CN107086970A - Channel Estimation Method Based on Bayesian Algorithm - Google Patents
Channel Estimation Method Based on Bayesian Algorithm Download PDFInfo
- Publication number
- CN107086970A CN107086970A CN201710254215.XA CN201710254215A CN107086970A CN 107086970 A CN107086970 A CN 107086970A CN 201710254215 A CN201710254215 A CN 201710254215A CN 107086970 A CN107086970 A CN 107086970A
- Authority
- CN
- China
- Prior art keywords
- channel
- variance
- task
- mean value
- sparse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 239000013598 vector Substances 0.000 claims description 7
- 230000017105 transposition Effects 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004891 communication Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/024—Channel estimation channel estimation algorithms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3911—Fading models or fading generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
Description
技术领域technical field
本发明属于无线通信技术领域,具体的说是涉及一种基于贝叶斯算法的信道估计方法。The invention belongs to the technical field of wireless communication, and in particular relates to a channel estimation method based on a Bayesian algorithm.
背景技术Background technique
大规模MIMO(Multiple Input Multiple Output,多输入多输出)系统是第五代移动通信系统的关键技术之一,其主要优势在于:系统容量随着天线数量增加而增加;降低发送信号功率;简单的线性预编码器与检测器即可达到最优性能;信道之间趋于正交化,因此消除了小区内同道干扰。实现这些优势的前提是基站(BS)知晓信道状态信息(CSIT)。在时分双工(TDD)系统中,利用上下行信道的互易性在用户端(MS)进行信道估计。对于FDD大规模MIMO系统,其信道估计的流程为:基站向各用户广播导频信号,移动用户利用接收信号估计CSIT然后反馈回基站。这种情况下,导频信号数与基站天线数成正比,由于在大规模MIMO系统中,天线数量巨大,常规的信道估计方法(如最小二乘法)将面临巨大的训练开销,使得训练时间变长,甚至超过信道的想干时间,使得信道估计失去意义。Massive MIMO (Multiple Input Multiple Output) system is one of the key technologies of the fifth-generation mobile communication system. Its main advantages are: system capacity increases with the number of antennas; transmission signal power is reduced; simple The linear precoder and detector can achieve the optimal performance; the channels tend to be orthogonal, so the co-channel interference in the cell is eliminated. The prerequisite for realizing these advantages is that the base station (BS) knows the channel state information (CSIT). In a Time Division Duplex (TDD) system, channel estimation is performed at the user end (MS) by utilizing the reciprocity of the uplink and downlink channels. For the FDD massive MIMO system, the channel estimation process is as follows: the base station broadcasts pilot signals to each user, and the mobile users use the received signal to estimate CSIT and then feed it back to the base station. In this case, the number of pilot signals is proportional to the number of base station antennas. Due to the huge number of antennas in massive MIMO systems, conventional channel estimation methods (such as the least squares method) will face huge training overhead, making the training time become shorter. Long, or even more than the desired dry time of the channel, making channel estimation meaningless.
发明内容Contents of the invention
本发明的目的是提出一种基于贝叶斯算法的信道估计方法。本发明主要利用压缩感知原理和多任务信道的共同稀疏位置,在贝叶斯算法的基础上提出一种改进的贝叶斯算法,以此提高信道估计的精确度。The purpose of the present invention is to propose a channel estimation method based on Bayesian algorithm. The invention mainly utilizes the principle of compressed sensing and the common sparse position of the multi-task channel, and proposes an improved Bayesian algorithm on the basis of the Bayesian algorithm, so as to improve the accuracy of channel estimation.
为了便于本领域内技术人员对本发明技术方案的理解,首先对本发明采用的压缩感知原理和贝叶斯算法进行说明。In order to make it easier for those skilled in the art to understand the technical solution of the present invention, the principle of compressed sensing and the Bayesian algorithm used in the present invention will be described first.
大规模MIMO多任务信道估计系统模型:Massive MIMO multi-task channel estimation system model:
假设需要估计的信道是平坦块衰落的,即在某段时间内信道状态不变。Assume that the channel to be estimated is flat-block fading, that is, the channel state does not change within a certain period of time.
