CN107070190B - Power supply device and capacitance heating control method thereof - Google Patents
Power supply device and capacitance heating control method thereof Download PDFInfo
- Publication number
- CN107070190B CN107070190B CN201710284565.0A CN201710284565A CN107070190B CN 107070190 B CN107070190 B CN 107070190B CN 201710284565 A CN201710284565 A CN 201710284565A CN 107070190 B CN107070190 B CN 107070190B
- Authority
- CN
- China
- Prior art keywords
- capacitor
- voltage
- power supply
- circuit
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Resistance Heating (AREA)
- Inverter Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及电源技术领域,尤其涉及一种电源装置及其电容加热控制方法。The invention relates to the technical field of power supplies, and in particular, to a power supply device and a method for controlling capacitive heating thereof.
背景技术Background technique
在各类开关电源中,作为输出滤波电容的电解电容在低温下会出现明显的容量减小,部分型号的电解电容在低温下的容量下降幅度超过50%。输出滤波电容容量的大幅减小会导致开关电源出现各类故障,例如,带大负载启动电源可能会导致输出滤波电容的电压不稳,从而超过开关电源的开关管的电压规格。目前,在开关电源的应用中,为防止因温度过低而产生上述问题,通常的做法是给开关电源一定的热机时间,一般需要几分钟到半小时左右。等待电解电容的容量达到需要的值时,再接入负载。此外,也有在电解电容的底端设置加热器,并在开关电源开启时首先通过加热控制电路控制加热器为电解电容加热,以使得电解电容的容量恢复到正常值。然而,如果不设置加热器,开关电源热机通常需要较长的时间,无法保证开关电源在低温条件下的工作效率;如果设置加热器,则会导致开关电源的生产成本增加。In all kinds of switching power supplies, the electrolytic capacitors used as output filter capacitors will have obvious capacity reduction at low temperature, and the capacity of some types of electrolytic capacitors will decrease by more than 50% at low temperature. The large reduction in the capacity of the output filter capacitor will lead to various failures of the switching power supply. For example, starting the power supply with a heavy load may cause the voltage of the output filter capacitor to be unstable, thus exceeding the voltage specification of the switching tube of the switching power supply. At present, in the application of switching power supply, in order to prevent the above problems caused by too low temperature, the usual practice is to give the switching power supply a certain heating time, which generally takes a few minutes to half an hour. Wait until the capacity of the electrolytic capacitor reaches the required value before connecting to the load. In addition, a heater is also provided at the bottom end of the electrolytic capacitor, and when the switching power supply is turned on, the heater is firstly controlled by the heating control circuit to heat the electrolytic capacitor, so that the capacity of the electrolytic capacitor returns to the normal value. However, if a heater is not provided, the heat engine of the switching power supply usually takes a long time, and the working efficiency of the switching power supply under low temperature conditions cannot be guaranteed; if a heater is provided, the production cost of the switching power supply will increase.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种电源装置及其电容加热控制方法,以较低的成本在低温条件下实现电源装置的电容加热,从而保证电源装置的低温条件下的工作效率。Embodiments of the present invention provide a power supply device and a method for controlling capacitance heating thereof, which can realize capacitive heating of the power supply device under low temperature conditions at a lower cost, thereby ensuring the working efficiency of the power supply device under low temperature conditions.
本发明实施例第一方面提供一种电源装置,其特征在于,包括:电压转换电路及加热控制电路;A first aspect of the embodiments of the present invention provides a power supply device, which is characterized by comprising: a voltage conversion circuit and a heating control circuit;
所述电压转换电路包括开关电源电路、第一电容及第二电容,所述开关电源电路包括电压输入端和电压输出端,所述第一电容的第一端与所述电压输入端电连接,所述第二电容的第一端与所述电压输出端连接,所述第一电容的第二端与所述第二电容的第二端电连接;The voltage conversion circuit includes a switching power supply circuit, a first capacitor and a second capacitor, the switching power supply circuit includes a voltage input end and a voltage output end, and the first end of the first capacitor is electrically connected to the voltage input end, The first end of the second capacitor is connected to the voltage output end, and the second end of the first capacitor is electrically connected to the second end of the second capacitor;
所述加热控制电路包括可控开关,所述可控开关电连接于所述电压输入端与所述电压输出端之间,所述可控开关用于在预设开关控制信号的驱动下导通,并在所述第一电容与所述第二电容之间形成充放电回路;The heating control circuit includes a controllable switch, the controllable switch is electrically connected between the voltage input terminal and the voltage output terminal, and the controllable switch is used to conduct under the driving of a preset switch control signal , and a charge-discharge loop is formed between the first capacitor and the second capacitor;
所述充放电回路用于在所述第一电容和所述第二电容之间传导充放电电流,并通过所述充放电电流为所述第二电容加热。The charging and discharging circuit is used for conducting charging and discharging current between the first capacitor and the second capacitor, and heating the second capacitor through the charging and discharging current.
