CN107053155A - A kind of trunk type sequential machine people of marmem driving - Google Patents
A kind of trunk type sequential machine people of marmem driving Download PDFInfo
- Publication number
- CN107053155A CN107053155A CN201710045354.1A CN201710045354A CN107053155A CN 107053155 A CN107053155 A CN 107053155A CN 201710045354 A CN201710045354 A CN 201710045354A CN 107053155 A CN107053155 A CN 107053155A
- Authority
- CN
- China
- Prior art keywords
- continuous joint
- shape memory
- memory alloy
- spring
- joint module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
- B25J9/065—Snake robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/1085—Programme-controlled manipulators characterised by positioning means for manipulator elements positioning by means of shape-memory materials
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明提供了一种形状记忆合金驱动的象鼻型连续机器人,其特征在于:该机器人采用模块化设计思想,包括若干个相同的连续关节模块、若干个相同的双通螺柱。相邻两个连续关节模块通过双通螺柱串联形式连接。每个连续关节模块具有弯曲和偏转两个自由度,其结构包括两个法兰、一个拉伸弹簧、四根形状记忆合金弹簧、五个第一类分隔栏、五个第二类分隔栏、一个传感器模块。其中,形状记忆合金弹簧是连续关节模块的驱动元件,通过电流加热的方式控制;传感器模块为九轴惯性测量单元,包括三轴加速度计、三轴陀螺仪、三轴地磁传感器,用于获得连续关节模块的位置和姿态信息。该发明结构简单、体积小、重量轻、灵活性强、易控制,适合狭小环境应用。
The invention provides an elephant trunk type continuous robot driven by a shape memory alloy, which is characterized in that the robot adopts a modular design idea, including several identical continuous joint modules and several identical double-way studs. Two adjacent continuous joint modules are connected in series through double-pass studs. Each continuous joint module has two degrees of freedom of bending and deflection, and its structure includes two flanges, one tension spring, four shape memory alloy springs, five first-type separation bars, five second-type separation bars, A sensor module. Among them, the shape memory alloy spring is the driving element of the continuous joint module, which is controlled by current heating; the sensor module is a nine-axis inertial measurement unit, including a three-axis accelerometer, a three-axis gyroscope, and a three-axis geomagnetic sensor. The position and attitude information of the joint module. The invention has the advantages of simple structure, small size, light weight, strong flexibility and easy control, and is suitable for application in narrow environments.
Description
技术领域technical field
本发明涉及一种仿生机器人,更具体地说,本发明涉及一种形状记忆合金驱动的象鼻型连续机器人。The invention relates to a bionic robot, more specifically, the invention relates to an elephant trunk type continuous robot driven by a shape memory alloy.
背景技术Background technique
近几十年来,仿生学极大地推动了机器人技术的研究与发展。其中,连续机器人就是一类典型的范例。它们是受大象鼻子、章鱼触手以及蛇体这一类生物结构启发而设计的,通常采用柔性的结构,无离散关节和刚性连杆,并通过弯曲本体成弧形或波浪形以形成运动。这一类机器人可以灵活地绕过障碍物,或穿过狭小的孔洞,非常适合非结构化环境应用,在航空检测、医疗外科、城市救援、工业制造等领域有巨大的应用前景。In recent decades, bionics has greatly promoted the research and development of robotics. Among them, continuous robot is a typical example. Inspired by biological structures such as elephant trunks, octopus tentacles, and snake bodies, they usually use flexible structures without discrete joints and rigid links, and bend the body into arcs or waves to form motion. This type of robot can flexibly bypass obstacles or pass through narrow holes. It is very suitable for unstructured environment applications and has great application prospects in aviation inspection, medical surgery, urban rescue, industrial manufacturing and other fields.
专利申请号CN200910072751.3,名称为连续体型半自主式内窥镜机器人,具有五段弯曲关节。每段弯曲关节由四根钢丝驱动,具有两个自由度。这种设计的不足是:钢丝的控制需要笨重的远程电机驱动结构,整体体积大;专利申请号CN201410163465.9,名称为绳索驱动连续机器人,采用离散关节、连续关节混合的结构形式。其中离散关节使用电机驱动,连续关节采用绳索驱动。这种设计的不足是:离散关节的电机结构使机器人体积无法进一步减小、绳索的控制需要笨重的远程电机驱动结构。The patent application number is CN200910072751.3, and the name is a continuous-body semi-autonomous endoscopic robot with five-segment curved joints. Each bending joint is driven by four wires and has two degrees of freedom. The disadvantages of this design are: the control of the steel wire requires a bulky remote motor drive structure, and the overall volume is large; the patent application number CN201410163465.9 is called a rope-driven continuous robot, which adopts a hybrid structure of discrete joints and continuous joints. The discrete joints are driven by motors, and the continuous joints are driven by ropes. The disadvantages of this design are: the motor structure of the discrete joints prevents the robot from being further reduced in size, and the control of the rope requires a cumbersome remote motor drive structure.
