CN107058264B - Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof - Google Patents
Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof Download PDFInfo
- Publication number
- CN107058264B CN107058264B CN201710032298.8A CN201710032298A CN107058264B CN 107058264 B CN107058264 B CN 107058264B CN 201710032298 A CN201710032298 A CN 201710032298A CN 107058264 B CN107058264 B CN 107058264B
- Authority
- CN
- China
- Prior art keywords
- amylase
- alpha
- jcamy
- mutant
- specific activity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
- C12N9/2417—Alpha-amylase (3.2.1.1.) from microbiological source
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01001—Alpha-amylase (3.2.1.1)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention relates to the field of genetic engineering, in particular to an alpha-amylase JcAmy mutant with improved specific activity and a coding gene and application thereof. The amino acid sequence of the mutant is any one or more of the 6 th position, the 53 th position, the 173 th position, the 245 th position and/or the 281 th position of the amino acid sequence shown as SEQ ID No.2 as a substituent group. Compared with the specific activity of the original alpha-amylase, the improvement range of the specific activity of the mutated alpha-amylase is 21-92%, and the method lays a foundation for the industrial application of the halophilous bacillus amyloliquefaciens alpha-amylase.
Description
Technical Field
The invention relates to the field of genetic engineering, in particular to an alpha-amylase JcAmy mutant with improved specific activity and a coding gene and application thereof.
Background
Alpha-amylase, the systematic name of which is 1, 4-alpha-D-glucan hydrolase, is an endo-hydrolase, mainly plays a role in catalyzing 1, 4-alpha-D-glucan of starch to generate reducing dextrin and saccharides, and plays an important role in the fields of starch, detergents, beverages, textiles and the like.
Currently, in the fields of alcohol brewing, starch sugar and the like, a starchy raw material is generally subjected to two stages of liquefaction and saccharification in the processing process. The enzymes used in the liquefaction and saccharification processes are mainly alpha-amylases and saccharifying enzymes. Commercial α -amylase and saccharifying enzymes currently in wide use in industry have optimal pH values of about 6.5 and 4.5, and thus require the addition of acid or alkali to adjust pH during the liquefaction and saccharification processes. The addition of large amounts of acid and base during liquefaction and saccharification not only complicates the processing process, but also increases the production cost. If the alpha-amylase which is stable under the acidic condition can be developed, acid and alkali are not required to be additionally added for pH adjustment in the liquefying and saccharifying processes, so that the reagent consumption can be reduced, the processing technology is simplified, the production cost can be reduced, and the grain is saved. Has great significance for the starch processing field.
The alpha-amylase of the halophilous Bacillus halodurans (Jeotgalibacillus campisalis) is called JcAmy for short. JcAmy is an acid resistant amylase with an optimum pH of 5.0 and good stability in the pH range of 4 to 8, enabling it to perform well under acidic liquefaction conditions. Although JcAmy has good pH characteristics, it has low specific activity and high production cost, which limits its industrial application. Therefore, the improvement of the specific enzyme activity of JcAmy and the reduction of the production cost are problems to be solved urgently in the industrial application of JcAmy.
In recent years, a series of microbial alpha-amylases have been expressed heterologously in Escherichia coli or yeast. However, the activity of the alpha-amylase produced by wild bacteria screened from nature is generally lower, so that the alpha-amylase cannot be directly applied to industrial fermentation production. In the prior art, the enzyme production capability of the strain is improved by technical means such as mutagenesis, crossbreeding and the like on the wild strain, but the technologies such as mutagenesis, crossbreeding and the like have large workload and have higher probability of uncontrollably generating negative mutation.
The invention improves the specific activity of the halophilic marine bacillus alpha-amylase JcAmy by a site-directed mutagenesis technology, greatly reduces the production cost and lays a foundation for further industrial application.
