second in-film data spectrum signal-to-noise ratio to obtain the second film The ordinate of the signal-to-noise ratio curve of the data spectrum in the second film, the radius of the spherical shell model corresponding to the signal-to-noise ratio of the data spectrum in the second film is taken as the horizontal axis of the signal-to-noise ratio curve of the data spectrum in the second film coordinates to form a signal-to-noise ratio curve diagram of the data spectrum in the second film.
优选地,所述S8步骤进一步包括步骤:Preferably, the S8 step further includes the steps:
设定一阈值;set a threshold;
在每一所述第二膜内数据谱信噪比曲线图内截取每一所述第二膜内数据谱信噪比曲线上纵坐标与所述阈值数值相等的至少一待选坐标点,并选取所述待选坐标点中横坐标最小的一所述待选坐标点作为一目标坐标点;At least one coordinate point to be selected whose ordinate is equal to the threshold value on the signal-to-noise ratio curve of each second in-film data spectrum is intercepted in each of the second in-film data spectrum signal-to-noise ratio curves, and Selecting the candidate coordinate point with the smallest abscissa among the candidate coordinate points as a target coordinate point;
计算所述目标坐标点横坐标的倒数,获得各所述掩膜所对应的所述第二膜内数据的分辨率,各所述掩膜所对应的所述第二膜内数据的分辨率形成所述分辨率集;Calculate the reciprocal of the abscissa of the target coordinate point to obtain the resolution of the second in-film data corresponding to each of the masks, and the resolution of the second in-film data corresponding to each of the masks is formed the set of resolutions;
将各所述掩膜所对应的所述分辨率作为z轴,将各所述掩膜所对应所述三维密度图的密度等值面阈值参数和所述向外扩展的高斯层数参数分别作为 x轴和y轴,形成所述分辨率集三维曲面图,所述分辨率集三维曲面图包括一分界线。The resolution corresponding to each of the masks is taken as the z-axis, and the density isosurface threshold parameter of the three-dimensional density map corresponding to each of the masks and the outwardly expanded Gaussian layer parameter are taken as The x-axis and the y-axis form a three-dimensional surface map of the resolution set, and the three-dimensional surface map of the resolution set includes a dividing line.
优选地,所述S9步骤进一步包括步骤:Preferably, the S9 step further comprises the steps:
计算所述分界线上各点的分辨率数值的均值;Calculate the mean value of the resolution values of each point on the dividing line;
寻找所述分界线上各点中分辨率数值与所述均值最为接近的一点作为判别点;Find the point where the resolution value is the closest to the mean value in each point on the boundary line as a discriminant point;
将所述判别点的分辨率作为所述全局分辨率值。The resolution of the discriminant point is used as the global resolution value.
本发明由于采用了以上技术方案,使其具有以下有益效果:The present invention has the following beneficial effects due to the adoption of the above technical solutions:
本发明的冷冻电镜三维密度图分辨率检测方法,不需要用两个半数据集重构结果的相似性来估计分辨率,计算分辨率时不需要使用原始颗粒数据集,不需要进行投影过程,可直接在三维空间中计算三维密度图的谱信噪比,具有简单、直观、操作便捷的优点。The method for detecting the resolution of the three-dimensional density map of cryo-electron microscope of the present invention does not need to use the similarity of the reconstruction results of the two half data sets to estimate the resolution, does not need to use the original particle data set when calculating the resolution, and does not need to perform a projection process, The spectral signal-to-noise ratio of the three-dimensional density map can be directly calculated in the three-dimensional space, which has the advantages of simplicity, intuition and convenient operation.
具体实施方式Detailed ways
下面给出本发明的较佳实施例,并予以详细描述,使能更好地理解本发明的功能、特点。Preferred embodiments of the present invention are given below and described in detail, so that the functions and features of the present invention can be better understood.
本发明实施例的一种冷冻电镜三维密度图分辨率检测方法,包括步骤:A method for detecting the resolution of a three-dimensional density map of a cryo-electron microscope according to an embodiment of the present invention includes the steps of:
S1:输入一冷冻电镜三维密度图和冷冻电镜三维密度图的一纯噪声三维密度图。S1: Input a three-dimensional density map of cryo-EM and a three-dimensional density map of pure noise from the three-dimensional density map of cryo-EM.