发明内容Contents of the invention
针对现有技术,本发明的目的在于提供了一种形状记忆合金驱动的象鼻型连续机器人,以解决现有连续机器人体积大、需要笨重的远程驱动结构问题,并具有良好的运动灵活性。In view of the prior art, the purpose of the present invention is to provide a shape memory alloy driven elephant trunk continuous robot to solve the problems of the existing continuous robot that are bulky and require a cumbersome remote drive structure, and has good movement flexibility.
本发明通过以下技术方案实现。The present invention is realized through the following technical solutions.
一种形状记忆合金驱动的象鼻型连续机器人,其特征在于:该机器人采用模块化设计思想,包括若干个相同的连续关节模块、若干个相同的双通螺柱。相邻两个连续关节模块通过双通螺柱串联形式连接。每个连续关节模块具有弯曲和偏转两个自由度,其结构包括两个法兰、一个拉伸弹簧、四根形状记忆合金弹簧、五个第一类分隔栏、五个第二类分隔栏、一个传感器模块。其中,形状记忆合金弹簧是连续关节模块的驱动元件,通过电流加热的方式控制;传感器模块为九轴惯性测量单元,包括三轴加速度计、三轴陀螺仪、三轴地磁传感器,其传感信息可以解算得到连续关节模块的位置和姿态。An elephant trunk continuous robot driven by a shape memory alloy is characterized in that the robot adopts a modular design idea, including several identical continuous joint modules and several identical double-pass studs. Two adjacent continuous joint modules are connected in series through double-pass studs. Each continuous joint module has two degrees of freedom of bending and deflection, and its structure includes two flanges, one tension spring, four shape memory alloy springs, five first-type separation bars, five second-type separation bars, A sensor module. Among them, the shape memory alloy spring is the driving element of the continuous joint module, which is controlled by current heating; the sensor module is a nine-axis inertial measurement unit, including a three-axis accelerometer, a three-axis gyroscope, and a three-axis geomagnetic sensor. The position and attitude of the continuous joint module can be obtained by solving.
拉伸弹簧两端为平面,其节距与线径相等,位于连续关节模块的中央,并通过上下两个法兰的圆环槽与这两个法兰固定。四根形状记忆合金弹簧均匀布置在拉伸弹簧的四周,并通过螺栓与上下两个法兰固定。该螺栓与法兰之间设有单头焊片垫圈,用于连接通电导线。通过调节通过形状记忆合金弹簧的电流和时间,可以控制形状记忆合金弹簧的长度变化。五个第一类分隔栏沿着拉伸弹簧长度方向均匀分布在上下两个法兰之间。第一类分隔栏设有中心孔和均匀布置的小孔,其中小孔用于供形状记忆合金弹簧穿过;中心孔用于供拉伸弹簧通过,且与拉伸弹簧外壁紧密贴合。第二类分隔栏中除中心孔比第一类分隔栏的中心孔大外,其他结构与第一类分隔栏相同。五个第二类分隔栏分别与五个第一类分隔栏贴合,在安装好形状记忆合金弹簧和拉伸弹簧后,两者沿中心轴线相互错位一定角度,并用螺栓螺母组合固定。两类分隔栏的作用为:使连续关节模块运动后形状记忆合金弹簧形状近似圆弧形,同时在保持形状记忆合金弹簧中每一小段的变形近似相同。传感器模块使用螺栓固定在上法兰上。为防止短路,上下法兰、第一类分隔栏、第二类分隔栏的材料采用绝缘的非金属材料。拉伸弹簧喷有绝缘漆。Both ends of the tension spring are planes, the pitch of which is equal to the diameter of the wire, located in the center of the continuous joint module, and fixed to the two flanges through the circular grooves of the upper and lower flanges. Four shape memory alloy springs are evenly arranged around the extension spring, and are fixed with the upper and lower flanges by bolts. A single-headed lug washer is provided between the bolt and the flange for connecting the live wire. By adjusting the current and time passing through the shape memory alloy spring, the length change of the shape memory alloy spring can be controlled. Five first-type separation bars are evenly distributed between the upper and lower flanges along the length direction of the tension spring. The first type of separation bar is provided with a central hole and uniformly arranged small holes, wherein the small holes are used for the passage of the shape memory alloy spring; the central hole is used for the passage of the tension spring and is closely attached to the outer wall of the tension spring. Except that the central