Disclosure of Invention
The invention aims to modify the molecular of the alpha-amylase JcAmy derived from the salt-land fresh-sea-bud bacillus, so that the modified alpha-amylase has higher specific activity, the production cost is reduced, and a foundation is laid for the industrial application of the salt-land fresh-sea-bud bacillus alpha-amylase.
The invention aims to provide a mutant of an alpha-amylase JcAmy with improved specific activity.
It is still another object of the present invention to provide a gene encoding the above-described JcAmy mutant of α -amylase.
The nucleotide sequence and the amino acid sequence of the salty seafood bacillus alpha-amylase JcAmy are shown as SEQ ID NO.1, and the amino acid sequence is shown as SEQ ID NO. 2.
The invention adopts a site-directed saturation mutagenesis method to carry out molecular modification on the 6 th, 53 th, 173 th, 245 th and/or 281 th sites of the alpha-amylase JcAmy shown in SEQ ID NO.2, and obtains the alpha-amylase mutant with improved specific activity through high-throughput screening. The amino acid sequences of the mutants are shown as SEQ ID NO.3 to SEQ ID NO.10, and the nucleotide sequences of the coding mutants are shown as SEQ ID NO.11 to SEQ ID NO. 18.
An optimized and improved alpha-amylase JcAmy mutant according to a specific embodiment of the invention has an amino acid sequence in which at least one amino acid at position 6, 53, 173, 245 and/or 281 of the alpha-amylase JcAmy of SEQ ID No.2 is replaced by a corresponding amino acid selected from the group consisting of:
the 6 th position of the alpha-amylase JcAmy is replaced with G6F, G6M, G6P, G6N or G6S;
the 53 rd position of the alpha-amylase JcAmy is replaced by N35S or N35A;
the 173-position of the alpha-amylase JcAmy was replaced with N173K or N173S;
the 245 th position of the alpha-amylase JcAmy is replaced by Q245G, Q245P or Q245R;
the 281 th position of the alpha-amylase JcAmy is replaced by G281N, G281D, G281S or G281K.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-1 according to the embodiment of the invention has the mutation sites of: G6F, N35S, N173K, Q245G and G281N, and the amino acid sequence is shown as SEQ ID NO. 3.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-2 according to the embodiment of the invention has the mutation sites of: G6M, N35S, N173S, Q245P and G281D, and the amino acid sequence is shown as SEQ ID NO. 4.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-3 according to the embodiment of the invention has the mutation sites of: G6P, N35A, N173K, Q245R and G281K, and the amino acid sequence is shown as SEQ ID NO. 5.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-4 according to the embodiment of the invention has the mutation sites of: G6N, N35S, N173K, Q245P and G281S, and the amino acid sequence is shown as SEQ ID NO. 6.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-5 according to the embodiment of the invention has the mutation sites of: G6S, N35A, N173S, Q245P and G281K, and the amino acid sequence is shown as SEQ ID NO. 7.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-6 according to the embodiment of the invention has the mutation sites of: G6P, N35A, N173K, Q245G and G281S, and the amino acid sequence is shown as SEQ ID NO. 8.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-7 according to the embodiment of the invention has the mutation sites of: G6S, N35A, N173K, Q245P and G281N, and the amino acid sequence is shown as SEQ ID NO. 9.
The optimized and improved alpha-amylase JcAmy mutant JcAmy-8 according to the embodiment of the invention has the mutation sites of: G6M, N35A, N173K, Q245G and G281S, and the amino acid sequence is shown as SEQ ID NO. 10.
The invention carries out molecular modification on a-amylase JcAmy of a halophilum halioticum (Jeotgalibacillus campisalis) by protein rational modification and high-throughput screening technology. Compared with the specific activity of the original alpha-amylase, the improvement range of the specific activity of the mutated alpha-amylase is 21-92%, and the method lays a foundation for the industrial application of the halophilous bacillus amyloliquefaciens alpha-amylase.