系统有一个基站BS,每个BS为配置了M个天线的大规模天线阵。FDD大规模MIMO多任务信道估计的数学模型可以表示为Rp=ΦpHp+Wp,其中,P表示多任务信道的总任务数,Rp表示第p个任务的接收信号矩阵,Hp表示BS与MS之间的第p个任务的信道矩阵,Φp为第P个任务的测量矩阵,Wp为第p个任务的接收噪声信号矩阵。The system has a base station BS, and each BS is a large-scale antenna array configured with M antennas. The mathematical model of FDD massive MIMO multi-task channel estimation can be expressed as R p =Φ p H p +W p , where P represents the total number of tasks of the multi-task channel, R p represents the received signal matrix of the pth task, and H p represents the channel matrix of the p-th task between the BS and the MS, Φ p is the measurement matrix of the P-th task, and W p is the received noise signal matrix of the p-th task.
标准压缩感知数学模型:Standard compressed sensing mathematical model:
y=Αx+n,其中,Α是大小为n×m的感知矩阵,y为n×1维压缩信号,x为m×1维的稀疏信号,其稀疏度为k,即x中只有k<<m个元素非零,其余元素全部为0,n是n×1维的系统噪声且其元素服从均值为0,方差为σ2的高斯分布。y=Αx+n, where Α is a perception matrix with a size of n×m, y is an n×1-dimensional compressed signal, x is an m×1-dimensional sparse signal, and its sparsity is k, that is, only k<<m elements are non-zero, and all other elements are 0. n is n×1-dimensional system noise and its elements obey the Gaussian distribution with mean value 0 and variance σ 2 .
改进的贝叶斯算法通过最大化边缘似然函数,得到信道参数和噪声参数的更新公式,利用得到的参数值来更新信道的均值和方差估计值,迭代更新信道参数和噪声参数和信道的均值和方差信息,直到达到信道估计要求。The improved Bayesian algorithm obtains the update formulas of channel parameters and noise parameters by maximizing the marginal likelihood function, uses the obtained parameter values to update the mean and variance estimates of the channel, and iteratively updates the channel parameters and noise parameters and the mean of the channel and variance information until the channel estimation requirements are met.
通过得到信道参数α和噪声β,即G代表训练开销的长度,也是接收信号Rp的维度 pass Get channel parameter α and noise β, namely G represents the length of the training overhead and is also the dimension of the received signal R p
在大规模天线阵中,信道的列向量具有相同稀疏支持集合,即信道的不同任务间的稀疏位置完全相同,且相同稀疏位置服从相同的复高斯分布。将P个任务信道Hp的共同稀疏支持集合表示为Ω=Ωp,p=1,…P。In a large-scale antenna array, the channel The column vectors of have the same sparse support set, that is, the sparse positions of different tasks of the channel are exactly the same, and the same sparse positions obey the same complex Gaussian distribution. The common sparse support set of P task channels H p is expressed as Ω=Ω p , p=1,...P.
