CN107086789B - Secondary control quasi-resonance switching power supply converter - Google Patents
Secondary control quasi-resonance switching power supply converter Download PDFInfo
- Publication number
- CN107086789B CN107086789B CN201710288928.8A CN201710288928A CN107086789B CN 107086789 B CN107086789 B CN 107086789B CN 201710288928 A CN201710288928 A CN 201710288928A CN 107086789 B CN107086789 B CN 107086789B
- Authority
- CN
- China
- Prior art keywords
- terminal
- tube
- quasi
- switch
- resonant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
- H02M7/4818—Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及开关电源技术领域,尤其涉及一种次级控制准谐振的开关电源变换器。The invention relates to the technical field of switching power supplies, in particular to a switching power supply converter with secondary control quasi-resonance.
背景技术Background technique
目前,反激式开关电源变换器多采用固定频率的PWM(脉冲宽度调制)控制模式和可变频率的PFM(脉冲频率调制)准谐振控制模式,在常规的PWM控制模式的电源变换器中,功率开关管处于硬开关状态,不是零电压关断,开关损耗大,电源变换器的转换效率低;在可变频率的PFM准谐振开关模式电源变换器中,功率开关管在谐振电容Cr两端的谐振电压波的波谷底处导通,能降低部分开通损耗,而在开关管关断时,开关管两端电压从零快速上升,开关管电流从最大处快速下降,因此,开关管两端电压和电流不可避免存在重叠区,电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高而急速增加。At present, flyback switching power converters mostly use fixed frequency PWM (pulse width modulation) control mode and variable frequency PFM (pulse frequency modulation) quasi-resonant control mode. In conventional PWM control mode power converters, The power switch tube is in a hard switching state, not zero-voltage turn-off, the switching loss is large, and the conversion efficiency of the power converter is low; The conduction at the bottom of the resonant voltage wave can reduce part of the turn-on loss. When the switch tube is turned off, the voltage across the switch tube rises rapidly from zero, and the switch tube current drops rapidly from the maximum point. Therefore, the voltage across the switch tube There is inevitably an overlapping area between the voltage and current waveforms, and the overlapping of voltage and current waveforms produces switching losses, which increase rapidly as the switching frequency increases.
无论是固定频率的PWM控制模式和可变频率的PFM准谐振控制模式,其在功率开关管关断后,变压器初级电感绕组储存的能量切换到次级电感绕组,变压器次级绕组的反激电压快速上升直到高于输出电压,此时次级整流二极管导通,在这个过程中,次级电感绕组的感生电流由最小增到最大的变化率很大,而整流二极管从截止到导通需要恢复时间,因此,高频工作时会带来整流二极管导通时的较大损耗和尖峰电压,从而使二极管电压应力高,使电源EMI(电磁干扰)特性不良。为了降低整流二极管导通时的电流变化率,一般采用整流二极管串联电感来实现,但电感在整流管导通期内储存了能量,在整流管关断时需要反向释放,会增大整流管关断时的尖峰和损耗。Regardless of the fixed-frequency PWM control mode or the variable-frequency PFM quasi-resonant control mode, after the power switch tube is turned off, the energy stored in the primary inductance winding of the transformer is switched to the secondary inductance winding, and the flyback voltage of the transformer secondary winding Rising rapidly until it is higher than the output voltage, at this time the secondary rectifier diode is turned on. During this process, the induced current of the secondary inductor winding has a large change rate from the minimum to the maximum, and the rectifier diode needs to be turned on from cut-off to conduction Recovery time, therefore, high-frequency operation will bring large loss and peak voltage when the rectifier diode is turned on, so that the voltage stress of the diode is high, and the EMI (electromagnetic interference) characteristics of the power supply are poor. In order to reduce the current change rate when the rectifier diode is turned on, it is generally realized by using a rectifier diode in series with an inductance, but the inductance stores energy during the conduction period of the rectifier tube, and it needs to be released in reverse when the rectifier tube is turned off, which will increase the rectifier tube. Spikes and losses during shutdown.
在反激式开关电源变换器中,要将高频开关的开关管的关断损耗降低,需要降低电压和电流的变化率,一般主要通过在开关管两端并联电容降低电压和电流的变化率,或者采用有源钳位电路来降低关断损耗,而在开关管两端并联电容在开关管关断期内储存的部分能量将会在开关管开通的时候直接短路电容,将带来很大的损耗甚至损坏开关管,而采用有源钳位电路则控制复杂,降低关断损耗的效果非常有限。In the flyback switching power supply converter, in order to reduce the turn-off loss of the switching tube of the high-frequency switch, it is necessary to reduce the rate of change of the voltage and current. Generally, the rate of change of the voltage and current is mainly reduced by connecting capacitors in parallel at both ends of the switch tube. , or use an active clamp circuit to reduce the turn-off loss, and part of the energy stored in the capacitor connected in parallel at both ends of the switch tube during the switch off period will directly short-circuit the capacitor when the switch tube is turned on, which will bring great The loss or even damage the switch tube, while the control of the active clamp circuit is complicated, and the effect of reducing the turn-off loss is very limited.
发明内容Contents of the invention
本发明提供一种次级控制准谐振的开关电源变换器,通过将原有的开关控制器、开关管、谐振电容、变压器、整流二极管、极性电容,与增设的二极管、变压器、开关管和仅由电阻、电容、三极管和稳压管组成的准谐振控制电路重新搭建成开关电源变换器的内部电路以保证原开关管的零电压关断和原次级整流管的电流及电压较小的变化率的技术问题。The invention provides a switching power converter with secondary control quasi-resonance, by combining the original switch controller, switch tube, resonant capacitor, transformer, rectifier diode, polar capacitor, and the added diode, transformer, switch tube and The quasi-resonant control circuit composed only of resistors, capacitors, triodes and regulator tubes is rebuilt into the internal circuit of the switching power converter to ensure the zero-voltage turn-off of the original switch tube and the current and voltage of the original secondary rectifier tube. Technical issues with rate of change.