hole of the second type of partition is larger than that of the first type of partition, other structures are the same as those of the first type of partition. The five second-type partitions are attached to the five first-type partitions respectively. After the shape memory alloy spring and the tension spring are installed, the two are misaligned at a certain angle along the central axis and fixed with bolts and nuts. The function of the two types of separation bars is to make the shape memory alloy spring approximately arc-shaped after the movement of the continuous joint module, and at the same time keep the deformation of each small section of the shape memory alloy spring approximately the same. The sensor module is bolted to the upper flange. In order to prevent short circuit, the materials of the upper and lower flanges, the first type of separation column and the second type of separation column are made of insulating non-metallic materials. The tension spring is sprayed with insulating paint.
通过上述连接,构成了形状记忆合金驱动的象鼻型连续机器人。Through the above connections, a shape memory alloy-driven elephant trunk continuous robot is constructed.
本发明的优点为:一、采用形状记忆合金驱动,驱动部件形状记忆合金直接作为本体的一部分,只需外接通电导线即可控制,结构简单,整体体积小,重量轻,适合狭小环境应用。二、形状记忆合金弹簧行程大,连续关节单元可以获得更大的弯曲角度,提高机器人的灵活性。三、形状记忆合金是一种智能材料,除作为驱动元件外,还可以提供传感信息,如力、形变,有利于机器人运动的精确控制。The advantages of the present invention are: 1. Driven by shape-memory alloy, the shape-memory alloy of the driving part is directly used as a part of the body, and can be controlled only by external electric wires. 2. The shape memory alloy spring has a large stroke, and the continuous joint unit can obtain a larger bending angle and improve the flexibility of the robot. 3. Shape memory alloy is a kind of intelligent material. In addition to being a driving element, it can also provide sensing information, such as force and deformation, which is beneficial to the precise control of robot motion.
附图说明Description of drawings
图1A为本发明的形状记忆合金驱动的象鼻型连续机器人的结构图。FIG. 1A is a structural diagram of a trunk-type continuous robot driven by a shape memory alloy of the present invention.
图1B为本发明的形状记忆合金驱动的象鼻型连续机器人的分解图。Fig. 1B is an exploded view of the trunk-type continuous robot driven by the shape memory alloy of the present invention.
图2A为本发明的连续关节模块的结构图。Fig. 2A is a structural diagram of the continuous joint module of the present invention.
图2B为本发明的连续关节模块的分解图。Fig. 2B is an exploded view of the continuous joint module of the present invention.
图中:1.连续关节模块、2.双通螺柱、3.连续关节模块、101.传感器模块、102.法兰(包括102A、102B)、103.螺栓(包括103A、103B)、104.单头焊片垫圈(包括104A、104B)、105.形状记忆合金弹簧(包括105A、105B、105C、105D)、106.拉伸弹簧、107.螺栓螺母组合(包括107A、107B、107C、107D、107E)、108.第一类分隔栏(包括108A、108B、108C、108D、108E)、109.第二类分隔栏(包括109A、109B、109C、109D、109E)。In the figure: 1. Continuous joint module, 2. Two-way stud, 3. Continuous joint module, 101. Sensor module, 102. Flange (including 102A, 102B), 103. Bolt (including 103A, 103B), 104. Single-end lug washers (including 104A, 104B), 105. Shape memory alloy springs (including 105A, 105B, 105C, 105D), 106. Tension springs, 107. Bolt and nut combinations (including 107A, 107B, 107C, 107D, 107E), 108. The first type of separation column (including 108A, 108B, 108C, 108D, 108E), 109. The second type of separation column (including 109A, 109B, 109C, 109D, 109E).