本发明的技术方案是:Technical scheme of the present invention is:
基于贝叶斯算法的信道估计方法,包括:Channel estimation method based on Bayesian algorithm, including:
发射端:The transmitting end:
基站用G个时隙向用户端广播G个多任务导频信号:H=[H1,H2,...,Hp]∈CM×P;其中,P表示多任务信道的总任务数,M为天线个数,Hp=[h1,h2,...,hM]T,且多任务信道Hp之间具有相同的稀疏特性;The base station uses G time slots to broadcast G multitasking pilot signals to the UE: H=[H 1 ,H 2 ,...,H p ]∈C M×P ; where P represents the total task of the multitasking channel number, M is the number of antennas, H p =[h 1 ,h 2 ,...,h M ] T , and the multitasking channels H p have the same sparse characteristics;
接收端:Receiving end:
接收端根据导频信号和任务信道获得接收信号R,令对P个任务的接收信号矩阵表示为:R=[R1,R2,…Rp]∈CG×P;其中,Rp表示第p个任务的接收信号矩阵,p=1,2,...,P;其特征在于,接收端对信道的估计方法包括以下步骤:The receiving end obtains the received signal R according to the pilot signal and the task channel, so that the received signal matrix for P tasks is expressed as: R=[R 1 ,R 2 ,…R p ]∈C G×P ; where R p represents The received signal matrix of the pth task, p=1,2,...,P; it is characterized in that, the method for estimating the channel at the receiving end comprises the following steps:
S1、设定置P个任务信号稀疏支持的迭代控制变量ε和最大迭代次数N;S1. Set the iteration control variable ε and the maximum number of iterations N supported by P task signal sparseness;
S2、给定初始值:S2. Given the initial value:
信道H的第m行元素Hm符合均值为0,方差为的相同复高斯分布;为信道H的M行元素服从的方差分布;噪声W=[W1,W2,…WP],Wp为第p个任务的接收噪声信号矩阵,所有元素服从均值为0,方差为的复高斯分布;The element H m of the mth row of the channel H has a mean of 0 and a variance of The same complex Gaussian distribution of ; is the variance distribution that the M row elements of the channel H obey; noise W=[W 1 ,W 2 ,…W P ], W p is the received noise signal matrix of the pth task, all elements obey the mean value of 0, and the variance is complex Gaussian distribution;
S3、采用如下公式1和公式2分别获得信道H的后验概率方差Σp和均值up:S3. Using the following formula 1 and formula 2 to obtain the posterior probability variance Σ p and mean value u p of the channel H respectively:
其中,表示Φp的共轭转置,A=diag(α1,α2,…αM)表示方差α的对角化;由于矩阵求逆需要较高的计算复杂度,所以实际估计时用GAMP算法(Generalized ApproximateMessage Passing)来降低求逆的复杂度;in, Represents the conjugate transposition of Φ p , A=diag(α 1 ,α 2 ,…α M ) represents the diagonalization of the variance α; since matrix inversion requires high computational complexity, the actual estimation uses the GAMP algorithm (Generalized ApproximateMessage Passing) to reduce the complexity of inversion;
S4、采用如下公式3和公式4更新信道参数αm和噪声参数β:S4. Update the channel parameter α m and the noise parameter β using the following formula 3 and formula 4:
其中,up(m)表示稀疏信道H第p个矢量Hp的第m个位置元素的均值,Σp(m)表示稀疏信道H第p个矢量Hp的第m个位置元素的方差;表示稀疏信号的均值,表示稀疏信号的方差;Among them, u p (m) represents the mean value of the m-th position element of the p-th vector H p of the sparse channel H, and Σ p (m) represents the variance of the m-th position element of the p-th vector H p of the sparse channel H; represent a sparse signal the mean value of represent a sparse signal Variance;
S5、迭代步骤S3和步骤S4直至满足迭代控制变量ε或最大迭代次数N后,结束循环并进入步骤S6;S5. Iterate step S3 and step S4 until the iteration control variable ε or the maximum number of iterations N is satisfied, then end the loop and enter step S6;
S6、输出各任务信道的均值和方差估计值,获得的均值估计值u=[u1,u2,…uP]即为多任务信道的最终估计结果。S6. Output the estimated mean value and variance of each task channel, and the obtained estimated mean value u=[u 1 , u 2 , . . . u P ] is the final estimated result of the multi-task channel.
本发明方法用联合的贝叶斯估计算法来计算共同稀疏位置的共用方差参数αm,与普通的贝叶斯估计方差参数αm相比,估计方差的准确性大大提高,同时用GAMP算法代替贝叶斯算法避免了对H的后验概率直接矩阵求逆的过程。The method of the present invention uses the joint Bayesian estimation algorithm to calculate the shared variance parameter α m of the common sparse position, compared with the ordinary Bayesian estimated variance parameter α m , the accuracy of the estimated variance is greatly improved, and the GAMP algorithm is used instead The Bayesian algorithm avoids the process of direct matrix inversion of the posterior probability of H.
本发明的有益效果是:与传统方法相比,本发明简化了运算量,提高了运算速度和运算精度,提高了信道估计的准确性。The beneficial effect of the present invention is: compared with the traditional method, the present invention simplifies the calculation amount, improves the calculation speed and calculation precision, and improves the accuracy of channel estimation.