为解决以上技术问题,本发明提供一种次级控制准谐振的开关电源变换器,设有接入供电电源的电源输入正极端、电源输入负极端和接出负载的电源输出正极端、电源输出负极端,还设有开关控制器,所述电源输入负极端连接所述开关控制器的电源负端和电流侦测电阻的一端,所述电流侦测电阻的另一端连接所述开关控制器的开关电流侦测端和第一开关管的电压输出端,所述第一开关管的控制端连接所述开关控制器的开关控制输出端,所述第一开关管的电压输入端连接第一变压器的初级绕组的异名端,所述第一变压器的初级绕组的同名端连接所述电源输入正极端;In order to solve the above technical problems, the present invention provides a secondary control quasi-resonant switching power converter, which is provided with a power input positive terminal connected to a power supply, a power input negative terminal, a power output positive terminal connected to a load, and a power output terminal. The negative terminal is also provided with a switch controller, the negative terminal of the power input is connected to the negative terminal of the power supply of the switch controller and one end of the current detection resistor, and the other end of the current detection resistor is connected to the switch controller. The switch current detection terminal and the voltage output terminal of the first switch tube, the control terminal of the first switch tube is connected to the switch control output terminal of the switch controller, and the voltage input terminal of the first switch tube is connected to the first transformer The opposite end of the primary winding of the first transformer, the same end of the primary winding of the first transformer is connected to the positive end of the power input;
所述第一变压器的次级绕组的异名端、第一二极管的阳极、准谐振控制电路的电源正端、第二二极管的阴极、极性电容的正极端连接所述电源输出正极端,所述第一二极管的阴极连接谐振电容后连接所述第一变压器的次级绕组的同名端、次级整流管的整流输入端和所述准谐振控制电路的控制信号输入端;The opposite end of the secondary winding of the first transformer, the anode of the first diode, the positive end of the power supply of the quasi-resonant control circuit, the cathode of the second diode, and the positive end of the polarity capacitor are connected to the output of the power supply The positive terminal, the cathode of the first diode is connected to the resonant capacitor and then connected to the terminal with the same name of the secondary winding of the first transformer, the rectification input terminal of the secondary rectifier tube and the control signal input terminal of the quasi-resonant control circuit ;
所述准谐振控制电路的电源负端、所述次级整流管的整流输出端、第二开关管的电压输出端、第二变压器的次级绕组的同名端、所述极性电容的负极端连接所述电源输出负极端,所述准谐振控制电路的控制信号输出端连接所述第二开关管的控制端;The negative terminal of the power supply of the quasi-resonant control circuit, the rectification output terminal of the secondary rectifier tube, the voltage output terminal of the second switch tube, the terminal with the same name of the secondary winding of the second transformer, and the negative terminal of the polar capacitor Connect the negative terminal of the output of the power supply, the control signal output terminal of the quasi-resonant control circuit is connected to the control terminal of the second switching tube;
所述第二开关管的电压输入端连接所述第二变压器的初级绕组的异名端,所述第二变压器的初级绕组的同名端连接所述第一二极管的阴极,所述第二变压器的次级绕组的异名端连接所述第二二极管的阳极。The voltage input end of the second switching tube is connected to the opposite end of the primary winding of the second transformer, the same end of the primary winding of the second transformer is connected to the cathode of the first diode, and the second The opposite end of the secondary winding of the transformer is connected to the anode of the second diode.
具体地,所述准谐振控制电路中设有第一三极管、第二三极管、第三三极管、第一电阻、第二电阻、第三电阻、第一稳压管、第二稳压管、第一电容和第二电容;Specifically, the quasi-resonant control circuit is provided with a first triode, a second triode, a third triode, a first resistor, a second resistor, a third resistor, a first regulator tube, a second Zener tube, first capacitor and second capacitor;
所述第一三极管的集电极连接所述准谐振控制电路的电源正端,所述准谐振控制电路的电源正端连接所述第一电阻后连接所述第一三极管的基极和所述第一稳压管的阴极,所述第一三极管的发射极连接所述第一电容的一端和所述第二三极管的集电极,所述第一电容的另一端、所述第一稳压管的阳极、所述第二稳压管的阳极、所述第二电阻的一端和所述第三三极管的集电极连接所述准谐振控制电路的电源负端;The collector of the first triode is connected to the positive power supply terminal of the quasi-resonant control circuit, and the positive power supply terminal of the quasi-resonant control circuit is connected to the base of the first triode after connecting the first resistor and the cathode of the first voltage regulator tube, the emitter of the first transistor is connected to one end of the first capacitor and the collector of the second transistor, the other end of the first capacitor, The anode of the first voltage regulator tube, the anode of the second voltage regulator tube, one end of the second resistor and the collector of the third triode are connected to the negative power supply terminal of the quasi-resonant control circuit;
所述准谐振控制电路的控制信号输入端连接串联的所述第二电容与所述第三电阻后连接所述第二稳压管的阴极、所述第二电阻的另一端、所述第二三极管的基极和所述第三三极管的基极,所述第二三极管的发射极与所述第三三极管的发射极连接所述准谐振控制电路的控制信号输出端。The control signal input terminal of the quasi-resonant control circuit is connected to the second capacitor and the third resistor connected in series, and then connected to the cathode of the second voltage regulator tube, the other end of the second resistor, the second The base of the triode and the base of the third triode, the emitter of the second triode and the emitter of the third triode are connected to the control signal output of the quasi-resonant control circuit end.
优选地,所述第一开关管和第二开关管为N沟道MOS管或NPN双极型晶体三极管或绝缘栅双极型晶体三极管。Preferably, the first switch transistor and the second switch transistor are N-channel MOS transistors or NPN bipolar transistors or insulated gate bipolar transistors.
特别地,当所述第一开关管和第二开关管为N沟道MOS管时,所述第一开关管的控制端或所述第二开关管的控制端为栅极,所述第一开关管的电压输入端或所述第二开关管的电压输入端为漏极,所述第一开关管的电压输出端或所述第二开关管的电压输出端为源极。Particularly, when the first switch tube and the second switch tube are N-channel MOS tubes, the control terminal of the first switch tube or the control terminal of the second switch tube is a gate, and the first The voltage input end of the switch tube or the voltage input end of the second switch tube is a drain, and the voltage output end of the first switch tube or the voltage output end of the second switch tube is a source.