例如:可通过调用EMDataBank数据库中ID code是EMD-8119的数据包。数据包包含一真实图像和两个只使用了一半数据重构得到的半数据集重构结果,其中冷冻电镜三维密度图可采用该数据包中预存的真实图像,可通过将两个半数据重构得到的半数据集重构结果相减获得纯噪声三维密度图;For example: the data package whose ID code is EMD-8119 in the EMDataBank database can be called. The data package contains a real image and two half-dataset reconstruction results obtained by using only half of the data. The cryo-electron microscope 3D density map can use the real image pre-stored in the data package. Subtract the reconstructed half-data set reconstruction results to obtain a pure noise three-dimensional density map;
S2:根据冷冻电镜三维密度图生成一掩膜集,掩膜集包括n个大小不同的掩膜,n为大于零的整数。S2: Generate a mask set according to the three-dimensional density map of the cryo-electron microscope. The mask set includes n masks of different sizes, where n is an integer greater than zero.
其中,掩膜采用二值掩膜,二值掩膜包括一掩膜区域,掩膜区域内的值为 1,掩膜区域外的值为0。The mask adopts a binary mask, and the binary mask includes a mask area, the value in the mask area is 1, and the value outside the mask area is 0.
在S2步骤中,通过在一透射电子显微镜图像处理软件EMAN2中设置并调整一三维密度图的密度等值面阈值参数(threshold)和一向外扩展的高斯层数参数(nshells),处理冷冻电镜三维密度图,获得掩膜集。In step S2, the three-dimensional cryo-EM is processed by setting and adjusting the density isosurface threshold parameter (threshold) and an outward-extended Gaussian layer parameter (nshells) of a three-dimensional density map in a transmission electron microscope image processing software EMAN2. Density map, get mask set.
当三维密度图的密度等值面阈值参数的数值越大或者向外扩展的高斯层数参数的数值越小时,生成的掩膜尺寸越小。通过使用chimera软件观察冷冻电镜三维密度图可以得到生成一个合理掩膜时三维密度图的密度等值面阈值参数的取值上下限,当颗粒图像被噪声淹没到几乎看不见时对应的值为三维密度图的密度等值面阈值参数的下限,当几乎完全看不到噪声时对应的值为三维密度图的密度等值面阈值参数的上限,步长一般选择使得上下限之间有十个取值的大小。向外扩展的高斯层数参数一般取值为2~11,步长为1。When the value of the threshold parameter of the density isosurface of the 3D density map is larger or the value of the parameter of the number of Gaussian layers expanded outward is smaller, the generated mask size is smaller. By using chimera software to observe the three-dimensional density map of cryo-electron microscope, the upper and lower limits of the threshold parameters of the density isosurface of the three-dimensional density map can be obtained when a reasonable mask is generated. The lower limit of the density isosurface threshold parameter of the density map. When almost no noise is seen, the corresponding value is the upper limit of the density isosurface threshold parameter of the three-dimensional density map. The step size is generally selected so that there are ten values between the upper and lower limits. the size of the value. The number of Gaussian layers for the outward expansion is generally 2 to 11, and the step size is 1.
S3:利用各掩膜分别对纯噪声三维密度图进行分割分别获得纯噪声三维密度图的与各掩膜对应的一第一膜内数据和一第一膜外数据。S3: Use each mask to segment the pure noise three-dimensional density map respectively to obtain a first in-film data and a first out-of-film data corresponding to each mask of the pure noise three-dimensional density map.
其中,S3步骤进一步包括步骤:Wherein, the S3 step further comprises the steps:
将纯噪声三维密度图在三维空间每个坐标上的值与当前掩膜相应坐标上的值相乘,获得当前掩膜所对应的第一膜内数据;Multiply the value of the pure noise three-dimensional density map on each coordinate in the three-dimensional space with the value on the corresponding coordinate of the current mask to obtain the first in-film data corresponding to the current mask;
将纯噪声三维密度图减去第一膜内数据,获得当前掩膜所对应的第一膜外数据;Subtract the first in-film data from the pure noise three-dimensional density map to obtain the first out-of-film data corresponding to the current mask;
重复步骤,直至获得所有掩膜所对应的第一膜内数据和第一膜外数据。The steps are repeated until the first in-film data and the first out-of-film data corresponding to all masks are obtained.