其中,通过所述预设开关控制信号控制所述加热控制电路中的可控开关导通,从而在所述第一电容与所述第二电容之间形成充放电回路,由于充放电回路在电流的作用下会产生热量,进而可以通过所述第一电容和所述第二电容之间的充放电电流来对所述第二电容加热,可以有效防止因所述第二电容的容量在低温条件下出现大幅下降而影响所述电源装置的正常使用,从而保证电源装置在低温条件下的工作效率。Wherein, the controllable switch in the heating control circuit is controlled to be turned on by the preset switch control signal, thereby forming a charging and discharging loop between the first capacitor and the second capacitor. Under the action of the capacitor, heat will be generated, and then the second capacitor can be heated by the charging and discharging current between the first capacitor and the second capacitor, which can effectively prevent the capacity of the second capacitor from being in low temperature conditions. Under low temperature conditions, there is a significant drop, which affects the normal use of the power supply device, so as to ensure the working efficiency of the power supply device under low temperature conditions.
在一种实施方式中,所述加热控制电路还包括限流电阻,所述限流电阻与所述可控开关串联,用于限制所述充放电回路上的充放电电流的大小。In an embodiment, the heating control circuit further includes a current limiting resistor, which is connected in series with the controllable switch to limit the magnitude of the charging and discharging current on the charging and discharging loop.
其中,所述限流电阻可以防止所述充放电回路上的充放电电流过大而损坏所述可控开关。Wherein, the current limiting resistor can prevent the controllable switch from being damaged due to excessive charging and discharging current on the charging and discharging circuit.
在一种实施方式中,所述电源装置还包括开关驱动电路,所述开关驱动电路与所述可控开关的控制端电连接,用于输出所述预设开关控制信号,并根据所述预设开关控制信号驱动所述可控开关导通或截止。In an embodiment, the power supply device further includes a switch drive circuit, the switch drive circuit is electrically connected to the control terminal of the controllable switch, and is used for outputting the preset switch control signal, and according to the preset switch control signal It is assumed that a switch control signal drives the controllable switch to be turned on or off.
在一种实施方式中,所述开关驱动电路为隔离式驱动电路。In one embodiment, the switch driving circuit is an isolated driving circuit.
在一种实施方式中,所述开关驱动电路包括光耦合器和驱动器,所述光耦合器一端与所述驱动器的信号输出端电连接,另一端与所述可控开关的控制端电连接,用于将所述驱动器的信号输出端输出的预设开关控制信号耦合至所述可控开关的控制端。In one embodiment, the switch driving circuit includes an optocoupler and a driver, one end of the optocoupler is electrically connected to the signal output end of the driver, and the other end of the optocoupler is electrically connected to the control end of the controllable switch, The preset switch control signal output by the signal output terminal of the driver is coupled to the control terminal of the controllable switch.
其中,通过所述光耦合器将所述开关驱动电路设置为隔离式驱动电路,从而可以有效防止所述开关驱动电路对所述电源装置的开关电源电路产生干扰,从而保证所述开关电源电路的稳定性。Wherein, the switch drive circuit is set as an isolated drive circuit through the optocoupler, so that the switch drive circuit can be effectively prevented from interfering with the switch power supply circuit of the power supply device, thereby ensuring the switching power supply circuit. stability.
在一种实施方式中,所述开关电源电路包括储能电感、第一开关管及第二开关管,所述储能电感的第一端与所述电压输入端电连接,所述储能电感的第二端与所述第一开关管的第一端及所述第二开关管的第一端电连接,所述第一开关管的第二端与所述第一电容的第二端及所述第二电容的第二端电连接,所述第二开关管的第二端与所述电压输出端电连接。In one embodiment, the switching power supply circuit includes an energy storage inductor, a first switch transistor and a second switch transistor, a first end of the energy storage inductor is electrically connected to the voltage input end, and the energy storage inductor The second end of the first switch tube is electrically connected to the first end of the first switch tube and the first end of the second switch tube, and the second end of the first switch tube is electrically connected to the second end of the first capacitor and the The second end of the second capacitor is electrically connected, and the second end of the second switch tube is electrically connected to the voltage output end.
在一种实施方式中,所述预设开关控制信号与所述第一开关管的驱动信号相同。In an embodiment, the preset switch control signal is the same as the drive signal of the first switch tube.
其中,通过将所述预设开关控制信号设置为与所述第一开关管的驱动信号相同,可以使得所述第一开关管在导通并为所述储能电感充电的同时,控制所述可控开关导通来形成所述充放电回路,进而对所述第二电容加热,无需单独为所述可控开关设置驱动电路,从而可以防止单独设置驱动电路对所述开关电源电路的干扰,并降低所述电源装置的生产成本。Wherein, by setting the preset switch control signal to be the same as the drive signal of the first switch tube, the first switch tube can be turned on and charge the energy storage inductor while controlling the The controllable switch is turned on to form the charging and discharging circuit, and then the second capacitor is heated, and there is no need to separately set a driving circuit for the controllable switch, so that the interference of the separately provided driving circuit to the switching power supply circuit can be prevented, And reduce the production cost of the power supply device.