特别地,当所述第一开关管和第二开关管为NPN双极型晶体三极管时,所述第一开关管的控制端或所述第二开关管的控制端为基极,所述第一开关管的电压输入端或所述第二开关管的电压输入端为集电极,所述第一开关管的电压输出端或所述第二开关管的电压输出端为发射极。In particular, when the first switch tube and the second switch tube are NPN bipolar transistors, the control terminal of the first switch tube or the control terminal of the second switch tube is a base, and the first switch tube is a base. The voltage input end of a switch tube or the voltage input end of the second switch tube is a collector, and the voltage output end of the first switch tube or the voltage output end of the second switch tube is an emitter.
特别地,当所述第一开关管和第二开关管为绝缘栅双极晶体三极管时,所述第一开关管的控制端或所述第二开关管的控制端为栅极,所述第一开关管的电压输入端或所述第二开关管的电压输入端为集电极,所述第一开关管的电压输出端或所述第二开关管的电压输出端为发射极。Particularly, when the first switch tube and the second switch tube are insulated gate bipolar transistors, the control terminal of the first switch tube or the control terminal of the second switch tube is a gate, and the first switch tube The voltage input end of a switch tube or the voltage input end of the second switch tube is a collector, and the voltage output end of the first switch tube or the voltage output end of the second switch tube is an emitter.
优选地,所述次级整流管为整流二极管或场效应管整流模块。Preferably, the secondary rectifier is a rectifier diode or a field effect transistor rectifier module.
特别地,当所述次级整流管为整流二极管时,所述次级整流管的整流输入端为阴极,所述次级整流管的整流输出端为阳极。In particular, when the secondary rectifier is a rectifier diode, the rectification input end of the secondary rectifier is a cathode, and the rectification output end of the secondary rectifier is an anode.
优选地,所述第一三极管、第二三极管为NPN双极型晶体三极管,所述第三三极管为PNP双极型晶体三极管。Preferably, the first triode and the second triode are NPN bipolar transistors, and the third triode is PNP bipolar transistors.
本发明提供的一种次级控制准谐振的开关电源变换器,将原谐振电容调整到原变压器的次级端,该谐振电容储存的能量被泄放到电源输出端,其电容电压从零开始谐振上升,因而使原开关管的电压也可以从零开始谐振上升,从而实现了原开关管的零电压关断,极大地降低了现有PWM控制模式或者PFM准谐振开关控制模式下的开关电源变换器的开关损耗,变换器的转换效率高;The present invention provides a secondary control quasi-resonant switching power supply converter, the original resonant capacitor is adjusted to the secondary end of the original transformer, the energy stored in the resonant capacitor is discharged to the output end of the power supply, and the capacitor voltage starts from zero Resonant rise, so that the voltage of the original switching tube can also rise from zero resonance, thus realizing the zero-voltage turn-off of the original switching tube, which greatly reduces the switching power supply under the existing PWM control mode or PFM quasi-resonant switching control mode The switching loss of the converter, the conversion efficiency of the converter is high;
同时,原变压器次级端的谐振电容的放电回路与原变压器初级端的原开关管完全阻断,实现了软开关,而避免了原有技术中谐振电容带来的开关管容性开通而出现流过开关管的电流过大,从而保护开关管不被损坏;At the same time, the discharge circuit of the resonant capacitor at the secondary side of the original transformer is completely blocked from the original switching tube at the primary side of the original transformer, realizing soft switching and avoiding the capacitive opening of the switching tube caused by the resonant capacitor in the original technology. The current of the switch tube is too large, so as to protect the switch tube from being damaged;
再则,原谐振电容的电容电压从零开始谐振上升,变压器次级端的电流是从流过谐振电容的小电流自然过渡到流过次级整流管,电流变化率低,整流管实现软开通,效率高,无电压尖峰,EMI特性好,开关电源变换器的工作频率可以进一步提高,从而在装置上,能够使电源体积进一步缩小,降低成本。Furthermore, the capacitor voltage of the original resonant capacitor rises resonantly from zero, and the current at the secondary end of the transformer naturally transitions from a small current flowing through the resonant capacitor to flowing through the secondary rectifier tube. The current change rate is low, and the rectifier tube realizes soft opening. High efficiency, no voltage spikes, good EMI characteristics, and the operating frequency of the switching power converter can be further increased, so that the volume of the power supply can be further reduced and the cost can be reduced on the device.
附图说明Description of drawings
图1是本发明实施例提供的原有技术中的可变频率的PFM准谐振开关模式电源变换器的电路原理图;Fig. 1 is the circuit principle diagram of the variable frequency PFM quasi-resonant switch mode power converter in the prior art that the embodiment of the present invention provides;
图2是本发明实施例提供的图1中的开关管两端的电压波形图;Fig. 2 is a voltage waveform diagram at both ends of the switching tube in Fig. 1 provided by an embodiment of the present invention;
图3-1是本发明实施例提供的一种次级控制准谐振的开关电源变换器的电路连接图;Fig. 3-1 is a circuit connection diagram of a switching power converter with secondary control quasi-resonance provided by an embodiment of the present invention;
图3-2是本发明实施例提供的图3-1中的第一开关管和第二开关管为N沟道MOS管、次级整流管为整流二极管的电路连接图;Fig. 3-2 is a circuit connection diagram in which the first switch tube and the second switch tube in Fig. 3-1 are N-channel MOS tubes and the secondary rectifier tube is a rectifier diode according to an embodiment of the present invention;
图4是本发明实施例提供的图3-1中的准谐振控制电路的电路连接图。FIG. 4 is a circuit connection diagram of the quasi-resonant control circuit in FIG. 3-1 provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。以下元器件的取值大小仅为较佳实施例,不构成对本发明保护范围的限制。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention. The values of the following components are only preferred embodiments, and do not constitute limitations on the scope of protection of the present invention.