S4:根据第一膜内数据和第一膜外数据计算各掩膜对应的一第一膜内噪声谱功率和一第一膜外噪声谱功率。S4: Calculate a first in-film noise spectral power and a first out-of-film noise spectral power corresponding to each mask according to the first in-film data and the first out-of-film data.
其中,S4步骤进一步包括步骤:Wherein, the S4 step further comprises the steps:
将当前掩膜所对应的第一膜内数据通过傅里叶变换转换到一第一频率空间;将当前掩膜所对应的第一膜外数据通过傅里叶变换转换到一第二频率空间;Convert the first in-film data corresponding to the current mask to a first frequency space by Fourier transform; Convert the first out-of-film data corresponding to the current mask to a second frequency space by Fourier transform;
分别在第一频率空间和第二频率空间内建立一球壳模型shell(s),s为球壳模型的半径;A spherical shell model shell(s) is established in the first frequency space and the second frequency space respectively, where s is the radius of the spherical shell model;
根据一公式(2)计算当前掩膜所对应的第一膜内噪声谱功率和第一膜外噪声谱功率:Calculate the first in-film noise spectral power and the first out-of-film noise spectral power corresponding to the current mask according to a formula (2):
其中,RPS(s)为谱功率;当RPS(s)为第一膜内噪声谱功率时,Ks为第一频率空间内球壳模型上的点的坐标,Ns为第一频率空间内球壳模型上的点的数量,M(Ks)为第一膜内数据的傅里叶变换;Among them, RPS(s) is the spectral power; when RPS(s) is the noise spectral power in the first membrane, K s is the coordinates of the point on the spherical shell model in the first frequency space, and N s is the first frequency space in the the number of points on the spherical shell model, M(K s ) is the Fourier transform of the data in the first membrane;
当RPS(s)为第一膜外噪声谱功率时,Ks为第二频率空间内球壳模型上的点的坐标,Ns为第二频率空间内球壳模型上的点的数量,M(Ks)为第一膜外数据的傅里叶变换。When RPS(s) is the noise spectral power outside the first membrane, K s is the coordinates of the point on the spherical shell model in the second frequency space, N s is the number of points on the spherical shell model in the second frequency space, M (K s ) is the Fourier transform of the first out-of-film data.
S5:根据各组第一膜内噪声谱功率和第一膜外噪声谱功率计算获得一线性参数集λp;S5: Calculate and obtain a linear parameter set λ p according to the first in-film noise spectral power and the first out-of-film noise spectral power of each group;
其中,0≤p≤n,且p为整数,为第p掩膜所对应的第一膜内噪声谱功率,为第p掩膜所对应的第一膜外噪声谱功率;λp为线性拟合参数。where 0≤p≤n, and p is an integer, is the first in-film noise spectral power corresponding to the p-th mask, is the first out-of-film noise spectral power corresponding to the p-th mask; λ p is the linear fitting parameter.
S6:利用各掩膜分别对冷冻电镜三维密度图进行分割分别获得冷冻电镜三维密度图的与各掩膜对应的一第二膜内数据和一第二膜外数据;S6: using each mask to segment the cryo-EM three-dimensional density map respectively to obtain a second intra-membrane data and a second extra-membrane data corresponding to each mask of the cryo-EM three-dimensional density map;
S7:根据第二膜内数据、第二膜外数据和线性参数集计算获得各掩膜所对应的第二膜内数据谱信噪比曲线图。S7: Calculate and obtain the second in-film data spectrum signal-to-noise ratio curve graph corresponding to each mask according to the second in-film data, the second out-of-film data and the linear parameter set.