在一种实施方式中,所述电源装置还包括与所述开关驱动电路电连接的电容容量检测电路,所述电容容量检测电路还与所述第一电容和所述第二电容电连接,用于检测所述第二电容的容量,并在所述第二电容的容量超过预设阈值时,触发所述开关驱动电路停止工作,所述电源装置进入正常工作状态。In one embodiment, the power supply device further includes a capacitance detection circuit electrically connected to the switch driving circuit, and the capacitance detection circuit is further electrically connected to the first capacitor and the second capacitor, using When the capacity of the second capacitor is detected, and when the capacity of the second capacitor exceeds a preset threshold, the switch driving circuit is triggered to stop working, and the power supply device enters a normal working state.
在一种实施方式中,所述电容容量检测电路包括电压检测电路和容量计算电路,所述电压检测电路与所述第一电容和所述第二电容电连接,用于在所述可控开关导通期间检测所述第一电容的电压,并至少两次检测所述第二电容的电压,其中,相邻两次检测所述第二电容的电压的时间间隔为预设时间间隔,并分别得到所述第二电容的第一电压和所述第二电容的第二电压,所述容量计算电路用于根据所述第一电容的电压、所述第二电容的第一电压和第二电压及所述预设时间间隔,计算所述第二电容的容量。In one embodiment, the capacitance detection circuit includes a voltage detection circuit and a capacitance calculation circuit, and the voltage detection circuit is electrically connected to the first capacitor and the second capacitor, and is used for switching between the controllable switch During the conduction period, the voltage of the first capacitor is detected, and the voltage of the second capacitor is detected at least twice, wherein the time interval between two adjacent detections of the voltage of the second capacitor is a preset time interval, and respectively The first voltage of the second capacitor and the second voltage of the second capacitor are obtained, and the capacity calculation circuit is used to calculate the first voltage of the second capacitor according to the voltage of the first capacitor, the first voltage and the second voltage of the second capacitor. and the preset time interval, calculate the capacity of the second capacitor.
其中,在对所述第二电容进行加热的过程中,通过检测所述第二电容的容量,从而可以在所述第二电容的容量超过预设阈值时,触发所述可控开关截止,即当所述第二电容的容量可以满足所述电源装置的负载驱动需求时,停止对所述第二电容加热,从而可以在使得所述第二电容的容量恢复到所需要的容量的同时,有效控制所述电源装置的功耗。Wherein, in the process of heating the second capacitor, by detecting the capacity of the second capacitor, when the capacity of the second capacitor exceeds a preset threshold, the controllable switch can be triggered to turn off, that is, When the capacity of the second capacitor can meet the load driving requirement of the power supply device, the heating of the second capacitor is stopped, so that the capacity of the second capacitor can be restored to the required capacity while effectively The power consumption of the power supply device is controlled.
本发明实施例第二方面提供一种电容加热控制方法,包括:A second aspect of the embodiments of the present invention provides a capacitive heating control method, including:
在电压转换电路的电压输入端与电压输出端之间设置加热控制电路,所述加热控制电路包括可控开关;A heating control circuit is provided between the voltage input end and the voltage output end of the voltage conversion circuit, and the heating control circuit includes a controllable switch;
根据预设开关控制信号驱动所述可控开关导通,并在所述电压转换电路的第一电容与第二电容之间形成充放电回路;Drive the controllable switch to conduct according to the preset switch control signal, and form a charge-discharge loop between the first capacitor and the second capacitor of the voltage conversion circuit;
通过所述充放电回路在所述第一电容和所述第二电容之间传导充放电电流,并通过所述充放电电流为所述第二电容加热。A charging and discharging current is conducted between the first capacitor and the second capacitor through the charging and discharging circuit, and the second capacitor is heated by the charging and discharging current.
其中,通过所述预设开关控制信号控制所述加热控制电路中的可控开关导通,从而在所述第一电容与所述第二电容之间形成充放电回路,由于充放电回路在电流的作用下会产生热量,进而可以通过所述第一电容和所述第二电容之间的充放电电流来对所述第二电容加热,可以有效防止因所述第二电容的容量在低温条件下出现大幅下降而影响所述电源装置的正常使用,从而保证电源装置在低温条件下的工作效率。Wherein, the controllable switch in the heating control circuit is controlled to be turned on by the preset switch control signal, thereby forming a charging and discharging loop between the first capacitor and the second capacitor. Under the action of the capacitor, heat will be generated, and then the second capacitor can be heated by the charging and discharging current between the first capacitor and the second capacitor, which can effectively prevent the capacity of the second capacitor from being in low temperature conditions. Under low temperature conditions, there is a significant drop, which affects the normal use of the power supply device, so as to ensure the working efficiency of the power supply device under low temperature conditions.