具体实施方式:detailed description:
下面通过结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
本发明的实施方式:Embodiments of the present invention:
一种形状记忆合金驱动的象鼻型连续机器人,依照模块化设计思想设计,如图1A和图1B所示,该机器人包括:连续关节模块1,双通螺柱2,连续关节模块3。两个连续关节模块的机构和尺寸相同,通过双通螺柱2串联连接。每个连续关节模块具有弯曲和偏转两个自由度。图1所示的形状记忆合金驱动的象鼻型连续机器人总共具有4个自由度。若需要用到多个连续关节模块(模块数n大于2),只需以相同方法串联连接,最终组成的机器人自由度为2×n个。An elephant-trunk continuous robot driven by a shape memory alloy is designed according to the concept of modular design, as shown in Figure 1A and Figure 1B, the robot includes: a continuous joint module 1, a double-pass stud 2, and a continuous joint module 3. The mechanisms and dimensions of the two continuous joint modules are the same, and they are connected in series through double-pass studs 2 . Each continuous joint module has two degrees of freedom of bending and deflection. The trunk-type continuous robot driven by shape memory alloy shown in Fig. 1 has 4 degrees of freedom in total. If you need to use multiple continuous joint modules (the number of modules n is greater than 2), you only need to connect them in series in the same way, and the final robot degrees of freedom are 2×n.
如图2A和图2B所示,连续关节模块1包括:传感器模块101、法兰102(包括两个法兰102A、102B)、螺栓103(包括两组相同的螺栓103A、103B)、单头焊片垫圈104(包括两组相同的单头焊片垫圈104A、104B)、形状记忆合金弹簧105(包括四根相同的形状记忆合金弹簧105A、105B、105C、105D)、拉伸弹簧106、螺栓螺母组合107(包括五组相同的螺栓螺母107A、107B、107C、107D、107E)、第一类分隔栏108(包括五个相同的第一类分隔栏108A、108B、108C、108D、108E)、第二类分隔栏109(包括五个相同的第二类分隔栏109A、109B、109C、109D、109E);2A and 2B, the continuous joint module 1 includes: a sensor module 101, a flange 102 (including two flanges 102A, 102B), bolts 103 (including two sets of identical bolts 103A, 103B), a single-head welding Sheet washers 104 (comprising two sets of identical single-head soldering sheet washers 104A, 104B), shape memory alloy springs 105 (including four identical shape memory alloy springs 105A, 105B, 105C, 105D), tension springs 106, bolts and nuts Combination 107 (comprising five groups of identical bolts and nuts 107A, 107B, 107C, 107D, 107E), first type separation column 108 (comprising five identical first type separation columns 108A, 108B, 108C, 108D, 108E), the first type Second-type partitions 109 (including five identical second-type partitions 109A, 109B, 109C, 109D, 109E);
拉伸弹簧106两端为平面,其节距与线径相等,安装在法兰102A和法兰102B的环形槽中,辅以胶粘剂固定。四根形状记忆合金弹簧105A、105B、105C、105D沿圆周方向间隔90°分布在拉伸弹簧106四周。形状记忆合金弹簧105A分别通过螺栓103A、螺栓103B固定在法兰102A和法兰102B上。螺栓103A与法兰102A之间和螺栓103B与法兰102B之间分别有单头焊片垫圈104A和单头焊片垫圈104B,用以焊接通电导线。形状记忆合金弹簧105B、105C、105D的固定方式与形状记忆合金弹簧105A相似。五个第一类分隔栏108A、108B、108C、108D、108E沿拉伸弹簧轴线106方向均匀分布在法兰110和法兰118之间。第一类分隔栏108设有中心孔和均匀分布的小孔,中心孔用以供拉伸弹簧106穿过,并与拉伸弹簧106外壁紧密贴合,小孔用以供形状记忆合金弹簧105通过。第二类分隔栏109中除中心孔比第一类分隔栏108的中心孔大外,其他结构及尺寸与第一类分隔栏108相同。五个第二类分隔栏109A、109B、109C、109D、109E分别与五个第一类分隔栏108A、108B、108C、108D、108E贴合,在安装好形状记忆合金弹簧105和拉伸弹簧106后,两者沿拉伸弹簧106中心轴线相互错位一定角度,并用螺栓螺母组合107固定。第一类分隔栏108和第二类分隔栏109的作用为:连续关节模块1运动后,使形状记忆合金弹簧105形状近似圆弧形,同时保持形状记忆合金弹簧105中每一小段的变形近似相同。传感器模块101为九轴惯性测量单元,包括三轴加速度计、三轴陀螺仪、三轴地磁传感器,用螺栓固定在上法兰102A上。传感器模块101可以测量上法兰102A的空间姿态信息。当法兰102B固定或者其空间姿态信息已知的情况下,使用传感器模块101的信息可以解算得到连续关节模块1的运动信息。