其中,S7步骤进一步包括步骤:Wherein, the S7 step further includes the steps:
S71:将当前掩膜所对应的第二膜内数据通过傅里叶变换转换到一第三频率空间;将当前掩膜所对应的第二膜外数据通过傅里叶变换转换到一第四频率空间;S71: Convert the second in-film data corresponding to the current mask to a third frequency space by Fourier transform; convert the second out-of-film data corresponding to the current mask to a fourth frequency by Fourier transform space;
S72:分别在第三频率空间和第四频率空间内建立一球壳模型shell(s),s 为球壳模型的半径;S72: Establish a spherical shell model shell(s) in the third frequency space and the fourth frequency space respectively, where s is the radius of the spherical shell model;
S73:根据公式(2)计算当前掩膜所对应的第二膜内信号和噪声加和的谱功率和第二膜外噪声谱功率:S73: Calculate the spectral power of the sum of the second in-film signal and noise and the second out-of-film noise spectral power corresponding to the current mask according to formula (2):
当RPS(s)为第二膜内信号和噪声加和的谱功率时,Ks为第三频率空间内球壳模型上的点的坐标,Ns为第三频率空间内球壳模型上的点的数量,M(Ks) 为第二膜内数据的傅里叶变换;When RPS(s) is the spectral power of the sum of the signal and noise in the second membrane, K s is the coordinates of the point on the spherical shell model in the third frequency space, and N s is the point on the spherical shell model in the third frequency space. the number of points, M(K s ) is the Fourier transform of the data in the second film;
当RPS(s)为第二膜外噪声谱功率时,Ks为第四频率空间内球壳模型上的点的坐标,Ns为第四频率空间内球壳模型上的点的数量,M(Ks)为第二膜外数据的傅里叶变换;When RPS(s) is the noise spectral power outside the second membrane, K s is the coordinates of the point on the spherical shell model in the fourth frequency space, N s is the number of points on the spherical shell model in the fourth frequency space, M (K s ) is the Fourier transform of the second out-of-film data;
S74:利用一公式(3)、线性参数集λp和第二膜外噪声谱功率估算冷冻电镜三维密度图的一第二膜内噪声谱功率:S74: Using a formula (3), the linear parameter set λ p and the second out-of-film noise spectral power to estimate a second in-film noise spectral power of the cryo-EM three-dimensional density map:
RPSnp(s)=λp·RPSop(s) (3);RPS np (s) = λ p · RPS op (s) (3);
其中,RPSnp(s)为第p掩膜所对应的第二膜内噪声谱功率;RPSop(s)为第 p掩膜所对应的第二膜外噪声谱功率;Wherein, RPS np (s) is the second in-film noise spectral power corresponding to the p-th mask; RPS op (s) is the second out-of-film noise spectral power corresponding to the p-th mask;
S75:将第二膜内信号和噪声加和的谱功率减去第二膜内噪声谱功率计算获得冷冻电镜三维密度图的一第二膜内信号谱功率RPSsp(s):S75 : subtract the spectral power of the second in-film noise from the summed spectral power of the second in-film signal and noise, and calculate to obtain a second in-film signal spectral power RPS sp (s) of the three-dimensional density map of the cryo-electron microscope:
RPSsp(s)=RPSip(s)-RPSnp(s) (4);RPS sp (s) = RPS ip (s) - RPS np (s) (4);
其中,RPSip(s)为第p掩膜所对应的第二膜内信号和噪声加和的谱功率; RPSnp(s)为第p掩膜所对应的第二膜内噪声谱功率;Wherein, RPS ip (s) is the spectral power of the sum of the signal and noise in the second film corresponding to the p-th mask; RPS np (s) is the second in-film noise spectral power corresponding to the p-th mask;
S76:根据第二膜内信号谱功率和第二膜内噪声谱功率计算所述第二膜内数据谱信噪比,绘制当前掩膜所对应的一第二膜内数据谱信噪比曲线图;S76: Calculate the signal-to-noise ratio of the second in-film data spectrum according to the second in-film signal spectral power and the second in-film noise spectral power, and draw a second in-film data spectrum signal-to-noise ratio curve corresponding to the current mask ;
具体地,将第二膜内数据谱信噪比取对数log10SSNR,获得第二膜内数据谱信噪比曲线图的纵坐标,将第二膜内数据谱信噪比所对应的球壳模型的半径作为第二膜内数据谱信噪比曲线图的横坐标,形成第二膜内数据谱信噪比曲线图;Specifically, the logarithm log 10 SSNR of the data spectrum signal-to-noise ratio in the second film is taken to obtain the ordinate of the signal-to-noise ratio curve of the second film data spectrum, and the sphere corresponding to the signal-to-noise ratio of the data spectrum in the second film is obtained. The radius of the shell model is used as the abscissa of the signal-to-noise ratio curve of the data spectrum in the second film to form a signal-to-noise ratio curve of the data spectrum in the second film;
S77:重复步骤S71~S76直至绘制获得所有掩膜所对应的第二膜内数据谱信噪比曲线图。S77 : Repeat steps S71 to S76 until the signal-to-noise ratio curves of the second in-film data spectra corresponding to all the masks are obtained.