在一种实施方式中,所述方法还包括:检测所述第二电容的容量,并在所述第二电容的容量超过预设阈值时,触发所述开关驱动电路停止工作,所述电源装置进入正常工作状态。In one embodiment, the method further includes: detecting the capacity of the second capacitor, and when the capacity of the second capacitor exceeds a preset threshold, triggering the switch driving circuit to stop working, and the power supply device into the normal working state.
在一种实施方式中,所述检测所述第二电容的容量,包括:In one embodiment, the detecting the capacity of the second capacitor includes:
在所述可控开关导通期间检测所述第一电容的电压;detecting the voltage of the first capacitor during the conduction period of the controllable switch;
在所述可控开关导通期间至少两次检测所述第二电容的电压,分别得到所述第二电容的第一电压和所述第二电容的第二电压,其中,相邻两次检测所述第二电容的电压的时间间隔为预设时间间隔;During the conduction period of the controllable switch, the voltage of the second capacitor is detected at least twice, and the first voltage of the second capacitor and the second voltage of the second capacitor are obtained respectively, wherein two adjacent detections are performed. The time interval of the voltage of the second capacitor is a preset time interval;
根据所述第一电容的电压、所述第二电容的第一电压和第二电压及所述预设时间间隔,计算所述第二电容的容量。The capacity of the second capacitor is calculated according to the voltage of the first capacitor, the first voltage and the second voltage of the second capacitor, and the preset time interval.
其中,在对所述第二电容进行加热的过程中,通过检测所述第二电容的容量,从而可以在所述第二电容的容量超过预设阈值时,触发所述可控开关截止,即当所述第二电容的容量可以满足所述电源装置的负载驱动需求时,停止对所述第二电容加热,从而可以在使得所述第二电容的容量恢复到所需要的容量的同时,有效控制所述电源装置的功耗。Wherein, in the process of heating the second capacitor, by detecting the capacity of the second capacitor, when the capacity of the second capacitor exceeds a preset threshold, the controllable switch can be triggered to turn off, that is, When the capacity of the second capacitor can meet the load driving requirement of the power supply device, the heating of the second capacitor is stopped, so that the capacity of the second capacitor can be restored to the required capacity while effectively The power consumption of the power supply device is controlled.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术中以及本发明实施例描述中所需要使用的附图作简单地介绍。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the drawings required in the prior art and the description of the embodiments of the present invention.
图1是本发明实施例提供的电源装置的第一结构示意图;FIG. 1 is a first structural schematic diagram of a power supply device provided by an embodiment of the present invention;
图2是本发明实施例提供的电源装置的第二结构示意图;FIG. 2 is a second structural schematic diagram of a power supply device provided by an embodiment of the present invention;
图3是本发明实施例提供的电源装置的第三结构示意图;3 is a third schematic structural diagram of a power supply device provided by an embodiment of the present invention;
图4是本发明实施例提供的电容加热控制方法的第一流程示意图;4 is a first schematic flowchart of a capacitive heating control method provided by an embodiment of the present invention;
图5是本发明实施例提供的电容加热控制方法的第二流程示意图;5 is a second schematic flowchart of a capacitive heating control method provided by an embodiment of the present invention;
图6是本发明实施例提供的电容加热控制方法的第三流程示意图。FIG. 6 is a third schematic flowchart of a capacitive heating control method provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合附图,对本发明的实施例进行描述。Embodiments of the present invention will be described below with reference to the accompanying drawings.
请参阅图1,在本发明一个实施例中,提供一种电源装置100,包括:电压转换电路110、加热控制电路130及开关驱动电路150。Referring to FIG. 1 , in an embodiment of the present invention, a
所述电压转换电路110包括开关电源电路111、第一电容C1及第二电容C2,所述开关电源电路111包括电压输入端In和电压输出端Out,所述第一电容C1的第一端与所述电压输入端In电连接,所述第二电容C2的第一端与所述电压输出端Out连接,所述第一电容C1的第二端与所述第二电容C2的第二端电连接。The
所述加热控制电路130包括可控开关K,所述可控开关K电连接于所述电压输入端In与所述电压输出端Out之间,所述开关驱动电路150与所述可控开关k的控制端电连接,用于输出预设开关控制信号,所述可控开关K用于在所述预设开关控制信号的驱动下导通,并在所述第一电容C1与所述第二电容C2之间形成充放电回路。The
所述充放电回路用于在所述第一电容C1和所述第二电容C2之间传导充放电电流,并通过所述充放电电流为所述第二电容C2加热。The charging and discharging circuit is used for conducting charging and discharging current between the first capacitor C1 and the second capacitor C2, and heating the second capacitor C2 through the charging and discharging current.