参见图1,是本发明实施例提供的原有技术中的可变频率的PFM准谐振开关模式电源变换器的电路原理图。在本实施例中,在原有技术中的反激式开关电源变换器中,无论是固定频率的PWM控制模式和可变频率的PFM准谐振控制模式,要将高频开关的开关管的关断损耗降低,需要降低电压和电流的变化率,一般主要通过图1采用的在开关管两端并联谐振电容Cr来降低电压和电流的变化率,或者采用有源钳位电路来降低关断损耗,但有源钳位电路则控制复杂,本发明没有对其进行进一步研究。Referring to FIG. 1 , it is a schematic circuit diagram of a variable-frequency PFM quasi-resonant switching mode power converter in the prior art provided by an embodiment of the present invention. In this embodiment, in the flyback switching power converter in the prior art, regardless of the fixed-frequency PWM control mode and the variable-frequency PFM quasi-resonant control mode, it is necessary to turn off the switching tube of the high-frequency switch To reduce the loss, the rate of change of voltage and current needs to be reduced. Generally, the rate of change of voltage and current is reduced by connecting the resonant capacitor Cr in parallel at both ends of the switch tube as shown in Figure 1, or using an active clamp circuit to reduce the turn-off loss. However, the control of the active clamping circuit is complicated, and the present invention does not further study it.
如图1,原有技术中的反激式开关电源变换器中设有接入供电电源的电源输入正极端Vin+、电源输入负极端Vin-和接出负载的电源输出正极端Vout+、电源输出负极端Vout-,还设有开关控制器KC,所述电源输入负极端Vin-连接所述开关控制器KC的电源负端KC_PIN1和电流侦测电阻Rs的一端,所述电流侦测电阻Rs的另一端连接所述开关控制器KC的开关电流侦测端KC_PIN2和开关管KQ1的电压输出端KQ1_PIN1,所述开关管KQ1的控制端KQ1_PIN2连接所述开关控制器KC的开关控制输出端KC_PIN2,在所述开关管KQ1的电压输出端KQ1_PIN1和电压输入端KQ1_PIN3之间并联有谐振电容Cr,所述开关管KQ1的电压输入端KQ1_PIN3还连接二极管D1的阳极和变压器T1的初级绕组T1_1的异名端(图中带有黑点的那端为同名端,未带黑点的为异名端),所述二极管D1的阴极连接并联RC电路1后与所述变压器T1的初级绕组T1_1的同名端共同连接所述电源输入正极端Vin+,所述变压器T1的次级绕组T1_2的异名端正向连接整流二极管Di后连接电源输出正极端Vout+和极性电容EC的正极端,所述极性电容EC的负极端和所述变压器T1的次级绕组T1_2的同名端连接所述电源输出负极端Vout-。As shown in Figure 1, the flyback switching power supply converter in the prior art is equipped with the power input positive terminal Vin+ connected to the power supply, the power input negative terminal Vin-, the power output positive terminal Vout+ connected to the load, and the power output negative terminal. The terminal Vout- is also provided with a switch controller KC, the power input negative terminal Vin- is connected to the power supply negative terminal KC_PIN1 of the switch controller KC and one end of the current detection resistor Rs, the other end of the current detection resistor Rs One end is connected to the switch current detection terminal KC_PIN2 of the switch controller KC and the voltage output terminal KQ1_PIN1 of the switch tube KQ1, and the control terminal KQ1_PIN2 of the switch tube KQ1 is connected to the switch control output terminal KC_PIN2 of the switch controller KC. A resonant capacitor Cr is connected in parallel between the voltage output terminal KQ1_PIN1 and the voltage input terminal KQ1_PIN3 of the switch tube KQ1, and the voltage input terminal KQ1_PIN3 of the switch tube KQ1 is also connected to the anode of the diode D1 and the opposite end of the primary winding T1_1 of the transformer T1 ( The terminal with the black dot in the figure is the terminal with the same name, and the terminal without the black dot is the terminal with the same name), the cathode of the diode D1 is connected to the
在图1这个电路中,结合图2,图2是本发明实施例提供的图1中的开关管KQ1两端的电压波形图,功率开关管KQ1在谐振电容Cr两端的谐振电压波的波谷底处导通,能降低部分开通损耗,但在开关管KQ1关断时,开关管KQ1两端电压从零快速上升,开关管KQ1电流从最大处快速下降,因此,开关管KQ1两端电压和电流不可避免存在重叠区,将带来关断损耗。而在开关管KQ1关断后,变压器T1的初级绕组T1_1储存的能量切换到次级绕组T1_2,变压器T1的次级绕组T1_2的反激电压快速上升直到高于输出电压,此时整流二极管Di导通,在这个过程中,次级绕组T1_2的感生电流由最小增到最大的变化率很大,而整流二极管Di从截止到导通需要恢复时间,因此,高频工作时会带来整流二极管Di导通时的较大损耗和尖峰电压,从而使二极管Di电压应力高,使电源EMI(电磁干扰)特性不良。In the circuit of Fig. 1, in conjunction with Fig. 2, Fig. 2 is a voltage waveform diagram at both ends of the switching tube KQ1 in Fig. 1 provided by the embodiment of the present invention, and the power switching tube KQ1 is at the bottom of the resonance voltage wave at both ends of the resonant capacitor Cr conduction, which can reduce part of the turn-on loss, but when the switch tube KQ1 is turned off, the voltage across the switch tube KQ1 rises rapidly from zero, and the current of the switch tube KQ1 drops rapidly from the maximum point, so the voltage and current at both ends of the switch tube KQ1 cannot Avoid overlapping areas, which will cause turn-off losses. After the switching tube KQ1 is turned off, the energy stored in the primary winding T1_1 of the transformer T1 is switched to the secondary winding T1_2, and the flyback voltage of the secondary winding T1_2 of the transformer T1 rises rapidly until it is higher than the output voltage. At this time, the rectifier diode Di conducts In this process, the induced current of the secondary winding T1_2 has a large change rate from the minimum to the maximum, and the rectifier diode Di needs recovery time from cut-off to conduction, so the high-frequency operation will bring the rectifier diode The large loss and peak voltage when Di is turned on, so that the voltage stress of the diode Di is high, and the EMI (electromagnetic interference) characteristics of the power supply are poor.