The two ends of the tension spring 106 are planes, the pitch of which is equal to the wire diameter, and are installed in the annular grooves of the flange 102A and the flange 102B, and are fixed with an adhesive. Four shape memory alloy springs 105A, 105B, 105C, 105D are distributed around the tension spring 106 at intervals of 90° along the circumferential direction. The shape memory alloy spring 105A is respectively fixed on the flange 102A and the flange 102B by bolts 103A and 103B. Between the bolt 103A and the flange 102A and between the bolt 103B and the flange 102B, there are respectively a single-end lug washer 104A and a single-end lug washer 104B, which are used for welding current-carrying wires. The fixing method of the shape memory alloy springs 105B, 105C, 105D is similar to that of the shape memory alloy spring 105A. Five first-type partition bars 108A, 108B, 108C, 108D, 108E are evenly distributed between the flange 110 and the flange 118 along the direction of the tension spring axis 106 . The first type of separation column 108 is provided with a central hole and evenly distributed small holes, the central hole is used for the extension spring 106 to pass through, and is closely attached to the outer wall of the extension spring 106, and the small hole is used for the shape memory alloy spring 105 pass. Except that the central hole of the second type of partition 109 is larger than that of the first type of partition 108 , other structures and dimensions are the same as those of the first type of partition 108 . The five second-type partitions 109A, 109B, 109C, 109D, and 109E are attached to the five first-type partitions 108A, 108B, 108C, 108D, and 108E respectively. After installing the shape memory alloy spring 105 and the tension spring 106 Finally, the two are misaligned at a certain angle along the central axis of the tension spring 106, and are fixed with a bolt and nut combination 107. The function of the first type of separation bar 108 and the second type of separation bar 109 is: after the continuous joint module 1 moves, the shape of the shape memory alloy spring 105 is approximately arc-shaped, while keeping the deformation of each small section of the shape memory alloy spring 105 approximately same. The sensor module 101 is a nine-axis inertial measurement unit, including a three-axis accelerometer, a three-axis gyroscope, and a three-axis geomagnetic sensor, and is fixed on the upper flange 102A with bolts. The sensor module 101 can measure the spatial posture information of the upper flange 102A. When the flange 102B is fixed or its spatial attitude information is known, the motion information of the continuous joint module 1 can be obtained by using the information of the sensor module 101 .
到为防止短路,法兰102、第一类分隔栏108、第二类分隔栏109、双通螺柱2的材料采用绝缘的非金属材料,拉伸弹簧喷有绝缘漆。In order to prevent short circuit, the material of flange 102, first class separation column 108, second type separation column 109, double-way stud 2 adopts insulating non-metallic material, and the tension spring is sprayed with insulating varnish.