附图说明Description of drawings
图1是多用户大规模MIMO信道联合稀疏性示意图;Figure 1 is a schematic diagram of multi-user massive MIMO channel joint sparsity;
图2是本发明算法流程图;Fig. 2 is the algorithm flowchart of the present invention;
图3是本发明算法和普通BCS、DSAMP、MT-BCS算法在不同开销G下的性能对比图;Fig. 3 is the performance comparison figure of algorithm of the present invention and common BCS, DSAMP, MT-BCS algorithm under different expenses G;
图4是本发明算法和普通BCS、DSAMP、MT-BCS算法在不同稀疏度K下的性能对比图。Fig. 4 is a performance comparison diagram of the algorithm of the present invention and common BCS, DSAMP, and MT-BCS algorithms under different sparsity K.
具体实施方式detailed description
下面结合具体附图和实施例,对本发明作进一步地详细描述:Below in conjunction with specific accompanying drawing and embodiment, the present invention is described in further detail:
图1为多任务大规模MIMO信道示意图。Figure 1 is a schematic diagram of a multi-task massive MIMO channel.
假设多任务数P=3,基站天线数M=50,信噪比SNR=20dB。在不同开销G下的性能对比图中,G取6、8、10、12、14、16,稀疏度K取4。在不同稀疏度K下的性能对比图中,G取8,K取2、3、4、5、6。Assume that the number of multiple tasks is P=3, the number of base station antennas is M=50, and the signal-to-noise ratio SNR=20dB. In the performance comparison chart under different overhead G, G is 6, 8, 10, 12, 14, 16, and the sparsity K is 4. In the performance comparison chart under different sparsity K, G takes 8, and K takes 2, 3, 4, 5, and 6.
实施例Example
图2为多用户大规模MIMO信道估计流程图,根据流程图,以上述参数为例,本例具体包括:Figure 2 is a flow chart of multi-user massive MIMO channel estimation. According to the flow chart, taking the above parameters as an example, this example specifically includes:
S1、初始化,具体为:S1. Initialization, specifically:
S11、BS用G个时隙向用户端广播G个多任务导频信号H=[H1,H2,H3]∈C50×3,在稀疏其中Hp=[h1,h2,...,h50]T,多任务信道Hp之间具有相同的稀疏特性。S11. The BS uses G time slots to broadcast G multi-task pilot signals H=[H 1 ,H 2 ,H 3 ]∈C 50×3 to the UE, where H p =[h 1 ,h 2 , ...,h 50 ] T , the multitasking channels H p have the same sparse property.
S12、用户端对多任务的接收信号矩阵为R=[R1,R2,R3]其中,Rp表示第p个任务的接收信号矩阵,p=1,2,3。S12. The received signal matrix of the multi-task at the user end is R=[R 1 , R 2 , R 3 ], where R p represents the received signal matrix of the p-th task, and p=1,2,3.
S2、多任务稀疏支持联合估计,即利用贝叶斯算法联合估计多任务信号,得到各位置元素服从的均值up(m)和方差Σp(m)。具体的迭代估计算法如下:S2. Multi-task sparse support joint estimation, that is, use the Bayesian algorithm to jointly estimate multi-task signals, and obtain the mean value u p (m) and variance Σ p (m) of each position element. The specific iterative estimation algorithm is as follows:
S21、设置P个任务信号稀疏支持的迭代控制变量ε=10-3和最大迭代次数N=20;S21. Set the iteration control variable ε= 10-3 and the maximum number of iterations N=20 supported by P task signal sparseness;
S22、给定初始值:S22, given the initial value:
信道H的第m行元素Hm符合均值为0,方差为的相同复高斯分;初始值α1=100,α2=100,…αM=100为信道H的M行元素服从的方差分布;噪声W=[W1,W2,…WP],所有元素服从均值为0,方差为的复高斯分布,其中Pn是根据信噪比SNR得到的噪声方差。The element H m of the mth row of the channel H has a mean of 0 and a variance of The same complex Gaussian score of ; the initial value α 1 =100, α 2 =100, ... α M =100 is the variance distribution of the M row elements of the channel H; the noise W = [W 1 , W 2 , ... W P ], All elements have a mean of 0 and a variance of The complex Gaussian distribution of , where Pn is the noise variance obtained from the signal-to-noise ratio SNR.