在本实施例中,所述电压转换电路110为Boost电路,所述第一电容C1为所述Boost电路的输入滤波电容,所述第二电容C2为所述Boost电路的输出滤波电容。所述第二电容C2为电解电容。所述开关电源电路111包括储能电感L1、第一开关管Q1及第二开关管Q2,所述储能电感L1的第一端与所述电压输入端In电连接,所述储能电感L1的第二端与所述第一开关管Q1的第一端及所述第二开关管Q2的第一端电连接,所述第一开关管Q1的第二端与所述第一电容C1的第二端及所述第二电容C2的第二端电连接,所述第二开关管Q2的第二端与所述电压输出端Out电连接。其中,所述第一开关管Q1可以为金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),所述第二开关管Q2可以为二极管或MOSFET,若所述第二开关管Q2为二极管,则该二极管的正极与所述储能电感L1的第二端电连接,负极与所述电压输出端Out电连接。In this embodiment, the
可以理解,由于在低温条件下,电解电容的容量会大幅度降低,从而可能影响所述电源装置100的稳定性。因此,通过在所述开关电源电路111的电压输入端In和电压输出端Out之间设置包括所述可控开关K的加热控制电路130,并通过所述预设开关控制信号控制所述可控开关K导通,从而在所述第一电容C1与所述第二电容C2之间形成充放电回路,由于充放电回路存在的回路阻抗在电流的作用下会产生热量,进而可以通过所述充放电电流来对所述第二电容C2加热,防止因所述第二电容C2的容量在低温条件下出现大幅下降而影响所述电源装置100的正常使用,从而保证电源装置100在低温条件下的工作效率。It can be understood that under low temperature conditions, the capacity of the electrolytic capacitor will be greatly reduced, which may affect the stability of the
可以理解,随着所述可控开关K导通时间的增加,所述第二电容C2的温度逐渐升高,相应地,所述第二电容C2的容量也逐渐升高,当所述第二电容C2的容量达到预设阈值时,所述开关驱动电路150还用于根据所述预设开关控制信号驱动所述可控开关K截止。进一步地,由于所述第二电容C2的容量已经能够满足需求,从而可以控制所述开关电源电路111进入正常工作模式。其中,所述可控开关K可以为MOSFET或双极结型晶体管(BipolarJunction Transistor,BJT)。It can be understood that as the on-time of the controllable switch K increases, the temperature of the second capacitor C2 increases gradually, and accordingly, the capacity of the second capacitor C2 also increases gradually. When the capacity of the capacitor C2 reaches a preset threshold, the
请参阅图2,在一种实施方式中,所述加热控制电路130还包括限流电阻R1,所述限流电阻R1与所述可控开关K串联,用于限制所述充放电回路上的充放电电流的大小。可以理解,所述限流电阻R1的大小可以根据所述可控开关K的电流规格来选择。Referring to FIG. 2 , in one embodiment, the
可以理解,为防止所述开关驱动电路150对所述开关电源电路111产生干扰,可以将所述开关驱动电路150设置为隔离式驱动电路。It can be understood that, in order to prevent the
如图2所示,在一种实施方式中,所述开关驱动电路150可以包括光耦合器151和驱动器153,所述光耦合器151一端与所述驱动器153的信号输出端电连接,另一端与所述可控开关K的控制端电连接,用于将所述驱动器153的信号输出端输出的预设开关控制信号耦合至所述可控开关K的控制端。可以理解,通过所述光耦合器151将所述开关驱动电路150设置为隔离式驱动电路,从而可以有效防止所述开关驱动电路150对所述电源装置100的开关电源电路111产生干扰,从而保证所述开关电源电路111的稳定性。As shown in FIG. 2 , in one embodiment, the
在一种实施方式中,还可以将所述预设开关控制信号设置为与所述第一开关管Q1的驱动信号相同,从而可以在所述储能电感L1存储电能的同时导通所述充放电回路,即在所述储能电感L1存储电能的过程中完成对所述第二电容C2的加热。可以理解,通过复用所述第一开关管Q1的驱动信号来对所述可控开关K进行控制,无需单独为所述可控开关K设置驱动电路,从而可以防止单独设置驱动电路对所述开关电源电路111的干扰,并降低所述电源装置100的生产成本。In an implementation manner, the preset switch control signal can also be set to be the same as the drive signal of the first switch transistor Q1, so that the charger can be turned on while the energy storage inductor L1 stores electrical energy. The discharge loop is to complete the heating of the second capacitor C2 during the process of storing the electrical energy in the energy storage inductor L1. It can be understood that by multiplexing the driving signal of the first switch transistor Q1 to control the controllable switch K, there is no need to separately set a driving circuit for the controllable switch K, so that it is possible to prevent a separate driving circuit from affecting the controllable switch K. The interference of the switching
请参阅图3,在一种实施方式中,所述电源装置100还包括与所述开关驱动电路150电连接的电容容量检测电路170,所述电容容量检测电路170还与所述第一电容C1和所述第二电容C2电连接,用于检测所述第二电容C2的容量,并在所述第二电容C2的容量超过预设阈值时,触发所述开关驱动电路150驱动所述可控开关K截止。Referring to FIG. 3 , in an embodiment, the