具体的使用方法:Specific usage method:
连续关节模块1的弯曲自由度控制:任取一根形状记忆合金弹簧,如105A,通过电流加热的方式,形状记忆合金弹簧105A会产生收缩变形和驱动力,带动连续关节模块1沿形状记忆合金弹簧105A一侧弯曲。调节通电电流大小和时间,可以调节该弯曲的角度;Bending degree of freedom control of the continuous joint module 1: take any shape memory alloy spring, such as 105A, and heat the shape memory alloy spring 105A by means of electric current to generate contraction deformation and driving force, driving the continuous joint module 1 One side of the spring 105A is bent. Adjust the size and time of the energized current to adjust the bending angle;
连续关节模块1的偏转自由度控制:任取两根相邻的形状记忆合金弹簧,如105A和105B。通过调节加载形状记忆合金弹簧105A、105B的电流和时间,使它们产生不同的变形与驱动力,带动连续关节模块1以不同偏转角度弯曲;Deflection degree of freedom control of the continuous joint module 1: any two adjacent shape memory alloy springs, such as 105A and 105B. By adjusting the current and time of loading the shape memory alloy springs 105A and 105B, they produce different deformations and driving forces, and drive the continuous joint module 1 to bend at different deflection angles;
形状记忆合金驱动的象鼻型连续机器人运动过程:首先,根据各个连续关节模块中的传感器模块的信息解算出各个连续关节模块的位姿。其次,根据当前机器人位姿与目标位姿,进行轨迹规划以获得各个连续关节模块的运动轨迹。其次,根据规划的运动轨迹,控制每个连续关节模块中的形状记忆合金弹簧的电流,结合传感器模块的信息实时修正运动轨迹。最终,机器人达到目标位姿。The motion process of the trunk-type continuous robot driven by shape memory alloy: firstly, the pose of each continuous joint module is calculated according to the information of the sensor module in each continuous joint module. Secondly, according to the current robot pose and the target pose, trajectory planning is performed to obtain the motion trajectory of each continuous joint module. Secondly, according to the planned motion trajectory, the current of the shape memory alloy spring in each continuous joint module is controlled, and the motion trajectory is corrected in real time combined with the information of the sensor module. Eventually, the robot reaches the target pose.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710045354.1A CN107053155A (en) | 2017-01-20 | 2017-01-20 | A kind of trunk type sequential machine people of marmem driving |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710045354.1A CN107053155A (en) | 2017-01-20 | 2017-01-20 | A kind of trunk type sequential machine people of marmem driving |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107053155A true CN107053155A (en) | 2017-08-18 |
Family
ID=59598955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710045354.1A Pending CN107053155A (en) | 2017-01-20 | 2017-01-20 | A kind of trunk type sequential machine people of marmem driving |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107053155A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108000552A (en) * | 2017-11-30 | 2018-05-08 | 哈尔滨工业大学 | A kind of Modular Flexible artificial-muscle joint |
CN108045448A (en) * | 2017-12-05 | 2018-05-18 | 北京航空航天大学 | A kind of memory alloy driven multi-modal robot |
CN108406753A (en) * | 2018-05-24 | 2018-08-17 | 枣庄学院 | A kind of flexible mechanical arm of memory polymers piece driving |
CN108555883A (en) * | 2018-03-26 | 2018-09-21 | 江苏大学 | A kind of bionical trunk software mechanical arm |
CN109268620A (en) * | 2018-12-04 | 2019-01-25 | 大连大学 | A kind of pipe robot based on marmem joule thermal drivers |
CN109760103A (en) * | 2019-01-30 | 2019-05-17 | 天津理工大学 | A bionic octopus arm secondary drive mechanism and bionic octopus arm mechanism |
CN109877858A (en) * | 2019-03-11 | 2019-06-14 | 武汉理工大学 | A variable stiffness soft manipulator |
CN109877819A (en) * | 2019-04-17 | 2019-06-14 | 中南大学 | Variable stiffness soft body serpentine arm |
CN110802584A (en) * | 2019-09-30 | 2020-02-18 | 中山大学 | A rope-driven multi-joint flexible manipulator and robot |
CN111015630A (en) * | 2019-12-10 | 2020-04-17 | 渤海造船厂集团有限公司 | Electric joint positioning and supporting device |
CN111098295A (en) * | 2019-12-20 | 2020-05-05 | 北京邮电大学 | An Intelligent Snake Arm Robot System Based on Memory Alloy |
CN111438685A (en) * | 2020-05-26 | 2020-07-24 | 常州先进制造技术研究所 | A modular soft robot |
CN112091957A (en) * | 2020-08-24 | 2020-12-18 | 上海大学 | Super-redundancy continuum robot driven by shape memory alloy |