S33、由改进的贝叶斯推理算法,得到信道H的后验概率方差Σp和均值up的更新公式:其中表示Φp的共轭转置,A=diag(α1,α2,…αM)表示方差α的对角化。由于矩阵求逆需要较高的计算复杂度,所以实际估计时用GAMP算法(Generalized Approximate Message Passing)来降低求逆的复杂度。S33. By the improved Bayesian inference algorithm, the update formula of the posterior probability variance Σ p and the mean value u p of the channel H is obtained: in Represents the conjugate transposition of Φ p , A=diag(α 1 ,α 2 ,…α M ) represents the diagonalization of variance α. Since matrix inversion requires high computational complexity, the GAMP algorithm (Generalized Approximate Message Passing) is used in actual estimation to reduce the complexity of inversion.
S34、由期望最大化算法更新信道参数αm和噪声参数β,更新公式如下:S34. Update the channel parameter α m and the noise parameter β by the expectation maximization algorithm, and the update formula is as follows:
其中,up(m)表示稀疏信道H第p个矢量Hp的第m个位置元素的均值,Σp(m)表示稀疏信道H第p个矢量Hp的第m个位置元素的方差;表示稀疏信号的均值,表示稀疏信号的方差。Among them, u p (m) represents the mean value of the m-th position element of the p-th vector H p of the sparse channel H, and Σ p (m) represents the variance of the m-th position element of the p-th vector H p of the sparse channel H; represent a sparse signal the mean value of represent a sparse signal Variance.
S35、迭代S33和S34步直到满足迭代控制变量ε或最大迭代次数N,结束循环。S35. Steps S33 and S34 are iterated until the iteration control variable ε or the maximum number of iterations N is satisfied, and the loop ends.
S4、输出各任务信道的均值和方差估计值,该均值估计值u=[u1,u2,…uP]即为多任务信道的最终估计结果。S4. Output the estimated mean value and variance of each task channel. The estimated mean value u=[u 1 , u 2 , . . . u P ] is the final estimated result of the multi-task channel.
图3是本发明算法应用于多任务大规模MIMO信道估计时的性能与其他稀疏信号恢复算法应用于相同信道估计时对于不同开销G的性能对比图。从图中可以看出,本发明的算法在基站端发送10次导频信号的时候就达到了最优性能,与普通BCS、DSAMP、MT-BCS算法相比,本算法估计性能已经接近理想情况下的估计性能。其余算法要达到最优性能需要基站发送更多的导频信号。通过对比,说明了本发明的算法在减少多任务大规模MIMO信道估计开销方面具有明显的优势,使得大规模MIMO信道估计在实际中的实现变得可能。Fig. 3 is a graph comparing the performance of the algorithm of the present invention when it is applied to multi-task massive MIMO channel estimation with that of other sparse signal recovery algorithms for different overhead G when it is applied to the same channel estimation. As can be seen from the figure, the algorithm of the present invention has reached optimal performance when the base station sends 10 pilot signals. Compared with the common BCS, DSAMP, and MT-BCS algorithms, the estimated performance of this algorithm is close to the ideal situation Estimated performance below. The rest of the algorithms need the base station to send more pilot signals to achieve optimal performance. By comparison, it is illustrated that the algorithm of the present invention has obvious advantages in reducing the overhead of multi-task massive MIMO channel estimation, making the realization of massive MIMO channel estimation possible in practice.