由此,本发明提供一种次级控制准谐振的开关电源变换器,通过将原有的开关控制器KC、开关管KQ1、谐振电容Cr、变压器T1、整流二极管Di、极性电容EC,与增设的二极管、变压器、开关管和仅由电阻、电容、三极管和稳压管组成的准谐振控制电路重新搭建成开关电源变换器的内部电路。Therefore, the present invention provides a switching power converter with secondary control quasi-resonance, by combining the original switch controller KC, switch tube KQ1, resonant capacitor Cr, transformer T1, rectifier diode Di, polarity capacitor EC, and The additional diodes, transformers, switching tubes and the quasi-resonant control circuit composed of only resistors, capacitors, triodes and voltage regulator tubes are rebuilt into the internal circuit of the switching power converter.
参见图3-1,是本发明实施例提供的一种次级控制准谐振的开关电源变换器的电路连接图。在本实施例中,所述的一种次级控制准谐振的开关电源变换器,保留原有的接入供电电源的电源输入正极端Vin+、电源输入负极端Vin-和接出负载的电源输出正极端Vout+、电源输出负极端Vout-,以及开关控制器KC、电流侦测电阻Rs、谐振电容Cr、变压器T1(以下均为第一变压器T1)、整流二极管Di(以下均为次级整流管Di)、极性电容EC,与增设的二极管、变压器、开关管KQ1和仅由电阻、电容、三极管和稳压管组成的准谐振控制电路2重新搭建成开关电源变换器的内部电路,其连接关系如下:Referring to Fig. 3-1, it is a circuit connection diagram of a secondary controlled quasi-resonant switching power converter provided by an embodiment of the present invention. In this embodiment, the described secondary control quasi-resonant switching power supply converter retains the original power input positive terminal Vin+ connected to the power supply, the power input negative terminal Vin- and the power output connected to the load Positive terminal Vout+, power output negative terminal Vout-, switch controller KC, current detection resistor Rs, resonant capacitor Cr, transformer T1 (hereinafter referred to as the first transformer T1), rectifier diode Di (hereinafter referred to as the secondary rectifier tube Di), the polar capacitor EC, and the additional diode, transformer, switching tube KQ1 and quasi-resonant
所述电源输入负极端Vin-连接所述开关控制器KC的电源负端KC_PIN1和所述电流侦测电阻Rs的一端,所述电流侦测电阻Rs的另一端连接所述开关控制器KC的开关电流侦测端KC_PIN2和第一开关管KQ1的电压输出端KQ1_PIN1,所述第一开关管KQ1的控制端KQ1_PIN2连接所述开关控制器KC的开关控制输出端KC_PIN3,所述第一开关管KQ1的电压输入端KQ1_PIN3连接第一变压器T1的初级绕组T1_1的异名端,所述第一变压器T1的初级绕组T1_1的同名端连接所述电源输入正极端Vin+;The power input negative terminal Vin- is connected to the negative power terminal KC_PIN1 of the switch controller KC and one end of the current detection resistor Rs, and the other end of the current detection resistor Rs is connected to the switch of the switch controller KC The current detection terminal KC_PIN2 and the voltage output terminal KQ1_PIN1 of the first switch tube KQ1, the control terminal KQ1_PIN2 of the first switch tube KQ1 is connected to the switch control output terminal KC_PIN3 of the switch controller KC, the first switch tube KQ1 The voltage input terminal KQ1_PIN3 is connected to the opposite terminal of the primary winding T1_1 of the first transformer T1, and the same terminal of the primary winding T1_1 of the first transformer T1 is connected to the positive input terminal Vin+ of the power supply;
所述第一变压器T1的次级绕组T1_2的异名端、第一二极管D1的阳极、所述准谐振控制电路2的电源正端20、第二二极管D2的阴极、所述极性电容EC的正极端连接所述电源输出正极端Vout+,所述第一二极管D1的阴极连接所述谐振电容Cr后连接所述第一变压器T1的次级绕组T1_2的同名端、次级整流管Di的整流输入端Di_1和所述准谐振控制电路2的控制信号输入端21;The opposite terminal of the secondary winding T1_2 of the first transformer T1, the anode of the first diode D1, the positive
所述准谐振控制电路2的电源负端22、所述次级整流管Di的整流输出端Di_2、第二开关管KQ2的电压输出端KQ2_PIN1、第二变压器T2的次级绕组T2_1的同名端、所述极性电容EC的负极端连接所述电源输出负极端Vout-,所述准谐振控制电路2的控制信号输出端23连接所述第二开关管KQ2的控制端KQ2_PIN2;The negative
所述第二开关管KQ2的电压输入端KQ2_PIN3连接所述第二变压器T2的初级绕组T2_1的异名端,所述第二变压器T2的初级绕组T2_1的同名端连接所述第一二极管D1的阴极,所述第二变压器T2的次级绕组T2_2的异名端连接所述第二二极管D2的阳极。The voltage input terminal KQ2_PIN3 of the second switch tube KQ2 is connected to the opposite terminal of the primary winding T2_1 of the second transformer T2, and the same terminal of the primary winding T2_1 of the second transformer T2 is connected to the first diode D1 The negative terminal of the secondary winding T2_2 of the second transformer T2 is connected to the anode of the second diode D2.
需要说明的是,所述第一开关管KQ1和第二开关管KQ2可以为N沟道MOS管或NPN双极型晶体三极管或绝缘栅双极型晶体三极管。It should be noted that the first switching transistor KQ1 and the second switching transistor KQ2 may be N-channel MOS transistors or NPN bipolar transistors or insulated gate bipolar transistors.