第二膜内数据谱信噪比满足公式(5):The signal-to-noise ratio of the data spectrum in the second film satisfies the formula (5):
其中,SSNRp(s)为第p掩膜所对应的第二膜内数据谱信噪比。Wherein, SSNR p (s) is the signal-to-noise ratio of the second in-film data spectrum corresponding to the p-th mask.
S8:根据第二膜内数据谱信噪比曲线图获得一分辨率集,并根据分辨率集绘制一分辨率集三维曲面图。S8: Obtain a resolution set according to the second in-film data spectrum signal-to-noise ratio curve, and draw a three-dimensional surface graph of the resolution set according to the resolution set.
其中,S8步骤进一步包括步骤:Wherein, the S8 step further includes the steps:
设定一阈值,本实施例中,设定阈值log100.334≈-0.48;Set a threshold, in this embodiment, set the threshold log 10 0.334≈-0.48;
在每一第二膜内数据谱信噪比曲线图内截取每一第二膜内数据谱信噪比曲线上纵坐标与阈值数值相等的至少一待选坐标点,并选取待选坐标点中横坐标最小的一待选坐标点作为一目标坐标点;At least one coordinate point to be selected whose ordinate is equal to the threshold value on the signal-to-noise ratio curve of each second in-film data spectrum is intercepted in each second in-film data spectrum signal-to-noise ratio curve, and selected among the candidate coordinate points A candidate coordinate point with the smallest abscissa is used as a target coordinate point;
计算目标坐标点横坐标的倒数,获得各掩膜所对应的第二膜内数据的分辨率,各掩膜所对应的第二膜内数据的分辨率形成分辨率集;Calculate the reciprocal of the abscissa of the target coordinate point to obtain the resolution of the data in the second film corresponding to each mask, and the resolution of the data in the second film corresponding to each mask forms a resolution set;
将各掩膜所对应的分辨率作为z轴,将各掩膜所对应三维密度图的密度等值面阈值参数和向外扩展的高斯层数参数分别作为x轴和y轴,形成分辨率集三维曲面图,分辨率集三维曲面图包括一分界线。The resolution corresponding to each mask is taken as the z-axis, and the density isosurface threshold parameter of the three-dimensional density map corresponding to each mask and the number of Gaussian layers that expand outward are taken as the x-axis and y-axis, respectively, to form a resolution set. 3D Surface Map, Resolution Set The 3D surface map includes a dividing line.
S9:根据分辨率集三维曲面图计算获得冷冻电镜三维密度图的一全局分辨率值。S9: Calculate and obtain a global resolution value of the three-dimensional density map of the cryo-electron microscope according to the three-dimensional surface map of the resolution set.
优选地,S9步骤进一步包括步骤:Preferably, the S9 step further comprises the steps:
计算分界线上各点的分辨率数值的均值;Calculate the mean of the resolution values of each point on the dividing line;
寻找分界线上各点中分辨率数值与均值最为接近的一点作为判别点;Find the point where the resolution value is closest to the mean value among the points on the dividing line as the discriminant point;
将判别点的分辨率作为全局分辨率值。Take the resolution of the discriminant point as the global resolution value.