图4是本发明算法应用于多用户大规模MIMO信道估计时的性能与其他稀疏信号恢复算法应用于相同信道估计时对于不同稀疏度K的性能对比图。说明了本发明在不同稀疏度K的环境下性能表现一致。可以在不同稀疏度K下得出与图3相同的结论。Fig. 4 is a graph comparing the performance of the algorithm of the present invention when it is applied to multi-user massive MIMO channel estimation and other sparse signal recovery algorithms for different sparsity K when it is applied to the same channel estimation. It shows that the performance of the present invention is consistent under the environment of different sparsity K. The same conclusion as in Figure 3 can be drawn under different sparsity K.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710254215.XA CN107086970B (en) | 2017-04-18 | 2017-04-18 | Channel Estimation Method Based on Bayesian Algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710254215.XA CN107086970B (en) | 2017-04-18 | 2017-04-18 | Channel Estimation Method Based on Bayesian Algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107086970A true CN107086970A (en) | 2017-08-22 |
CN107086970B CN107086970B (en) | 2019-06-04 |
Family
ID=59612697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710254215.XA Expired - Fee Related CN107086970B (en) | 2017-04-18 | 2017-04-18 | Channel Estimation Method Based on Bayesian Algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107086970B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107769824A (en) * | 2017-10-27 | 2018-03-06 | 清华大学 | The user's detection method and system of the management loading of joint multiple antennas |
CN108111441A (en) * | 2018-01-12 | 2018-06-01 | 电子科技大学 | Channel estimation methods based on variational Bayesian |
CN108259398A (en) * | 2018-01-12 | 2018-07-06 | 电子科技大学 | The channel estimation methods of COMPLEX MIXED model based on variational Bayesian |
CN108566227A (en) * | 2018-01-20 | 2018-09-21 | 西安交通大学 | A kind of multi-user test method |
CN108832976A (en) * | 2018-06-14 | 2018-11-16 | 南京邮电大学 | An Uplink Channel Estimation Method for Massive MIMO Systems |
CN109474549A (en) * | 2018-12-04 | 2019-03-15 | 上海矽昌通信技术有限公司 | A kind of three dimensional channel estimation method based on three-dimensional beam pattern |
CN110380995A (en) * | 2019-07-12 | 2019-10-25 | 电子科技大学 | The condition of sparse channel estimation method of mimo system with lens antenna battle array |
CN111953402A (en) * | 2020-08-04 | 2020-11-17 | 北京和德宇航技术有限公司 | Channel busy and idle state estimation method, device, equipment and storage medium |
CN112104580A (en) * | 2020-09-11 | 2020-12-18 | 中海石油(中国)有限公司湛江分公司 | Sparse underwater acoustic channel estimation method based on generalized approximate message transfer-sparse Bayesian learning |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103888145A (en) * | 2014-03-28 | 2014-06-25 | 电子科技大学 | Method for reconstructing signals |
CN104767535A (en) * | 2015-03-31 | 2015-07-08 | 电子科技大学 | A Low Complexity Block Sparse Signal Reconstruction Method |
CN106453163A (en) * | 2016-10-11 | 2017-02-22 | 电子科技大学 | Massive MIMO (Multiple Input Multiple Output) channel estimation method |
-
2017
- 2017-04-18 CN CN201710254215.XA patent/CN107086970B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103888145A (en) * | 2014-03-28 | 2014-06-25 | 电子科技大学 | Method for reconstructing signals |
CN104767535A (en) * | 2015-03-31 | 2015-07-08 | 电子科技大学 | A Low Complexity Block Sparse Signal Reconstruction Method |
CN106453163A (en) * | 2016-10-11 | 2017-02-22 | 电子科技大学 | Massive MIMO (Multiple Input Multiple Output) channel estimation method |
Non-Patent Citations (2)
Title |
---|
JUNIL CHOI,ETC: "Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory", 《IEEE》 * |
QINFANG SUN,ETC: "Estimation of Continuous Flat Fading MIMO Channels", 《IEEE》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107769824A (en) * | 2017-10-27 | 2018-03-06 | 清华大学 | The user's detection method and system of the management loading of joint multiple antennas |
CN108259398B (en) * | 2018-01-12 | 2019-12-27 | 电子科技大学 | Channel estimation method of complex mixed model based on variational Bayesian inference |
CN108111441A (en) * | 2018-01-12 | 2018-06-01 | 电子科技大学 | Channel estimation methods based on variational Bayesian |