Drawings
FIG. 1 shows the optimum pH for the original alpha-amylase and the alpha-amylase mutant, JcAmy1-8, according to embodiments of the invention.
FIG. 2 shows the pH stability of the original alpha-amylase and the alpha-amylase mutant, JcAmy1-8, according to embodiments of the invention.
Detailed Description
The molecular biology experiments, which are not specifically described in the following examples, were performed according to the specific methods listed in molecular cloning, a laboratory manual (third edition) j. sambrook, or according to the kit and product instructions; the reagents and biomaterials, if not specifically indicated, are commercially available.
Experimental materials and reagents:
1. strain and carrier: coli strain Topl0, Pichia pastoris X33, vector pPICz. alpha.A, Zeocin were purchased from Invitrogen.
2. Gene: alpha-amylase JcAmy (Sequence ID: WP-052476631.1) of the published salty seafood bacillus (Jeotgalibacillus campisalis) is subjected to gene synthesis after codon optimization according to pichia pastoris.
3. Enzyme and kit: q5 high fidelity Taq enzyme MIX was purchased from NEB company, plasmid extraction, gel purification, restriction enzyme, kit was purchased from Shanghai Biotech company.
4. Culture medium: the Escherichia coli culture medium is LB, and the formula is as follows: 1% peptone, 0.5% yeast extract, 1% NaCl, pH 7.0. LBZ is LB medium plus 25ug/mL Zeocin.
The yeast culture medium is YPD, and the formula is as follows: 1% yeast extract, 2% peptone, 2% glucose. The yeast screening medium is YPDZ, and the formula is YPD +100mg/L zeocin.
Yeast induction medium BMGY, formula 1% yeast extract, 2% peptone, 1.34% YNB, 0.00004% Biotin, 1% glycerol (V/V)) and BMMY, except that 0.5% methanol was used instead of glycerol, the other components were identical to BMGY.
Example 1 cloning of the alpha-amylase JcAmy from Haemophilus halodurans (Jeotgalibacillus campisalis) salt
Two primers (F: 5'-GATCGAATTCGCTACTCCTCAAAACGGTACTATGA-3' and R: 5'-TAGCGCGGCCGCCTACTCACCATAAATGGAAACAGAA-3') were designed based on the sequence of the synthesized a-amylase JcAmy gene for amplification of the C.halophilus alpha-amylase gene. And purifying and recovering the amplified PCR product, and connecting the product to an expression vector pPICz alpha A to obtain the expression vector pPICz alpha A-JcAmy.
Example 2 site-directed mutagenesis
The single mutation site is
G6F, G6M, G6P, G6N or G6S; or
N35S, N35A, N173K or N173S; or
Q245G, Q245P or Q245R; or
G281N, G281D, G281S or G281K
Taking the pPICz alpha A-JcAmy as a template, and carrying out PCR amplification by using corresponding primers, wherein the specific amplification reaction system is as follows:
q5 high fidelity Taq enzyme MIX | 23uL |
Corresponding mutant primers | 1uL |
Corresponding mutant primers | 1uL |
pPICzαA-JcAmy(20ng) | 2uL |
Adding water to | 50uL |
The reaction procedure was as follows:
and detecting the PCR amplification result by agarose electrophoresis, and purifying and recovering the PCR product. Decomposing the original plasmid by using restriction endonuclease DpnI, transferring the decomposed product into escherichia coli Top10 by using a heat shock method, verifying a recombinant transformant by using a bacterial liquid PCR, extracting a plasmid of the transformant which is verified to be correct, and sequencing to determine a corresponding mutant. Correctly sequenced mutants were linearized with SacI and transformed into Pichia pastoris X33. A series of single-site mutants with improved specific activities are obtained by screening, and the relative specific activities of the mutants are shown in Table 1.