当所述第一开关管KQ1和第二开关管KQ2为N沟道MOS管时,所述第一开关管KQ1的控制端KQ1_PIN2或所述第二开关管KQ2的控制端KQ2_PIN2为栅极G,所述第一开关管KQ1的电压输入端KQ1_PIN3或所述第二开关管KQ2的电压输入端KQ2_PIN3为漏极D,所述第一开关管KQ1的电压输出端KQ1_PIN1或所述第二开关管KQ2的电压输出端KQ2_PIN1为源极S。When the first switch tube KQ1 and the second switch tube KQ2 are N-channel MOS tubes, the control terminal KQ1_PIN2 of the first switch tube KQ1 or the control terminal KQ2_PIN2 of the second switch tube KQ2 is a gate G, The voltage input terminal KQ1_PIN3 of the first switching tube KQ1 or the voltage input terminal KQ2_PIN3 of the second switching tube KQ2 is the drain D, and the voltage output terminal KQ1_PIN1 of the first switching tube KQ1 or the second switching tube KQ2 The voltage output terminal KQ2_PIN1 is the source S.
当所述第一开关管KQ1和第二开关管KQ2为NPN双极型晶体三极管时,所述第一开关管KQ1的控制端KQ1_PIN2或所述第二开关管KQ2的控制端KQ2_PIN2为基极B,所述第一开关管KQ1的电压输入端KQ1_PIN3或所述第二开关管KQ2的电压输入端KQ2_PIN3为集电极C,所述第一开关管KQ1的电压输出端KQ1_PIN1或所述第二开关管KQ2的电压输出端KQ2_PIN1为发射极E。When the first switch KQ1 and the second switch KQ2 are NPN bipolar transistors, the control terminal KQ1_PIN2 of the first switch KQ1 or the control terminal KQ2_PIN2 of the second switch KQ2 is the base B , the voltage input terminal KQ1_PIN3 of the first switching tube KQ1 or the voltage input terminal KQ2_PIN3 of the second switching tube KQ2 is the collector C, and the voltage output terminal KQ1_PIN1 of the first switching tube KQ1 or the second switching tube The voltage output terminal KQ2_PIN1 of KQ2 is the emitter E.
当所述第一开关管KQ1和第二开关管KQ2为绝缘栅双极晶体三极管时,所述第一开关管KQ1的控制端KQ1_PIN2或所述第二开关管KQ2的控制端KQ2_PIN2为栅极G,所述第一开关管KQ1的电压输入端KQ1_PIN3或所述第二开关管KQ2的电压输入端KQ2_PIN3为集电极C,所述第一开关管KQ1的电压输出端KQ1_PIN1或所述第二开关管KQ2的电压输出端KQ2_PIN1为发射极E。When the first switch KQ1 and the second switch KQ2 are insulated gate bipolar transistors, the control terminal KQ1_PIN2 of the first switch KQ1 or the control terminal KQ2_PIN2 of the second switch KQ2 is the gate G , the voltage input terminal KQ1_PIN3 of the first switching tube KQ1 or the voltage input terminal KQ2_PIN3 of the second switching tube KQ2 is the collector C, and the voltage output terminal KQ1_PIN1 of the first switching tube KQ1 or the second switching tube The voltage output terminal KQ2_PIN1 of KQ2 is the emitter E.
还需要说明的是,所述次级整流管Di为整流二极管或场效应管整流模块,而场效应管模块是以场效应管为主器件的具有整流输入端Di_1和整流输出端Di_2的电路模块。当所述次级整流管Di为整流二极管时,所述次级整流管Di的整流输入端Di_1为阴极,所述次级整流管Di的整流输出端Di_2为阳极。It should also be noted that the secondary rectifier Di is a rectifier diode or a field effect transistor rectification module, and the field effect transistor module is a circuit module with a rectification input terminal Di_1 and a rectification output terminal Di_2, which is a field effect transistor as the main device. . When the secondary rectifier Di is a rectifier diode, the rectifier input Di_1 of the secondary rectifier Di is a cathode, and the rectifier output Di_2 of the secondary rectifier Di is an anode.
结合上述说明,参见图3-2,是本发明实施例提供的图3-1中的第一开关管和第二开关管KQ2为N沟道MOS管、次级整流管Di为整流二极管的电路连接图。而当开关管KQ1为N沟道MOS管、NPN双极型晶体三极管或绝缘栅双极型晶体三极管,次级整流管Di为整流二极管、场效应管整流模块的其他五种排列组合下的电路连接图参照图3-1,很容易得出,此处不再举图进行说明。In combination with the above description, referring to Fig. 3-2, it is a circuit in which the first switching tube and the second switching tube KQ2 in Fig. 3-1 are N-channel MOS tubes and the secondary rectifying tube Di is a rectifying diode according to an embodiment of the present invention. Connection Diagram. And when the switch tube KQ1 is an N-channel MOS tube, an NPN bipolar transistor or an insulated gate bipolar transistor, the secondary rectifier Di is a circuit under the other five arrangements and combinations of a rectifier diode and a field effect transistor rectifier module Refer to Figure 3-1 for the connection diagram, which is easy to draw and will not be illustrated here.
进一步需要说明的是,参见图4是本发明实施例提供的图3-1中的准谐振控制电路2的电路连接图。所述准谐振控制电路2中设有第一三极管Q1、第二三极管Q2、第三三极管Q3、第一电阻R1、第二电阻R2、第一稳压管Dv1、第二稳压管Dv2、第一电容C1和第二电容C2;It should be further noted that, referring to FIG. 4 , it is a circuit connection diagram of the
所述第一三极管Q1的集电极C连接所述准谐振控制电路2的电源正端20,所述准谐振控制电路2的电源正端20连接所述第一电阻R1后连接所述第一三极管Q1的基极B和所述第一稳压管Dv1的阴极,所述第一三极管Q1的发射极E连接所述第一电容C1的一端和所述第二三极管Q2的集电极C,所述第一电容C1的另一端、所述第一稳压管Dv1的阳极、所述第二稳压管Dv2的阳极、所述第二电阻R2的一端和所述第三三极管Q3的集电极C连接所述准谐振控制电路2的电源负端22;The collector C of the first triode Q1 is connected to the
所述准谐振控制电路2的控制信号输入端21连接串联的所述第二电容C2与所述第三电阻R3后连接所述第二稳压管Dv2的阴极、所述第二电阻R2的另一端、所述第二三极管Q2的基极B和所述第三三极管Q3的基极B,所述第二三极管Q2的发射极E与所述第三三极管Q3的发射极E连接所述准谐振控制电路2的控制信号输出端23。The control
其中,所述第一三极管Q1、第二三极管Q2为NPN双极型晶体三极管,所述第三三极管Q3为PNP双极型晶体三极管。Wherein, the first triode Q1 and the second triode Q2 are NPN bipolar transistors, and the third triode Q3 is a PNP bipolar transistor.