在一种实施方式中,所述电容容量检测电路170包括电压检测电路171和容量计算电路173,所述电压检测电路171与所述第一电容C1和所述第二电容C2电连接,用于在所述可控开关K导通期间检测所述第一电容C1的电压Vc1,并至少两次检测所述第二电容C2的电压,其中,相邻两次检测所述第二电容C2的电压的时间间隔为预设时间间隔tx,并分别得到所述第二电容C2的第一电压Vbus1和所述第二电容C2的第二电压Vbus2,所述容量计算电路173用于根据所述第一电容C1的电压Vc1、所述第二电容C2的第一电压Vbus1和第二电压Vbus2及所述预设时间间隔tx,计算所述第二电容C2的容量。In one embodiment, the
可以理解,在一种实施方式中,所述容量计算电路173可以包括处理器(图未示),所述处理器触发所述电压检测电路171检测所述第一电容C1和第二电容C2的电压,并记录检测所述第二电容C1的第一电压Vbus1和第二电压Vbus2之间的预设时间间隔tx,进而根据所述第一电容C1的电压Vc1、所述第二电容C2的第一电压Vbus1和第二电压Vbus2及所述预设时间间隔tx,计算所述第二电容C2的容量,并将所述第二电容C2的容量与预设阈值进行比较,在所述第二电容C2的容量大于或等于所述预设阈值时,触发所述开关驱动电路150输出关断所述可控开关K的控制信号。可以理解,所述处理器还可以与所述第一开关管Q1及所述第二开关管Q2的驱动电路(图未示)电连接,从而可以在触发所述开关驱动电路150输出关断所述可控开关K的控制信号之后,控制所述开关电源电路111进入正常工作模式。It can be understood that, in an embodiment, the
具体地,当所述加热控制电路130包括所述限流电阻R1时,在所述预设时间间隔tx内,通过所述限流电阻R1的电流I1=(VBUS-Vc1)/R1,其中,VBUS为所述第一电压Vbus1和所述第二电压Vbus2的均值,或者,VBUS也可以近似等于所述第一电压Vbus1或所述第二电压Vbus2。相应地,在所述预设时间间隔tx内,所述第二电容C2的放电电荷量为Q=I1*tx=(VBUS-Vc1)*tx/R1,所述第二电容C2的电压变化量U=Vbus1-Vbus2。根据上述条件,可以计算得到所述第二电容C2的当前电容容量C=(VBUS-Vc1)*tx/[R1*(Vbus1-Vbus2)]。可以理解,若所述加热控制电路130不包括所述限流电阻R1,则可以用所述加热控制电路130上的等效阻抗来代替。Specifically, when the
可以理解,由于电容中会存在等效串联电阻(Equivalent Series Resistance,ESR),应尽量避免在所述可控开关K刚导通时检测所述第二电容C2的第一电压Vbus1。若要在所述可控开关K刚导通时检测所述第二电容C2的第一电压Vbus1,则需要将所述第一电压Vbus1减去ESR*(VBUS-Vc1)/R1。若避开所述可控开关K刚导通时的任意时间检测所述第二电容C2的电压,则无需考虑ESR的影响。It can be understood that since there will be an equivalent series resistance (ESR) in the capacitor, it should be avoided as much as possible to detect the first voltage Vbus1 of the second capacitor C2 when the controllable switch K is just turned on. To detect the first voltage Vbus1 of the second capacitor C2 when the controllable switch K is just turned on, it is necessary to subtract ESR*(VBUS-Vc1)/R1 from the first voltage Vbus1. If the voltage of the second capacitor C2 is detected at any time when the controllable switch K is just turned on, the influence of ESR need not be considered.
可以理解,在一种实施方式中,由于所述第二电容C2通过所述加热控制电路130对所述第一电容C1放电,因此还可以通过对所述第一电容C1的容量检测来判断所述第二电容C1的电容容量变化。可以理解,对于第一电容C1的容量检测,可以采用与第二电容C2的容量检测相同的方法,具体可以参照图3所示实施例中的相关描述,此处不再赘述。It can be understood that, in an implementation manner, since the second capacitor C2 discharges the first capacitor C1 through the
请参阅图4,在本发明一个实施例中,提供一种电容加热控制方法,其可以应用于如图1至图3所示实施例中提供的所述电源装置100中,用于对所述电源装置100的电容进行加热控制,所述电容加热控制方法至少包括如下步骤:Referring to FIG. 4, in an embodiment of the present invention, a capacitive heating control method is provided, which can be applied to the
步骤401:在电压转换电路的电压输入端与电压输出端之间设置加热控制电路,所述加热控制电路包括可控开关;Step 401: A heating control circuit is provided between the voltage input terminal and the voltage output terminal of the voltage conversion circuit, and the heating control circuit includes a controllable switch;
步骤402:根据预设开关控制信号驱动所述可控开关导通,并在所述电压转换电路的第一电容与第二电容之间形成充放电回路;Step 402: Drive the controllable switch to conduct according to a preset switch control signal, and form a charge-discharge loop between the first capacitor and the second capacitor of the voltage conversion circuit;
步骤403:通过所述充放电回路在所述第一电容和所述第二电容之间传导充放电电流,并通过所述充放电电流为所述第二电容加热。Step 403: Conduct charging and discharging current between the first capacitor and the second capacitor through the charging and discharging circuit, and heat the second capacitor through the charging and discharging current.