CN112091988A (en) * | 2020-08-13 | 2020-12-18 | 宁波大学 | Software bionic underwater detection robot |
CN112936337A (en) * | 2021-02-01 | 2021-06-11 | 中山大学 | Memory alloy driven continuous mechanical arm |
CN113510692A (en) * | 2021-07-30 | 2021-10-19 | 西北工业大学 | A turnable rolling robot driven by shape memory alloy and its control method |
WO2022097666A1 (en) * | 2020-11-05 | 2022-05-12 | 国立大学法人滋賀医科大学 | Long movable structure body and wiring assistance tool |
CN114643575A (en) * | 2022-04-24 | 2022-06-21 | 吉林大学 | Material increase manufacturing bionic intelligent driving component |
US20230158688A1 (en) * | 2021-11-24 | 2023-05-25 | University Of Southern California | Soft robotics, autonomous, space inspection, crawling robot |
CN117963162A (en) * | 2024-02-06 | 2024-05-03 | 中国航天科技创新研究院 | A folding and unfolding mechanism with high folding and unfolding ratio, a folding and unfolding device and a satellite platform thereof |
US20240246226A1 (en) * | 2023-01-20 | 2024-07-25 | The Board Of Trustees Of The University Of Alabama | Device and method of fabrication for dexterous continuum tensegrity manipulator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5996346A (en) * | 1993-07-28 | 1999-12-07 | The Board Of Trustees Of The Leland Stanford Junior University | Electrically activated multi-jointed manipulator |
CN102896633A (en) * | 2012-09-27 | 2013-01-30 | 浙江大学 | Flexible spine with omni-directional angle feedback |
CN203804999U (en) * | 2014-03-20 | 2014-09-03 | 西北工业大学 | Shape memory alloy spring driven flexible mechanical arm |
CN104942790A (en) * | 2015-06-16 | 2015-09-30 | 天津理工大学 | Mini-type soft modularized reconfigurable robot unit module |
CN205254991U (en) * | 2015-12-30 | 2016-05-25 | 中国科学院沈阳自动化研究所 | Snakelike robot |
-
2017
- 2017-01-20 CN CN201710045354.1A patent/CN107053155A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5996346A (en) * | 1993-07-28 | 1999-12-07 | The Board Of Trustees Of The Leland Stanford Junior University | Electrically activated multi-jointed manipulator |
CN102896633A (en) * | 2012-09-27 | 2013-01-30 | 浙江大学 | Flexible spine with omni-directional angle feedback |
CN203804999U (en) * | 2014-03-20 | 2014-09-03 | 西北工业大学 | Shape memory alloy spring driven flexible mechanical arm |
CN104942790A (en) * | 2015-06-16 | 2015-09-30 | 天津理工大学 | Mini-type soft modularized reconfigurable robot unit module |
CN205254991U (en) * | 2015-12-30 | 2016-05-25 | 中国科学院沈阳自动化研究所 | Snakelike robot |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108000552A (en) * | 2017-11-30 | 2018-05-08 | 哈尔滨工业大学 | A kind of Modular Flexible artificial-muscle joint |
CN108045448A (en) * | 2017-12-05 | 2018-05-18 | 北京航空航天大学 | A kind of memory alloy driven multi-modal robot |
CN108555883B (en) * | 2018-03-26 | 2020-08-28 | 江苏大学 | A bionic elephant trunk soft robotic arm |
CN108555883A (en) * | 2018-03-26 | 2018-09-21 | 江苏大学 | A kind of bionical trunk software mechanical arm |
CN108406753A (en) * | 2018-05-24 | 2018-08-17 | 枣庄学院 | A kind of flexible mechanical arm of memory polymers piece driving |
CN108406753B (en) * | 2018-05-24 | 2023-06-20 | 枣庄学院 | A flexible robotic arm driven by a memory polymer sheet |
CN109268620A (en) * | 2018-12-04 | 2019-01-25 | 大连大学 | A kind of pipe robot based on marmem joule thermal drivers |
CN109760103A (en) * | 2019-01-30 | 2019-05-17 | 天津理工大学 | A bionic octopus arm secondary drive mechanism and bionic octopus arm mechanism |
CN109760103B (en) * | 2019-01-30 | 2022-03-11 | 天津理工大学 | A bionic octopus arm secondary drive mechanism and bionic octopus arm mechanism |
CN109877858A (en) * | 2019-03-11 | 2019-06-14 | 武汉理工大学 | A variable stiffness soft manipulator |
CN109877858B (en) * | 2019-03-11 | 2022-03-11 | 武汉理工大学 | Rigidity-variable soft manipulator |
CN109877819A (en) * | 2019-04-17 | 2019-06-14 | 中南大学 | Variable stiffness soft body serpentine arm |
CN110802584A (en) * | 2019-09-30 | 2020-02-18 | 中山大学 | A rope-driven multi-joint flexible manipulator and robot |
CN111015630A (en) * | 2019-12-10 | 2020-04-17 | 渤海造船厂集团有限公司 | Electric joint positioning and supporting device |