CN108259398A (en) * | 2018-01-12 | 2018-07-06 | 电子科技大学 | The channel estimation methods of COMPLEX MIXED model based on variational Bayesian |
CN108111441B (en) * | 2018-01-12 | 2020-07-31 | 电子科技大学 | A Channel Estimation Method Based on Variational Bayesian Inference |
CN108566227A (en) * | 2018-01-20 | 2018-09-21 | 西安交通大学 | A kind of multi-user test method |
CN108832976B (en) * | 2018-06-14 | 2020-10-27 | 南京邮电大学 | Uplink channel estimation method of large-scale MIMO system |
CN108832976A (en) * | 2018-06-14 | 2018-11-16 | 南京邮电大学 | An Uplink Channel Estimation Method for Massive MIMO Systems |
CN109474549A (en) * | 2018-12-04 | 2019-03-15 | 上海矽昌通信技术有限公司 | A kind of three dimensional channel estimation method based on three-dimensional beam pattern |
CN109474549B (en) * | 2018-12-04 | 2021-08-17 | 青岛矽昌通信技术有限公司 | Three-dimensional channel estimation method based on three-dimensional beam pattern |
CN110380995A (en) * | 2019-07-12 | 2019-10-25 | 电子科技大学 | The condition of sparse channel estimation method of mimo system with lens antenna battle array |
CN111953402A (en) * | 2020-08-04 | 2020-11-17 | 北京和德宇航技术有限公司 | Channel busy and idle state estimation method, device, equipment and storage medium |
CN112104580A (en) * | 2020-09-11 | 2020-12-18 | 中海石油(中国)有限公司湛江分公司 | Sparse underwater acoustic channel estimation method based on generalized approximate message transfer-sparse Bayesian learning |
Also Published As
Publication number | Publication date |
---|---|
CN107086970B (en) | 2019-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107086970B (en) | Channel Estimation Method Based on Bayesian Algorithm | |
US9967014B1 (en) | Beamforming in antenna systems | |
CN107360108A (en) | The extensive MIMO Multi User Adaptives low complex degree channel estimations of FDD | |
CN111865378B (en) | Large-scale MIMO downlink precoding method based on deep learning | |
CN108111441B (en) | A Channel Estimation Method Based on Variational Bayesian Inference | |
CN105119853B (en) | A kind of extensive mimo channel method of estimation of multi-user based on bayes method | |
CN106453163A (en) | Massive MIMO (Multiple Input Multiple Output) channel estimation method | |
CN107370693B (en) | Massive MIMO system and multi-user channel estimation method with DP prior | |
CN105162507B (en) | Two benches method for precoding based on letter leakage noise ratio in extensive MIMO FDD systems | |
CN107046433B (en) | A Low Complexity Iterative Detection Algorithm for Massive MIMO System Uplink | |
CN105897319B (en) | A kind of MIMO full duplex relaying system information source relaying joint method for precoding | |
Khan et al. | A robust channel estimation scheme for 5G massive MIMO systems | |
Wan et al. | A variational Bayesian inference-inspired unrolled deep network for MIMO detection | |
Jeon et al. | New beamforming designs for joint spatial division and multiplexing in large-scale MISO multi-user systems | |
CN109560846A (en) | A kind of three-dimensional method for precoding based on model-driven deep learning | |
CN102271006B (en) | Communication method and device in wireless communication system | |
CN108365874A (en) | Based on the extensive MIMO Bayes compressed sensing channel estimation methods of FDD | |
Wang et al. | Mbpd: a robust algorithm for polar-domain channel estimation in near-field wideband xl-mimo systems | |
Sadeghi et al. | Multi-user massive MIMO channel estimation using joint sparsity and non-ideal feedback modeling | |
CN106788631A (en) | A kind of extensive MIMO reciprocities calibration method based on local alignment | |
CN106357309A (en) | Method of large scale MIMO linear iterative detection under non-ideal channel | |
Hawej et al. | Iterative weighted nuclear norm minimization-based channel estimation for massive multi-user MIMO systems | |
Almosa et al. | Performance Analysis of DoA Estimation for FDD Cell Free Systems Based on Compressive Sensing Technique | |
Lahbib et al. | Channel estimation for TDD uplink massive MIMO systems via compressed sensing | |
Hawej et al. | Compressive sensing based nuclear norm minimization method for massive MU-MIMO channel estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190604 |
|
CF01 | Termination of patent right due to non-payment of annual fee |