再次参见图3-1和图4,本发明实施例提供的一种次级控制准谐振的开关电源变换器,当其所述开关控制器KC使所述第一开关管KQ1导通时,所述第一变压器T1的初级绕组T1_1储能,其次级绕组T1_2的感生电压为同名端为正,所述次级整流管Di反偏截止,所述准谐振控制电路2内部的所述第一电容C1、第二电阻R2、第三电阻R3、第二稳压管Dv2组成的初级开关上升沿侦测电路和延时电路,经所述第一三极管Q1、第二三极管Q2输出驱动所述第二开关管KQ2导通,所述谐振电容Cr与所述第二变压器T2的初级绕组T2_1谐振,所述谐振电容Cr在所述第一开关管KQ1关断期间内储存的能量转储到所述第二变压器T2中,当延迟时间达到设定值后,所述第二开关管KQ2关断,所述第二二极管D2导通,所述第二变压器T2中的能量向电源输出端(所述电源输出正极端Vout+和电源输出负极端Vout-)释放,这个过程所述谐振电容Cr的能量释放到所述电源输出端,所述谐振电容Cr的端电压将复位到接近零;Referring to Fig. 3-1 and Fig. 4 again, in the secondary control quasi-resonant switching power converter provided by the embodiment of the present invention, when the switching controller KC turns on the first switching tube KQ1, the The primary winding T1_1 of the first transformer T1 stores energy, the induced voltage of the secondary winding T1_2 is positive at the end of the same name, the secondary rectifier Di is reverse-biased and cut off, and the first internal quasi-resonant control circuit 2 The primary switch rising edge detection circuit and delay circuit composed of the capacitor C1, the second resistor R2, the third resistor R3, and the second voltage regulator tube Dv2 are output through the first triode Q1 and the second triode Q2 Driving the second switch tube KQ2 to conduct, the resonant capacitor Cr resonates with the primary winding T2_1 of the second transformer T2, and the energy stored in the resonant capacitor Cr during the turn-off period of the first switch tube KQ1 is transferred to stored in the second transformer T2, when the delay time reaches the set value, the second switching tube KQ2 is turned off, the second diode D2 is turned on, and the energy in the second transformer T2 is transferred to The power supply output terminal (the power supply output positive terminal Vout+ and the power supply output negative terminal Vout-) is released, and the energy of the resonant capacitor Cr is released to the power supply output terminal during this process, and the terminal voltage of the resonant capacitor Cr will be reset to close to zero;
当所述开关控制器KC使所述第一开关管KQ1关断时,所述第一变压器T1的初级绕组T1_1的感生电压为异名端为正,所述第一开关管KQ1正偏导通,其次级绕组T1_2和所述谐振电容Cr谐振,所述谐振电容Cr的端电压从零开始谐振上升,由于所述第一变压器T1的互感作用,所述第一开关管KQ1的电压输入端KQ1_PIN3与电压输出端KQ1_PIN1之间的电压也将谐振上升,此时,所述第一开关管KQ1的电压输入端KQ1_PIN3的电流已降为零,因此,所述第一开关管KQ1是接近零损耗的关断。在所述谐振电容Cr的端电压从零开始谐振上升的过程中,此时的电压低于输出电压,所述次级整流管Di反偏截止,所述第一变压器T1的次级绕组T1_2只有小电流流向所述谐振电容Cr,当所述谐振电容Cr的端电压上升到超过输出电压时,所述次级整流管Di自然软开通,开通损耗小,所述第一变压器T1的次级绕组T1_2的电流开始切换到流向输出,电流的变化率比较低,所述次级整流管Di两端无电压尖峰,应力小,EMI特性比较好,整个开关电源变换器的工作频率可以进一步提高,从而使电源体积可以缩小,成本降低。When the switch controller KC turns off the first switch tube KQ1, the induced voltage of the primary winding T1_1 of the first transformer T1 is positive, and the first switch tube KQ1 is forward-biased. through, its secondary winding T1_2 resonates with the resonant capacitor Cr, the terminal voltage of the resonant capacitor Cr resonantly rises from zero, due to the mutual inductance of the first transformer T1, the voltage input terminal of the first switching tube KQ1 The voltage between KQ1_PIN3 and the voltage output terminal KQ1_PIN1 will also rise in resonance. At this time, the current of the voltage input terminal KQ1_PIN3 of the first switching tube KQ1 has dropped to zero, so the first switching tube KQ1 is close to zero loss off. During the process of the terminal voltage of the resonant capacitor Cr resonantly rising from zero, the voltage at this time is lower than the output voltage, the reverse bias of the secondary rectifier Di is cut off, and the secondary winding T1_2 of the first transformer T1 has only A small current flows to the resonant capacitor Cr. When the terminal voltage of the resonant capacitor Cr rises above the output voltage, the secondary rectifier Di is naturally softly turned on, and the turn-on loss is small. The secondary winding of the first transformer T1 The current of T1_2 starts to switch to flow to the output, the rate of change of the current is relatively low, there is no voltage peak at both ends of the secondary rectifier Di, the stress is small, and the EMI characteristics are relatively good. The operating frequency of the entire switching power converter can be further increased, thereby The volume of the power supply can be reduced, and the cost can be reduced.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above description is a preferred embodiment of the present invention, and it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered Be the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710288928.8A CN107086789B (en) | 2017-04-27 | 2017-04-27 | Secondary control quasi-resonance switching power supply converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710288928.8A CN107086789B (en) | 2017-04-27 | 2017-04-27 | Secondary control quasi-resonance switching power supply converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107086789A CN107086789A (en) | 2017-08-22 |
CN107086789B true CN107086789B (en) | 2023-06-02 |
Family
ID=59613094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710288928.8A Active CN107086789B (en) | 2017-04-27 | 2017-04-27 | Secondary control quasi-resonance switching power supply converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107086789B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107786071A (en) * | 2017-11-23 | 2018-03-09 | 广东新昇电业科技股份有限公司 | A kind of resonant switching power supply circuit of low peak voltage |