请参阅图5,在一种实施方式中,所述方法还包括:Referring to FIG. 5, in one embodiment, the method further includes:
步骤404:检测所述第二电容的容量,并在所述第二电容的容量超过预设阈值时,触发所述开关驱动电路停止工作,所述电源装置进入正常工作状态。Step 404: Detect the capacity of the second capacitor, and when the capacity of the second capacitor exceeds a preset threshold, trigger the switch driving circuit to stop working, and the power supply device enters a normal working state.
请参阅图6,在一种实施方式中,所述检测所述第二电容的容量,包括:Referring to FIG. 6, in one embodiment, the detecting the capacity of the second capacitor includes:
步骤601:在所述可控开关导通期间检测所述第一电容的电压;Step 601: Detect the voltage of the first capacitor during the conduction period of the controllable switch;
步骤602:在所述可控开关导通期间至少两次检测所述第二电容的电压,分别得到所述第二电容的第一电压和所述第二电容的第二电压,其中,相邻两次检测所述第二电容的电压的时间间隔为预设时间间隔;Step 602: Detect the voltage of the second capacitor at least twice during the conduction period of the controllable switch, and obtain the first voltage of the second capacitor and the second voltage of the second capacitor respectively, wherein the adjacent The time interval for detecting the voltage of the second capacitor twice is a preset time interval;
步骤603:根据所述第一电容的电压、所述第二电容的第一电压和第二电压及所述预设时间间隔,计算所述第二电容的容量。Step 603: Calculate the capacity of the second capacitor according to the voltage of the first capacitor, the first voltage and the second voltage of the second capacitor, and the preset time interval.
可以理解,所述电容加热控制方法中各步骤的具体实现还可以参照图1至图3所示实施例中的相关描述,此处不再赘述。It can be understood that the specific implementation of each step in the capacitive heating control method can also refer to the relevant descriptions in the embodiments shown in FIG. 1 to FIG. 3 , and details are not repeated here.
在本发明实施例中,所述电源装置及其电容加热控制方法通过所述预设开关控制信号控制所述加热控制电路中的可控开关导通,从而在所述第一电容与所述第二电容之间形成充放电回路,由于充放电回路在电流的作用下会产生热量,进而可以通过所述第一电容和所述第二电容之间的充放电电流来对所述第二电容加热,可以有效防止因所述第二电容的容量在低温条件下出现大幅下降而影响所述电源装置的正常使用,从而保证电源装置在低温条件下的工作效率。In the embodiment of the present invention, the power supply device and the capacitor heating control method thereof control the controllable switch in the heating control circuit to conduct through the preset switch control signal, so that the first capacitor and the first capacitor are connected to the first capacitor. A charging and discharging circuit is formed between the two capacitors. Since the charging and discharging circuit generates heat under the action of current, the second capacitor can be heated by the charging and discharging current between the first capacitor and the second capacitor. , which can effectively prevent the normal use of the power supply device from being affected by the large drop in the capacity of the second capacitor under low temperature conditions, thereby ensuring the working efficiency of the power supply device under low temperature conditions.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710284565.0A CN107070190B (en) | 2017-04-26 | 2017-04-26 | Power supply device and capacitance heating control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710284565.0A CN107070190B (en) | 2017-04-26 | 2017-04-26 | Power supply device and capacitance heating control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107070190A CN107070190A (en) | 2017-08-18 |
CN107070190B true CN107070190B (en) | 2020-06-09 |
Family
ID=59603822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710284565.0A Active CN107070190B (en) | 2017-04-26 | 2017-04-26 | Power supply device and capacitance heating control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107070190B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107390437A (en) * | 2017-09-06 | 2017-11-24 | 惠科股份有限公司 | Liquid crystal dripping device |
CN113067473B (en) * | 2020-01-02 | 2022-05-24 | 阳光新能源开发股份有限公司 | Control signal modulation circuit, inverter and control system |
WO2022040908A1 (en) * | 2020-08-25 | 2022-03-03 | Astec International Limited | Bulk capacitor heating circuits in electrical power converters |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008259309A (en) * | 2007-04-04 | 2008-10-23 | Denso Corp | Switching power unit |
CN101364780A (en) * | 2007-08-06 | 2009-02-11 | 株式会社丰田自动织机 | Method and apparatus for controlling electric motor |
CN201528284U (en) * | 2009-10-23 | 2010-07-14 | 广东昭信光电科技有限公司 | Switch power supply for low-temperature environment |
JP2011010534A (en) * | 2009-05-27 | 2011-01-13 | Jtekt Corp | Motor control device and electric power steering apparatus |
CN102163855A (en) * | 2010-02-23 | 2011-08-24 | 马克西姆综合产品公司 | Novel circuit topology for regulating power from low capacity battery cells |
CN102176377A (en) * | 2011-01-31 | 2011-09-07 | 李纯廉 | Method for controlling temperature of electrolytic capacitor and temperature-controllable electrolytic capacitor using same |