TABLE 1 relative specific Activity of original alpha-Amylase and Single Point mutant alpha-Amylase
Numbering | Relative specific activity (%) |
Primary alpha- |
100 |
G6F | 115 |
G6M | 121 |
G6P | 130 |
G6N | 119 |
G6S | 116 |
N35S | 135 |
N35A | 141 |
N173K | 126 |
N173S | 136 |
Q245G | 123 |
Q245P | 128 |
Q245R | 121 |
G281N | 142 |
G281D | 136 |
G281S | 115 |
G281K | 127 |
Example 3 high throughput screening of high specific Activity mutant strains
The yeast recombinant transformants obtained in example 2 were picked up one by one with a toothpick into 24-well plates, 1mL of BMGY-containing medium was added to each well, cultured at 30 ℃ and 220rpm for about 24 hours, and the supernatant was centrifuged. And respectively adding 1.6mL of BMMY culture medium for induction culture. After 24h of culture, the supernatant is taken out by centrifugation, 200 mu L of the supernatant is respectively taken out to a 96-pore plate, and the alpha-amylase activity is measured. The detection of the enzyme activity of the alpha-amylase is carried out according to the national standard GB/T24401-2009 of the people's republic of China.
Example 4 combinatorial mutagenesis
Position 6: G6F, G6M, G6P, G6N, G6S;
position 53: N35S, N35A;
173 th site: N173K, N173S;
at position 245: Q245G, Q245P, Q245R;
281 th position: G281N, G281D, G281S, G281K.
The single mutation sites of improved specific enzyme activity in example 2, G6F, G6M, G6P, G6N, G6S, N35S, N35A, N173K, N173S, Q245G, Q245P, Q245R, G281N, G281D, G281S and G281K were combined, and the experimental procedure was the same as in example 2. The 8 combined mutations finally obtained by experiments are respectively named as JcAmy-1, JcAmy-2, JcAmy-3, JcAmy-4, JcAmy-5, JcAmy-6, JcAmy-7 and JcAmy-8
Wherein JcAmy-1 comprises the following mutation sites: G6F, N35S, N173K, Q245G, G281N.
Wherein the JcAmy-2 comprises mutation sites of: G6M, N35S, N173S, Q245P, G281D.
Wherein the JcAmy-3 comprises mutation sites of: G6P, N35A, N173K, Q245R, G281K.
Wherein JcAmy-4 comprises mutation sites of: G6N, N35S, N173K, Q245P, G281S.
Wherein JcAmy-5 comprises the following mutation sites: G6S, N35A, N173S, Q245P, G281K.
Wherein the JcAmy-6 comprises mutation sites of: G6P, N35A, N173K, Q245G, G281S.
Wherein JcAmy-7 comprises the following mutation sites: G6S, N35A, N173K, Q245P, G281N.
Wherein JcAmy-8 comprises the following mutation sites: G6M, N35A, N173K, Q245G, G281S.
Example 5 analysis of specific Activity of original alpha-Amylase and alpha-Amylase mutants
Respectively purifying the original alpha-amylase and the mutant alpha-amylase by a nickel column purification method. And respectively measuring the corresponding enzyme activity of the purified alpha-amylase and the mutant alpha-amylase and calculating the specific activity. The improvement of the specific activity of the mutant was calculated by dividing the specific activity of the mutant by the specific activity of the original alpha-amylase. Compared with the original JcAmy, the specific activity of the mutated JcAmy is improved by 21-92% (the specific result is shown in Table 2).
TABLE 2 relative specific Activity of original alpha-Amylase and mutant alpha-Amylase
Numbering | Relative specific activity (%) |
Primary alpha- |
100 |
JcAmy-1 | 135 |
JcAmy-2 | 159 |
JcAmy-3 | 142 |
JcAmy-4 | 121 |
JcAmy-5 | 130 |
JcAmy-6 | 150 |
JcAmy-7 | 192 |
JcAmy-8 | 160 |
Example 6 optimum pH and pH stability of the original alpha-Amylase and the alpha-Amylase mutant JcAmy1-8
The optimum pH of the original alpha-amylase and the alpha-amylase mutant JcAmy1-8 was determined by reference to the national standard method. The optimum pH for the original alpha-amylase and the alpha-amylase mutant, JcAmy1-8, are shown in FIG. 1. As can be seen from FIG. 1, the optimum pH of the mutant JcAmy1-8 did not change much, almost as much as the original alpha-amylase.