CN111098295A (en) * | 2019-12-20 | 2020-05-05 | 北京邮电大学 | An Intelligent Snake Arm Robot System Based on Memory Alloy |
CN111098295B (en) * | 2019-12-20 | 2021-06-18 | 北京邮电大学 | An Intelligent Snake Arm Robot System Based on Memory Alloy |
CN111438685A (en) * | 2020-05-26 | 2020-07-24 | 常州先进制造技术研究所 | A modular soft robot |
CN112091988A (en) * | 2020-08-13 | 2020-12-18 | 宁波大学 | Software bionic underwater detection robot |
CN112091957B (en) * | 2020-08-24 | 2023-04-18 | 上海大学 | Super-redundancy continuum robot driven by shape memory alloy |
CN112091957A (en) * | 2020-08-24 | 2020-12-18 | 上海大学 | Super-redundancy continuum robot driven by shape memory alloy |
WO2022097666A1 (en) * | 2020-11-05 | 2022-05-12 | 国立大学法人滋賀医科大学 | Long movable structure body and wiring assistance tool |
CN112936337A (en) * | 2021-02-01 | 2021-06-11 | 中山大学 | Memory alloy driven continuous mechanical arm |
CN112936337B (en) * | 2021-02-01 | 2023-05-09 | 中山大学 | A memory alloy driven continuous robotic arm |
CN113510692A (en) * | 2021-07-30 | 2021-10-19 | 西北工业大学 | A turnable rolling robot driven by shape memory alloy and its control method |
CN113510692B (en) * | 2021-07-30 | 2022-08-12 | 西北工业大学 | A turnable rolling robot driven by shape memory alloy and its control method |
US20230158688A1 (en) * | 2021-11-24 | 2023-05-25 | University Of Southern California | Soft robotics, autonomous, space inspection, crawling robot |
CN114643575A (en) * | 2022-04-24 | 2022-06-21 | 吉林大学 | Material increase manufacturing bionic intelligent driving component |
US20240246226A1 (en) * | 2023-01-20 | 2024-07-25 | The Board Of Trustees Of The University Of Alabama | Device and method of fabrication for dexterous continuum tensegrity manipulator |
CN117963162A (en) * | 2024-02-06 | 2024-05-03 | 中国航天科技创新研究院 | A folding and unfolding mechanism with high folding and unfolding ratio, a folding and unfolding device and a satellite platform thereof |
CN117963162B (en) * | 2024-02-06 | 2024-08-13 | 中国航天科技创新研究院 | Folding mechanism with high folding ratio, folding device and satellite platform of folding mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107053155A (en) | A kind of trunk type sequential machine people of marmem driving | |
US5114300A (en) | Robotic apparatus | |
CN106514703B (en) | Rope-driven spoke-type flexible manipulator | |
CN107378942B (en) | Soft mechanical arm and using method thereof | |
KR101211878B1 (en) | External pipe driving robot | |
CN112091957A (en) | Super-redundancy continuum robot driven by shape memory alloy | |
CN206200964U (en) | The flexible mechanical arm of Coupled Rigid-flexible | |
CN207771832U (en) | Software mechanical arm | |
CN110587589A (en) | Bending unit body and snake-shaped soft robot based on SMA drive | |
CN111300385B (en) | A multi-DOF continuous robot with flexible target grasping function | |
CN103895012A (en) | Trunk-simulating mechanical arm unit device | |
CN107965634B (en) | Flexible pipeline crawling robot based on artificial muscles | |
CN106313033A (en) | Truss-type flexible manipulator | |
FI75296B (en) | ROBOTLEM. | |
CN209408491U (en) | A variable-diameter snake-like robot module and snake-like robot | |
US10821601B2 (en) | Kinematic chain for transmission of mechanical torques | |
CN112873190A (en) | Multi-section rope-driven continuous tensioning integral robot | |
WO2013064108A1 (en) | Biomimetic flexible tissue | |
CN108000552A (en) | A kind of Modular Flexible artificial-muscle joint | |
Ning et al. | A novel concept for building a hyper-redundant chain robot | |
CN108237551B (en) | Rope-driven flexible mechanical arm joint group with double-degree-of-freedom linkage | |
CN206200965U (en) | Truss-like flexible mechanical arm | |
CN105945989A (en) | Hydraulic swing cylinder driving joint based robot hydraulic mechanical arm | |
Jiang et al. | Kinematic and static analysis of a cable-driven parallel robot with a flexible link spine | |
CN114770484B (en) | An electric-driven rigid-soft coupling water snake robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170818 |