CN103166454A (en) * | 2011-12-15 | 2013-06-19 | 松下电器产业株式会社 | capacitor device |
CN103222105A (en) * | 2010-11-05 | 2013-07-24 | 三菱电机株式会社 | Charging/discharging device and method for controlling charging and discharging |
CN103534931A (en) * | 2011-04-07 | 2014-01-22 | 三电有限公司 | Inverter device |
CN104793677A (en) * | 2014-01-17 | 2015-07-22 | 瑞萨电子株式会社 | Semiconductor integrated circuit and method for operating same |
CN105763035A (en) * | 2016-04-11 | 2016-07-13 | 广州金升阳科技有限公司 | Method and circuit for improving low-temperature starting capacity |
-
2017
- 2017-04-26 CN CN201710284565.0A patent/CN107070190B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008259309A (en) * | 2007-04-04 | 2008-10-23 | Denso Corp | Switching power unit |
CN101364780A (en) * | 2007-08-06 | 2009-02-11 | 株式会社丰田自动织机 | Method and apparatus for controlling electric motor |
JP2011010534A (en) * | 2009-05-27 | 2011-01-13 | Jtekt Corp | Motor control device and electric power steering apparatus |
CN201528284U (en) * | 2009-10-23 | 2010-07-14 | 广东昭信光电科技有限公司 | Switch power supply for low-temperature environment |
CN102163855A (en) * | 2010-02-23 | 2011-08-24 | 马克西姆综合产品公司 | Novel circuit topology for regulating power from low capacity battery cells |
CN103222105A (en) * | 2010-11-05 | 2013-07-24 | 三菱电机株式会社 | Charging/discharging device and method for controlling charging and discharging |
CN102176377A (en) * | 2011-01-31 | 2011-09-07 | 李纯廉 | Method for controlling temperature of electrolytic capacitor and temperature-controllable electrolytic capacitor using same |
CN103534931A (en) * | 2011-04-07 | 2014-01-22 | 三电有限公司 | Inverter device |
CN103166454A (en) * | 2011-12-15 | 2013-06-19 | 松下电器产业株式会社 | capacitor device |
CN104793677A (en) * | 2014-01-17 | 2015-07-22 | 瑞萨电子株式会社 | Semiconductor integrated circuit and method for operating same |
CN105763035A (en) * | 2016-04-11 | 2016-07-13 | 广州金升阳科技有限公司 | Method and circuit for improving low-temperature starting capacity |
Also Published As
Publication number | Publication date |
---|---|
CN107070190A (en) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102684479B (en) | Charge pump type voltage division circuit and starting method thereof | |
CN104062504B (en) | Super-capacitor detecting circuit | |
CN104617558B (en) | Power supply short-circuit protective circuit | |
CN107994622A (en) | Battery power supply circuit | |
CN107070190B (en) | Power supply device and capacitance heating control method thereof | |
CN105244848A (en) | Overvoltage protection method and circuit | |
CN204131085U (en) | Based on the battery system anti-surge circuit of hot plug chip | |
CN105322810A (en) | Power conversion device and protection method thereof when current feedback signal is abnormal | |
CN105553245A (en) | Soft start circuit | |
CN104467410B (en) | Direct current-direct current converter with energy recovery function | |
CN203734296U (en) | Power supply short circuit protection circuit | |
CN108964459A (en) | A kind of DC-DC booster circuit and control method | |
CN116243777A (en) | Power failure maintaining device and server | |
CN109818328B (en) | A switching power supply overvoltage protection circuit | |
CN201937472U (en) | A Charging Control Circuit for Inverter DC Bus Capacitor | |
CN106357101A (en) | Active discharge circuit for filter capacitor of electric automobile controller | |
CN107979060B (en) | Charging and discharging circuit, power supply control circuit and control method | |
WO2022179612A1 (en) | Multi-mode combined short-circuit protection circuit, and working method and use thereof | |
CN204131110U (en) | Based on the battery system anti-surge circuit of discrete elements | |
CN109450222A (en) | A kind of Switching Power Supply control IC energy supply circuit | |
CN109873561A (en) | A kind of the energy utilization circuit and electronic equipment of overshoot voltage | |
CN206640829U (en) | Low voltage difference output current overshoot suppression circuit | |
CN205104896U (en) | Overvoltage protection circuit | |
CN110460232B (en) | A DC power supply with an isolation module | |
CN207200266U (en) | A kind of circuit for preventing power input Damage by Short Circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211117 Address after: 518043 No. 01, 39th floor, building a, antuoshan headquarters building, No. 33, antuoshan Sixth Road, Xiang'an community, Xiangmihu street, Futian District, Shenzhen, Guangdong Province Patentee after: Huawei Digital Energy Technology Co.,Ltd. Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen Patentee before: HUAWEI TECHNOLOGIES Co.,Ltd. |
|
TR01 | Transfer of patent right |