CN110943624B (en) * | 2019-12-18 | 2024-10-29 | 天宝电子(惠州)有限公司 | Resonant power supply conversion circuit with zero voltage switch and converter |
CN114421774A (en) * | 2021-12-24 | 2022-04-29 | 江门市科通半导体有限公司 | An Enhanced Quasi-Resonant PWM Control Circuit |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0432602A2 (en) * | 1989-12-15 | 1991-06-19 | ANT Nachrichtentechnik GmbH | DC-DC converter, in particular of the quasi-resonant type |
JP2001161067A (en) * | 1999-11-30 | 2001-06-12 | Sony Corp | Switching power supply circuit |
CN101657960A (en) * | 2007-03-29 | 2010-02-24 | 弗莱克斯电子有限责任公司 | Primary-only Constant Voltage/Constant Current (CVCC) Control in Quasi-Resonant Converter |
CN102208873A (en) * | 2010-06-11 | 2011-10-05 | 崇贸科技股份有限公司 | Active Clamp Circuit for Quasi-Resonant Flyback Power Converter |
CN104578739A (en) * | 2015-01-20 | 2015-04-29 | 无锡三石电子有限公司 | Active clamping circuit of quasi-resonant flyback converter |
CN206727877U (en) * | 2017-04-27 | 2017-12-08 | 天宝电子(惠州)有限公司 | A kind of switching power converters of secondary control quasi-resonance |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6015421B2 (en) * | 2012-12-20 | 2016-10-26 | 富士電機株式会社 | Quasi-resonant switching power supply |
US9948188B2 (en) * | 2014-11-04 | 2018-04-17 | Stmicroelectronics S.R.L. | Control device for a quasi-resonant switching converter, and corresponding control method |
-
2017
- 2017-04-27 CN CN201710288928.8A patent/CN107086789B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0432602A2 (en) * | 1989-12-15 | 1991-06-19 | ANT Nachrichtentechnik GmbH | DC-DC converter, in particular of the quasi-resonant type |
JP2001161067A (en) * | 1999-11-30 | 2001-06-12 | Sony Corp | Switching power supply circuit |
CN101657960A (en) * | 2007-03-29 | 2010-02-24 | 弗莱克斯电子有限责任公司 | Primary-only Constant Voltage/Constant Current (CVCC) Control in Quasi-Resonant Converter |
CN102208873A (en) * | 2010-06-11 | 2011-10-05 | 崇贸科技股份有限公司 | Active Clamp Circuit for Quasi-Resonant Flyback Power Converter |
CN104578739A (en) * | 2015-01-20 | 2015-04-29 | 无锡三石电子有限公司 | Active clamping circuit of quasi-resonant flyback converter |
CN206727877U (en) * | 2017-04-27 | 2017-12-08 | 天宝电子(惠州)有限公司 | A kind of switching power converters of secondary control quasi-resonance |
Also Published As
Publication number | Publication date |
---|---|
CN107086789A (en) | 2017-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI676344B (en) | Flyback converter | |
CN101572490B (en) | Zero-voltage switch flyback-type DC-DC power supply conversion device | |
US7830684B2 (en) | Reverse biasing active snubber | |
CN102122890B (en) | Control method for auxiliary switching tube of active clamp flyback converter | |
CN104617752A (en) | Driving method of gallium nitride transistor, driving circuit thereof, and fly-back converter using the circuit | |
CN102651615A (en) | Power converter and control method thereof | |
CN102594101A (en) | Isolated rapid turn-off metal oxide field effect transistor (MOFET) driving circuit | |
CN109450418B (en) | IGBT isolation driving circuit with switch control unit and control method thereof | |
CN102497108A (en) | LLC resonance type push-pull forward conversion topology | |
CN113872428B (en) | Drive control circuit, method, equipment and medium of gallium nitride transistor | |
CN107086789B (en) | Secondary control quasi-resonance switching power supply converter | |
CN108418435A (en) | A Synchronous Rectification Flyback DC-DC Power Conversion Device | |
CN100421344C (en) | Zero-Voltage Switching Half-Bridge DC-DC Converter Topology | |
CN108667304B (en) | Synchronous rectification flyback DC-DC power supply conversion device and control method | |
CN108683336B (en) | A kind of inverse-excitation type active clamp driving circuit | |
CN110943624B (en) | Resonant power supply conversion circuit with zero voltage switch and converter | |
CN106230263B (en) | A kind of positive activation type zero voltage switch supply convertor | |
CN105610307B (en) | A kind of power switch tube isolation gate drive circuit generating fixed negative pressure | |
CN115021544A (en) | Clamping module and switching power supply | |
CN103401427A (en) | Leakage inductance energy absorption circuit for Flyback converters | |
WO2020015292A1 (en) | Direct current-direct current converter, control method and control circuit therefor, and storage medium | |
TWI650925B (en) | Switching power supply, control device and control method | |
JP2009050080A (en) | Snubber circuit | |
CN108768365B (en) | Change-over switch conversion and control circuit | |
CN216086468U (en) | Grid circuit applied to NMOS (N-channel metal oxide semiconductor) tube, switching power supply circuit and charger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 516005 Shuikou Industrial Zone, Shuikou, Zhenlong, Guangdong, Huizhou Patentee after: Guangdong Tianbao Electronic Technology Co.,Ltd. Country or region after: China Patentee after: HUIZHOU JINHU INDUSTRIAL DEVELOPMENT Co.,Ltd. Address before: Dongjiang Industrial Zone, Shuikou Town, Huicheng District, Huizhou City, Guangdong Province Patentee before: TEN PAO ELECTRONICS (HUIZHOU) Co.,Ltd. Country or region before: China Patentee before: HUIZHOU JINHU INDUSTRIAL DEVELOPMENT Co.,Ltd. |