The original alpha-amylase and the alpha-amylase mutant JcAmy1-8 are respectively treated for 3 hours at room temperature under the condition of pH4-8, and then the enzyme activity is determined by referring to the national standard method. The pH stability of the original α -amylase and the α -amylase mutant, JcAmy1-8, is shown in FIG. 2. As can be seen from FIG. 2, the mutants JcAmy1, JcAmy3 and JcAmy7 were more stable than the original α -amylase at pH4, while the mutants JcAmy2, JcAmy4, JcAmy5, JcAmy6 and JcAmy8 were pH stable in agreement with the original α -amylase.
<110> Guangdong overflow Multi-interest Biotech Ltd
Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof
<160>18
<210>1
<211>1458
<212>DNA
<213> Bacillus salina seafood
<400>1
gctactcctc aaaacggtac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta agaacttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgaaca gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tccaagagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
ggatattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag
1458
<210>2
<211>460
<212>PRT
<213> Bacillus salina seafood
<400>2
ATPQNGTMMQ YFEWYLPNDG LHWNRLTNDA SNLKNLGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLNRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIQEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT GYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS 460
<210>3
<211>485
<212>PRT
<213> Artificial sequence
<400>3
ATPQNFTMMQ YFEWYLPNDG LHWNRLTNDA SNLKSLGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLKRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIGEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT NYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE 485
<210>4
<211>485
<212>PRT
<213> Artificial sequence
<400>4
ATPQNMTMMQ YFEWYLPNDG LHWNRLTNDA SNLKSLGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLSRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIPEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT DYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE485
<210>5
<211>485
<212>PRT
<213> Artificial sequence
<400>5
ATPQNPTMMQ YFEWYLPNDG LHWNRLTNDA SNLKALGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLKRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIREWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT KYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE 485
<210>6
<211>485
<212>PRT
<213> Artificial sequence
<400>6
ATPQNNTMMQ YFEWYLPNDG LHWNRLTNDA SNLKSLGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLKRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIPEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT SYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE 485
<210>7
<211>485
<212>PRT
<213> Artificial sequence
<400>7
ATPQNSTMMQ YFEWYLPNDG LHWNRLTNDA SNLKALGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLSRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIPEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT KYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE 485
<210>8
<211>485
<212>PRT
<213> Artificial sequence
<400>8
ATPQNPTMMQ YFEWYLPNDG LHWNRLTNDA SNLKALGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLKRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIGEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT SYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE 485
<210>9
<211>485
<212>PRT
<213> Artificial sequence
<400>9
ATPQNSTMMQ YFEWYLPNDG LHWNRLTNDA SNLKALGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLKRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIPEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT NYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE 485
<210>10
<211>485
<212>PRT
<213> Artificial sequence
<400>10
ATPQNMTMMQ YFEWYLPNDG LHWNRLTNDA SNLKALGVTT VWIPPAYKGT SQNDVGYGAY 60
DLYDLGEFNQ KGTVRTKYGT RGQLQTAINT LKNQGIGTYG DVVMNHKGGA DFTESVQAVE 120
VNPNNRSQET SGEYTISAWT GFNFAGRNNL HSAFKWRWYH FDGTDWDQSR SLKRIYKFRG 180
SGKSWDTEVS NEFGNYDYLM YADVDFDHPE VKAELKNWGK WYVQSLNLDG FRLDAVKHIK 240
HDYIGEWLAD VRRTTGKELF TVAEYWQNDL GAINNYLAKT SYSHSVFDVP LHYNFQRAAN 300
SGGNFDMRTI FNGSVVQQHP TLAVTIVDNH DSQPGQSLES TVDAWFKPLA YAMIMTREQG 360
YPNLFYGDFY GTKGSSNREI PNLSSKLTPI LKARKDMAYG TQHDYLNHQD VIGWTREGVT 420
DRSKSGLATI LSDGPGGNKW MYVGKRNAGE TWRDKTGNSS NAVTINSDGW GQFFVNGGSV 480
SIYGE 485
<210>11
<211>1458
<212>DNA
<213> Artificial sequence
<400>11
gctactcctc aaaactttac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta agtctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgaaaa gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcggtgagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
aactattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
<210>12
<211>1458
<212>DNA
<213> Artificial sequence
<400>12
gctactcctc aaaacatgac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta agtctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgtcta gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcccagagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
gattattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
<210>13
<211>1458
<212>DNA
<213> Artificial sequence
<400>13
gctactcctc aaaacccaac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta aggctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgaaga gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcagagagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
aagtattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
<210>14
<211>1458
<212>DNA
<213> Artificial sequence
<400>14
gctactcctc aaaacaacac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta agtctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgaaga gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcccagagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
tcttattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
<210>15
<211>1458
<212>DNA
<213> Artificial sequence
<400>15
gctactcctc aaaactctac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta aggctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgtcta gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcccagagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
aagtattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
<210>16
<211>1458
<212>DNA
<213> Artificial sequence
<400>16
gctactcctc aaaacccaac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta aggctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgaaga gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcggtgagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
tcttattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
<210>17
<211>1458
<212>DNA
<213> Artificial sequence
<400>17
gctactcctc aaaactctac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta aggctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgaaga gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcccagagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
aactattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaa cgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
<210>18
<211>1458
<212>DNA
<213> Artificial sequence
<400>18
gctactcctc aaaacatgac tatgatgcaa tactttgaat ggtacttgcc aaacgatggt 60
ttgcattgga accgtttgac caacgacgcc tccaacctta aggctttggg tgtcactacc 120
gtttggatcc ctcctgccta caagggtact tcccaaaacg acgtcggata cggagcctac 180
gacttgtacg accttggtga gttcaaccaa aagggtaccg tccgtaccaa gtacggtact 240
agaggtcagt tgcagaccgc tatcaacacc cttaagaacc agggtatcgg tacttacgga 300
gacgtcgtca tgaaccataa gggaggtgct gactttaccg agtccgtcca agctgtcgaa 360
gtcaacccaa acaacagatc tcaagaaact tccggtgaat acaccatttc cgcttggacc 420
ggattcaact tcgccggtcg taacaacttg cactccgcct tcaagtggag atggtaccac 480
ttcgacggta ctgactggga ccagtccaga tccttgaaga gaatttacaa gttcagagga 540
tctggtaagt cctgggacac cgaagtttcc aacgagttcg gtaactacga ctatcttatg 600
tatgccgacg ttgacttcga tcacccagag gtcaaggccg agttgaagaa ctggggtaag 660
tggtatgttc aatctttgaa ccttgatggt tttagattgg atgccgttaa acatatcaag 720
cacgattaca tcggtgagtg gttggccgac gtcagacgta ctactggtaa agagttgttc 780
accgttgccg aatactggca gaacgacttg ggtgccatta acaattactt ggctaagacc 840
tcttattctc actccgtctt cgacgtccca cttcactaca acttccagcg tgctgccaac 900
tccggaggta atttcgatat gagaactatt ttcaacggat ccgttgtcca gcaacaccca 960
actttggccg tcaccatcgt cgacaaccat gactcccagc caggtcaatc cttggagtcc 1020
accgttgacg cttggttcaa accacttgcc tacgctatga tcatgaccag agagcagggt 1080
taccctaact tgttctacgg tgacttttac ggaaccaagg gttcctctaa tagagagatc 1140
ccaaatttgt cttctaaatt gactcctatt ttgaaggcca gaaaagacat ggcctacggt 1200
acccagcatg actaccttaa tcaccaagac gttatcggtt ggaccagaga gggtgttact 1260
gaccgttcca agtccggttt ggccactatc ttgtctgacg gaccaggagg aaacaagtgg 1320
atgtatgtcg gtaagagaaacgccggagag acctggagag acaagaccgg taactcttcc 1380
aacgccgtta ccatcaactc tgacggttgg ggacagtttt ttgtcaatgg tggttctgtt 1440
tccatttatg gtgagtag 1458
Claims (4)
1. An alpha-amylase JcAmy mutant characterized in that the amino acid sequence of the mutant is a substituent at any one or more of position 6, position 35, position 173, position 245 and/or position 281 of the amino acid sequence shown as SEQ ID No.2,
position 6 is replaced with G6F, G6M, G6P, G6N or G6S;
position 35 is replaced with N35S or N35A;
substitution at position 173 with N173K or N173S;
position 245 is replaced with Q245G, Q245P or Q245R;
position 281 is replaced by G281N, G281D, G281S or G281K.
2. The α -amylase JcAmy mutant according to claim 1, wherein the mutant has the following mutation sites:
G6F,N35S,N173K,Q245G,G281N;
G6M,N35S,N173S,Q245P,G281D;
G6P,N35A,N173K,Q245R,G281K;
G6N,N35S,N173K,Q245P,G281S;
G6S,N35A,N173S,Q245P,G281K;
G6P,N35A,N173K,Q245G,G281S;
G6S, N35A, N173K, Q245P, G281N; or
G6M,N35A,N173K,Q245G,G281S。
3. A gene encoding the JcAmy mutant alpha-amylase of claim 1.
4. Use of the α -amylase JcAmy mutant according to claim 1 or 2 for catalyzing the hydrolysis of 1,4- α -D-glucan of starch.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710032298.8A CN107058264B (en) | 2017-01-16 | 2017-01-16 | Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof |
PCT/CN2017/107576 WO2018129981A1 (en) | 2017-01-16 | 2017-10-25 | α-AMYLASE JCAMY MUTANT WITH INCREASED SPECIFIC ACTIVITY, AND CODING GENE AND APPLICATION THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710032298.8A CN107058264B (en) | 2017-01-16 | 2017-01-16 | Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107058264A CN107058264A (en) | 2017-08-18 |
CN107058264B true CN107058264B (en) | 2020-01-21 |
Family
ID=59597881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710032298.8A Active CN107058264B (en) | 2017-01-16 | 2017-01-16 | Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107058264B (en) |
WO (1) | WO2018129981A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107058264B (en) * | 2017-01-16 | 2020-01-21 | 广东溢多利生物科技股份有限公司 | Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof |
EP4525615A2 (en) | 2022-05-14 | 2025-03-26 | Novozymes A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
CN116004782A (en) * | 2023-01-28 | 2023-04-25 | 天津金匙医学科技有限公司 | Metagenome quantification method based on sequencing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004136A1 (en) * | 1998-07-15 | 2000-01-27 | Novozymes A/S | Glucoamylase variants |
CN106086048A (en) * | 2016-08-16 | 2016-11-09 | 吉林大学 | A kind of acid-resistant high-temperature α-amylase and its gene, engineering bacteria and preparation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107058264B (en) * | 2017-01-16 | 2020-01-21 | 广东溢多利生物科技股份有限公司 | Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof |
-
2017
- 2017-01-16 CN CN201710032298.8A patent/CN107058264B/en active Active
- 2017-10-25 WO PCT/CN2017/107576 patent/WO2018129981A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004136A1 (en) * | 1998-07-15 | 2000-01-27 | Novozymes A/S | Glucoamylase variants |
CN106086048A (en) * | 2016-08-16 | 2016-11-09 | 吉林大学 | A kind of acid-resistant high-temperature α-amylase and its gene, engineering bacteria and preparation method |
Non-Patent Citations (3)
Title |
---|
合成耐高温α-淀粉酶基因在巴斯德毕赤酵母中的分泌表达;韦宇拓 等;《中国生物工程杂志》;20051231;第25卷(第1期);参见全文 * |
定点突变提高Thermococcus siculi HJ21高温酸性α-淀粉酶的催化活性;姚婷 等;《食品科学》;20111231;第32卷(第15期);参见全文 * |
登录号KIL52853.1;Goh,K.M等;《GenBank》;20150127;参见序列表 * |
Also Published As
Publication number | Publication date |
---|---|
WO2018129981A1 (en) | 2018-07-19 |
CN107058264A (en) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106754825B (en) | Alpha-amylase BaAmy mutant for improving specific activity and coding gene and application thereof | |
CN108251392B (en) | Glucose oxidase mutant capable of improving specific activity and thermal stability and coding gene and application thereof | |
CN108570461B (en) | Alkaline protease BmP mutant for improving specific activity and coding gene thereof | |
CN101974499B (en) | Lipase mutants with improved thermostability | |
CN108374001B (en) | Glucose oxidase mutant capable of improving specific activity and coding gene and application thereof | |
CN107058264B (en) | Alpha-amylase JcAmy mutant with improved specific activity and coding gene and application thereof | |
CN108384771B (en) | Alkaline protease mutant for improving specific activity and coding gene thereof | |
CN108004220B (en) | Alkaline protease BmP mutant for improving thermal stability and gene and application thereof | |
CN108841809A (en) | With height than amylase mutant and its gene and application living and thermal stability | |
CN111004794B (en) | Subtilisin E mutant with improved thermal stability and application thereof | |
CN104726435B (en) | β -glucosidase mutant, recombinant expression plasmid thereof and transformed engineering strain | |
CN107794275B (en) | A (+)γ-lactamase-producing recombinant Pichia pastoris and its construction method and application | |
CN110129305B (en) | Cephalosporin C acylase mutant for preparing 7-ACA | |
CN114426961B (en) | Beta-glucosidase mutant, encoding gene, expression strain and application thereof | |
CN111676210A (en) | A kind of method for improving cellulase activity and cellulase mutant 5I77-M and application | |
CN112899258A (en) | Heat-resistant beta-mannase mutant ManAK-10 and coding gene and application thereof | |
CN102653742B (en) | High-temperature resistant rhizopuschinensis lipase mutant | |
CN110628748B (en) | Alpha-amylase mutant BasAmy-2 capable of improving specific activity and coding gene and application thereof | |
CN103614354B (en) | A kind of saccharifying enzyme and recombinant strains thereof | |
CN115747185B (en) | A starch branching enzyme mutant with enhanced extracellular secretion amount and secretion rate | |
CN113755473B (en) | Glucoamylase mutant M5 with increased secretory expression and its gene and application | |
CN110117583B (en) | Phytase ECAPPA mutant with heat stability and specific activity improvement and gene and application thereof | |
CN102653741B (en) | High-thermal stability rhizopuschinensis lipase | |
CN108823186A (en) | A kind of thermophilic acidic uncooked amylum alpha-amylase mutant and its preparation method and application that cornstarch degradation capability improves | |
CN105062991A (en) | Amylase mutants with improved thermal stability as well as coding gene and application of amylase mutants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200518 Address after: 415400 west of mengjiangnu Avenue, Jinshi industrial concentration zone, Changde City, Hunan Province Patentee after: Hunan Kangjie Biotechnology Co., Ltd Address before: 519060 Guangdong province Zhuhai Nanping Science and Technology Industrial Park, ping North Road No. 8 Patentee before: GUANGDONG VTR BIO-TECH Co.,Ltd. |
|
TR01 | Transfer of patent right |