以上结合实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。The present invention has been described in detail above with reference to the embodiments, and those of ordinary skill in the art can make various modifications to the present invention according to the above description. Therefore, some details in the embodiments should not be construed to limit the present invention, and the present invention will take the scope defined by the appended claims as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710255814.3A CN107092790B (en) | 2017-04-19 | 2017-04-19 | Electron cryo-microscopy three-dimensional density figure resolution detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710255814.3A CN107092790B (en) | 2017-04-19 | 2017-04-19 | Electron cryo-microscopy three-dimensional density figure resolution detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107092790A CN107092790A (en) | 2017-08-25 |
CN107092790B true CN107092790B (en) | 2019-07-09 |
Family
ID=59637960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710255814.3A Active CN107092790B (en) | 2017-04-19 | 2017-04-19 | Electron cryo-microscopy three-dimensional density figure resolution detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107092790B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113074627B (en) * | 2021-03-12 | 2022-06-10 | 中国科学院生物物理研究所 | Imaging method and device of direct electronic detection camera and computer equipment |
CN114580603B (en) * | 2022-05-06 | 2022-07-26 | 北京大学 | A method for constructing a single particle-level energy surface based on cryo-EM data |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682223A (en) * | 2010-11-30 | 2012-09-19 | 中国科学院计算机网络信息中心 | Structure detection method of protein cryoelectron microscopy density map |
CN105069797A (en) * | 2015-08-13 | 2015-11-18 | 上海交通大学 | Method for detecting resolution of three-dimensional density picture of cryo-electron microscopy based on mask |
-
2017
- 2017-04-19 CN CN201710255814.3A patent/CN107092790B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102682223A (en) * | 2010-11-30 | 2012-09-19 | 中国科学院计算机网络信息中心 | Structure detection method of protein cryoelectron microscopy density map |
CN105069797A (en) * | 2015-08-13 | 2015-11-18 | 上海交通大学 | Method for detecting resolution of three-dimensional density picture of cryo-electron microscopy based on mask |
Non-Patent Citations (2)
Title |
---|
Objective resolution measurement in single particle reconstructions based on a new spectral signal-to-noise ratio estimation;Shuai Wang et al.;《CCDC》;20161231;第2067-2072页 |
The Local Resolution of Cryo-EM Density Maps;Alp Kucukelbir et al.;《NIH-PA Author Manuscript》;20140131;第1-9页 |
Also Published As
Publication number | Publication date |
---|---|
CN107092790A (en) | 2017-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108665491B (en) | A fast point cloud registration method based on local reference points | |
CN106780751A (en) | Three-dimensional point cloud method for reconstructing based on improved shielding Poisson algorithm | |
CN111861906A (en) | A virtual augmentation model for pavement crack images and a method for image augmentation | |
CN110910492B (en) | A point-to-point matching method between non-rigid 3D models | |
CN113096015B (en) | Image super-resolution reconstruction method based on progressive perception and ultra-lightweight network | |
CN103839292A (en) | Method for sampling contour surface and generating high-quality triangular mesh | |
CN112288784B (en) | Descriptor neighborhood self-adaptive weak texture remote sensing image registration method | |
CN112634149A (en) | Point cloud denoising method based on graph convolution network | |
CN114419275A (en) | A method for denoising triangular mesh based on dual graph neural network | |
CN108460749A (en) | A kind of rapid fusion method of EO-1 hyperion and multispectral image | |
CN107092790B (en) | Electron cryo-microscopy three-dimensional density figure resolution detection method | |
Dinesh et al. | Local 3D point cloud denoising via bipartite graph approximation & total variation | |
Dinesh et al. | Fast 3D point cloud denoising via bipartite graph approximation & total variation | |
CN103700135A (en) | Three-dimensional model local spherical harmonic feature extraction method | |
CN105095581A (en) | Generation method for defect images in casting shrinkage | |
CN108510591A (en) | A kind of improvement Poisson curve reestablishing method based on non-local mean and bilateral filtering | |
CN113971718A (en) | A method for performing Boolean operations on 3D point cloud models | |
CN111724298B (en) | Dictionary optimization and mapping method for digital rock core super-dimensional reconstruction | |
CN107622476A (en) | Image super-resolution processing method based on probabilistic generative model | |
CN117635592A (en) | Denim defect detection method and device based on transform and discrete Fourier transform | |
CN109583626B (en) | Road network topology reconstruction method, medium and system | |
CN114494576B (en) | A fast and high-precision multi-view 3D face reconstruction method based on implicit function | |
CN117726837A (en) | A nonlinear optimization feature matching method | |
CN104240249A (en) | SAR image change detection method based on directional wavelet transformation and improved level set | |
Wang et al. | A unified detection method of boundary and hole points based on point cloud resolution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |