CN107037812A - A kind of vehicle path planning method based on storage unmanned vehicle - Google Patents
A kind of vehicle path planning method based on storage unmanned vehicle Download PDFInfo
- Publication number
- CN107037812A CN107037812A CN201710209283.4A CN201710209283A CN107037812A CN 107037812 A CN107037812 A CN 107037812A CN 201710209283 A CN201710209283 A CN 201710209283A CN 107037812 A CN107037812 A CN 107037812A
- Authority
- CN
- China
- Prior art keywords
- node
- path
- unmanned vehicle
- topological
- path planning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000003860 storage Methods 0.000 title claims abstract description 34
- 239000011159 matrix material Substances 0.000 claims description 22
- 230000007613 environmental effect Effects 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 4
- 230000000644 propagated effect Effects 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000007726 management method Methods 0.000 claims 1
- 238000011897 real-time detection Methods 0.000 claims 1
- 238000005204 segregation Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 24
- 238000005516 engineering process Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Business, Economics & Management (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Game Theory and Decision Science (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种基于仓储无人车的车辆路径规划方法。该方法首先确定仓储环境下无人车的运行节点,制作基于该环境的拓扑地图;然后通过对传统A*算法的改进,以离线的方式计算出无人车从起点至目标点的最短路径;在无人车进行路径跟踪的过程中,同时以自身携带的传感器探测路径上是否有障碍物,若有障碍物且障碍物未完全阻碍通行,则切换至人工势场法进行在线实时避障;若障碍物完全阻碍通行,则切换至A*算法重新规划路径,直至无人车到达目标点。该方法不但可以充分利用已知信息生成全局最优路径,而且能够对路径上的随机障碍物进行有效避障。
The invention discloses a vehicle path planning method based on a storage unmanned vehicle. This method first determines the operating nodes of the unmanned vehicle in the storage environment, and makes a topological map based on the environment; then, by improving the traditional A* algorithm, the shortest path from the starting point to the target point of the unmanned vehicle is calculated offline; During the path tracking process of the unmanned vehicle, at the same time, the sensor carried by itself is used to detect whether there is an obstacle on the path. If there is an obstacle and the obstacle does not completely block the passage, it will switch to the artificial potential field method for online real-time obstacle avoidance; If the obstacle completely obstructs the passage, switch to the A* algorithm to re-plan the path until the unmanned vehicle reaches the target point. This method can not only make full use of the known information to generate the global optimal path, but also effectively avoid random obstacles on the path.
Description
技术领域technical field
本发明属于路径规划技术,特别是一种基于仓储无人车的车辆路径规划方法。The invention belongs to path planning technology, in particular to a vehicle path planning method based on storage unmanned vehicles.
背景技术Background technique
随着物联网的快速发展,智能仓储也变得尤为重要。大型仓库的库房众多、货物繁多,道路情况复杂,如何在这复杂的环境中快速有效地寻找货物就显的尤为突出,为解决该问题,仓储无人车应运而生。仓储无人车是指装有自动导引装置,能够沿着指定的路径行进,能够智能控制运行动作,具有安全保护装置的具有搬运功能的小车。With the rapid development of the Internet of Things, intelligent storage has become particularly important. Large warehouses have many warehouses, a lot of goods, and complex road conditions. How to quickly and effectively find goods in this complex environment is particularly prominent. To solve this problem, warehouse unmanned vehicles came into being. Warehousing unmanned vehicle refers to a car equipped with an automatic guiding device, capable of traveling along a designated path, capable of intelligently controlling the running action, and equipped with a safety protection device with a handling function.
在无人车相关技术的研究方面,路径规划技术是一个重要课题。根据无人车对环境信息感知程度的不同,路径规划分为两种:环境信息完全知道的全局路径规划和环境信息完全未知或局部未知的局部路径规划。全局路径规划一般离线进行,通常可以通过设定合适的启发函数,全面评估各节点的代价值,通过比较各扩展节点代价值的大小,选择最有希望的点加以扩展,直到找到目标节点为止(1.李伟光,苏霞.基于改进A*算法的AGV路径规划[J].现代制造工程,2015(10):33-36.2.李季,孙秀霞.基于改进A-Star算法的无人机航迹规划算法研究[J].兵工学报,2008,29(7):788-792.)。局部路径规划可以采用模仿引力斥力下物体运动的方法,目标点和运动体间为引力,运动体和障碍物间为斥力,通过建立引力场、斥力场函数进行路径寻优(3.谭宝成,崔佳超.改进人工势场法在无人车避障中的应用[J].西安工业大学学报,2014(12):1007-1011.4.Sciavicco L,Siciliano B.Asolution algorithm to the inverse kinematic problem for redundantmanipulators[J].Robotics&Automation IEEE Journal of,2010,4(4):403-410.)。但此类方法通常计算量较大,定位难度高,而且单一运用全局路径规划或局部路径规划方法,灵活性差,无法同时解决寻优和避障的问题。In the research of unmanned vehicle-related technologies, path planning technology is an important topic. According to the degree of environmental information perception of unmanned vehicles, path planning is divided into two types: global path planning with fully known environmental information and local path planning with completely unknown or partially unknown environmental information. Global path planning is generally carried out offline. Usually, the cost value of each node can be comprehensively evaluated by setting a suitable heuristic function. By comparing the cost value of each expanded node, the most promising point is selected for expansion until the target node is found ( 1. Li Weiguang, Su Xia. AGV Path Planning Based on Improved A* Algorithm [J]. Modern Manufacturing Engineering, 2015(10): 33-36.2. Li Ji, Sun Xiuxia. UAV Track Based on Improved A-Star Algorithm Research on Planning Algorithm [J]. Journal of Ordnance Engineering, 2008,29(7):788-792.). Local path planning can adopt the method of simulating the movement of objects under gravitational repulsion. The gravitational force is between the target point and the moving body, and the repulsive force is between the moving body and obstacles. Path optimization is carried out by establishing gravitational field and repulsive field functions (3. Tan Baocheng, Cui Jiachao .Application of improved artificial potential field method in unmanned vehicle obstacle avoidance[J].Journal of Xi'an Technological University,2014(12):1007-1011.4.Sciavicco L,Siciliano B.Asolution algorithm to the inverse kinematic problem for redundantmanipulators[J] ]. Robotics & Automation IEEE Journal of, 2010, 4(4): 403-410.). However, such methods usually have a large amount of calculation and high positioning difficulty, and the single use of global path planning or local path planning methods has poor flexibility and cannot solve the problems of optimization and obstacle avoidance at the same time.
发明内容Contents of the invention
本发明的目的在于提供一种将无人车全局路径规划和局部路径规划相结合,从而在寻找最优路径的同时能够有效躲避障碍物的路径规划方法。The purpose of the present invention is to provide a path planning method that combines the global path planning and local path planning of the unmanned vehicle, so as to effectively avoid obstacles while finding the optimal path.
实现本发明目的的技术解决方案为:一种基于仓储无人车的车辆路径规划方法,步骤如下:The technical solution to realize the purpose of the present invention is: a vehicle path planning method based on warehouse unmanned vehicles, the steps are as follows:
第一步,制作仓储环境拓扑地图,即采集仓储环境无人车可行路径与货架的相对位置,根据采集到的信息,设置无人车可以到达的节点,然后根据节点信息创建基于拓扑地图的邻接矩阵;The first step is to make a topological map of the storage environment, that is, to collect the relative position of the feasible path of the unmanned vehicle in the storage environment and the shelf, according to the collected information, set the nodes that the unmanned vehicle can reach, and then create an adjacency based on the topological map based on the node information matrix;
第二步,离线进行全局路径规划,即采用改进后A*算法,以离线的方式计算出从起始点至目标点的最优路径;The second step is to plan the global path offline, that is, use the improved A* algorithm to calculate the optimal path from the starting point to the target point in an offline manner;
第三步,路径跟踪,即以无人车自身携带的循迹模块对离线规划出的最优路径进行跟踪;The third step is path tracking, which is to track the optimal path planned offline with the tracking module carried by the unmanned vehicle itself;
第四步,探测并采集随机障碍物信息,判断路径环境,根据障碍物信息进行全局路径规划和局部路径规划两种算法之间的切换;The fourth step is to detect and collect random obstacle information, judge the path environment, and switch between the two algorithms of global path planning and local path planning according to the obstacle information;
第五步,车辆按照第四步规划的路径行驶,在行驶过程中按照局部路径规划算法躲避随机障碍物,达到局部避障的目的。In the fifth step, the vehicle drives according to the path planned in the fourth step, and avoids random obstacles according to the local path planning algorithm during the driving process, so as to achieve the purpose of local obstacle avoidance.
本发明与现有技术相比,其显著优点为:1)在全局路径规划工程中,优化拓扑节点,使得计算量减少,效率更高;2)在路径跟踪过程中,只需寻找规划好的拓扑节点即可,因此可以采用循迹的方式进行路径跟踪,使得定位更加准确;3)将全局路径规划与局部路径规划相结合,在寻找最优路径的同时可以进行局部避障,使无人车的运行更灵活,在遇到障碍物时运行距离更短,提高了仓储无人车的工作效率。Compared with the prior art, the present invention has the following significant advantages: 1) in the global path planning project, the topological nodes are optimized, so that the calculation amount is reduced and the efficiency is higher; 2) in the path tracking process, it is only necessary to find the planned Topological nodes are enough, so path tracking can be carried out in the way of tracing, making positioning more accurate; 3) Combining global path planning and local path planning, local obstacle avoidance can be performed while finding the optimal path, so that no one The operation of the vehicle is more flexible, and the running distance is shorter when encountering obstacles, which improves the working efficiency of the storage unmanned vehicle.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1是本发明基于仓储无人车的车辆路径规划方法的流程图。Fig. 1 is a flow chart of the vehicle path planning method based on warehouse unmanned vehicles in the present invention.
图2是仓储环境的示意图。FIG. 2 is a schematic diagram of a storage environment.
图3是创建的拓扑地图。Figure 3 is the created topology map.
图4是全局路径规划的流程图。Fig. 4 is a flowchart of global path planning.
图5是全局路径规划的结果图。Figure 5 is a graph of the results of global path planning.
图6是无人车避障时的结果图。Fig. 6 is the result diagram when the unmanned vehicle avoids obstacles.
图7是无人车遇到无法绕过的障碍物时重新进行全局路径规划的结果图。Figure 7 is the result of re-planning the global path when the unmanned vehicle encounters an obstacle that cannot be bypassed.
具体实施方式detailed description
结合附图,本发明的一种基于仓储无人车的车辆路径规划方法,步骤如下:In conjunction with the accompanying drawings, a vehicle path planning method based on warehouse unmanned vehicles of the present invention, the steps are as follows:
步骤1、制作仓储环境拓扑地图,具体是采集仓储环境无人车可行路径与货架的相对位置,根据采集到的信息,设置无人车可以到达的节点,然后根据节点信息创建基于拓扑地图的邻接矩阵;所述制作仓储环境拓扑地图步骤如下:Step 1. Make a topological map of the storage environment. Specifically, collect the relative positions of the feasible path of the unmanned vehicle in the storage environment and the shelf. According to the collected information, set the nodes that the unmanned vehicle can reach, and then create an adjacency based on the topology map based on the node information. matrix; the steps for making a topological map of the storage environment are as follows:
步骤1-1、采集环境地图信息,以环境地图中每个路口拐点及无人车需要停靠的点作为拓扑节点,与该拓扑节点相通的道路作为拓扑边,将环境地图抽象为由拓扑节点和拓扑边组成的拓扑地图,该拓扑地图用符号表示为G=(V,E),其中V为节点集合,E为连接节点的边的集合;Step 1-1. Collect environmental map information. Take each intersection turning point in the environmental map and the point where the unmanned vehicle needs to stop as a topological node, and the road connected to the topological node as a topological edge. The environmental map is abstracted by topological nodes and A topological map composed of topological edges, the topological map is symbolically expressed as G=(V, E), where V is a set of nodes, and E is a set of edges connecting nodes;
步骤1-2、用邻接矩阵来表示各节点之间的关系,若拓扑地图中共有n个拓扑节点v1,v2,…,vn,则该邻接矩阵是一个n×n的矩阵,通过赋予各条边不同的属性,以区分可通行路径和不可通行路径,将可通行路径的权值属性设为1,不可通行路径的权值属性设为0;该邻接矩阵中的第(i,j)个元素aij表示为Step 1-2. Use the adjacency matrix to represent the relationship between nodes. If there are n topological nodes v 1 , v 2 ,...,v n in the topological map, the adjacency matrix is an n×n matrix. Different attributes are given to each edge to distinguish the passable path from the impassable path. The weight attribute of the passable path is set to 1, and the weight attribute of the impassable path is set to 0; the (i, j) elements a ij are expressed as
步骤2、离线进行全局路径规划,即采用改进后A*算法,以离线的方式计算出从起始点至目标点的最优路径;所述离线进行全局路径规划步骤如下:Step 2, perform global path planning offline, that is, use the improved A* algorithm to calculate the optimal path from the starting point to the target point in an offline manner; the offline global path planning steps are as follows:
步骤2-1、采用A*算法,对每个道路节点设计一个估价函数,如下式所示:Step 2-1. Use the A* algorithm to design an evaluation function for each road node, as shown in the following formula:
f(s)=g(s)+h(s)f(s)=g(s)+h(s)
式中,f(s)表示从起始节点经过节点s到达目标节点的估计长度,g(s)表示从起始节点到当前节点的路径长度,h(s)为启发函数,是当前节点到目标节点的估计值;In the formula, f(s) represents the estimated length from the starting node to the target node through node s, g(s) represents the path length from the starting node to the current node, and h(s) is a heuristic function, which is the path length from the current node to the current node. Estimated value of the target node;
其中估价函数的设计方法为:The design method of the evaluation function is:
步骤2-1-1、记录从起始节点到当前节点的路径长度g(s);Step 2-1-1, record the path length g(s) from the starting node to the current node;
步骤2-1-2、确定启发函数h(s),其中A*算法一定能搜索到最优路径的前提条件为:Step 2-1-2. Determine the heuristic function h(s), where the prerequisites for the A* algorithm to be able to search for the optimal path are:
h(s)≤cost*(s,sgoal)h(s)≤cost*(s,s goal )
式中,cost*(s,sgoal)为当前节点到目标节点的最优距离,满足上式的h(s)值越大,则扩展节点越少;In the formula, cost*(s, s goal ) is the optimal distance from the current node to the target node, and the larger the value of h(s) satisfying the above formula, the fewer expanded nodes;
所述启发函数h(s)为欧几里德距离函数,对于给定的两个位置坐标(xi,yi)和(xj,yj),它们的欧几里德距离de如下式所示:The heuristic function h(s) is a Euclidean distance function, and for given two position coordinates ( xi , y i ) and (x j , y j ), their Euclidean distance d e is as follows The formula shows:
步骤2-1-3、确定估价函数,如下式所示:Step 2-1-3, determine the valuation function, as shown in the following formula:
f(s)=g(s)+h(s)。f(s)=g(s)+h(s).
步骤2-2、创建OPEN和CLOSED两个集合来管理道路节点,其中OPEN集合用于存放扩展过的道路节点的子节点,这些节点属于待扩展节点;CLOSED集合用于存放扩展过的节点;Step 2-2, create two sets of OPEN and CLOSED to manage road nodes, wherein the OPEN set is used to store the child nodes of the expanded road nodes, and these nodes belong to the nodes to be expanded; the CLOSED set is used to store the expanded nodes;
步骤2-3、进行全局路径规划,每次都从OPEN集合中选择f(s)值最小的节点s进行扩展,节点s被扩展到的子节点存放于OPEN集合中;节点s扩展完成后,从OPEN集合中移到CLOSED集合中;之后循环上述过程,直到扩展到目标节点或者OPEN集合为空时,终止算法,记录规划出的路径。Step 2-3, carry out global path planning, each time select the node s with the smallest f(s) value from the OPEN set for expansion, and the child nodes to which the node s is expanded are stored in the OPEN set; after the expansion of the node s is completed, Move from the OPEN set to the CLOSED set; then loop the above process until the target node is expanded or the OPEN set is empty, then the algorithm is terminated and the planned path is recorded.
步骤3、对路径进行跟踪,即以无人车自身携带的循迹模块对离线规划出的最优路径进行跟踪;Step 3. Track the path, that is, use the tracking module carried by the unmanned vehicle to track the optimal path planned offline;
步骤4、探测并采集随机障碍物信息,判断路径环境,根据障碍物信息进行全局路径规划和局部路径规划两种算法之间的切换;具体步骤如下:Step 4. Detect and collect random obstacle information, judge the path environment, and switch between the two algorithms of global path planning and local path planning according to the obstacle information; the specific steps are as follows:
步骤4-1、无人车通过自身携带的超声波模块,实时探测路径上的随机障碍物,生成障碍边界以及相对位置信息;Step 4-1. The unmanned vehicle detects random obstacles on the path in real time through the ultrasonic module carried by itself, and generates obstacle boundaries and relative position information;
步骤4-2、通过传感器采集到的障碍物信息,对道路环境进行判断,并根据判断结果进行全局路劲规划和局部路径规划算法间的切换;具体为:Step 4-2, judge the road environment through the obstacle information collected by the sensor, and switch between the global road strength planning and the local path planning algorithm according to the judgment result; specifically:
设置无人车与障碍物之间的安全距离,若障碍物边界与墙壁之间距离小于该安全距离,认为无人车无法绕过,则以当前无人车所在拓扑节点为起始点,并且设置该拓扑节点与下一节点之间的拓扑边为不可通行,更新邻接矩阵,返回步骤2重新规划全局路径;若障碍物边界与墙壁之间距离大于安全距离,则切换至步骤5执行局部路径规划算法进行避障。Set the safe distance between the unmanned vehicle and the obstacle. If the distance between the boundary of the obstacle and the wall is smaller than the safe distance, it is considered that the unmanned vehicle cannot bypass it. The topological node where the current unmanned vehicle is located is taken as the starting point, and set The topological edge between this topological node and the next node is impassable, update the adjacency matrix, and return to step 2 to replan the global path; if the distance between the obstacle boundary and the wall is greater than the safety distance, switch to step 5 to perform local path planning algorithm for obstacle avoidance.
步骤5、车辆按照步骤4规划的路径行驶,在行驶过程中按照局部路径规划算法躲避随机障碍物,达到局部避障的目的。具体步骤如下:Step 5. The vehicle drives according to the path planned in step 4, and avoids random obstacles according to the local path planning algorithm during the driving process, so as to achieve the purpose of local obstacle avoidance. Specific steps are as follows:
步骤5-1、建立局部路径规划的起始点以及终点,具体以无人车当前所处节点为起始点,以全局路径规划中该节点的下一节点终点;Step 5-1, establish the starting point and end point of the local path planning, specifically take the current node of the unmanned vehicle as the starting point, and use the end point of the next node of the node in the global path planning;
步骤5-2、根据无人车尺寸,确定障碍物作用域;Step 5-2, according to the size of the unmanned vehicle, determine the range of obstacles;
步骤5-3、建立人工势场法的引力势场函数和斥力势场函数,进行局部避障;具体步骤如下:Step 5-3, establish the gravitational potential field function and the repulsion potential field function of the artificial potential field method, and perform local obstacle avoidance; the specific steps are as follows:
步骤5-3-1、建立引力势场函数Uatt,公式如下:Step 5-3-1. Establish the gravitational potential field function U att , the formula is as follows:
式中:Ka为引力势场常量,Qc为无人车地球坐标系位置向量,Qg为地球坐标系中目标点的位置向量;In the formula: K a is the gravitational potential field constant, Q c is the position vector of the earth coordinate system of the unmanned vehicle, and Q g is the position vector of the target point in the earth coordinate system;
步骤5-3-2、建立斥力势场函数Urep,公式如下:Step 5-3-2, establish the repulsion potential field function U rep , the formula is as follows:
式中:Kr为斥力势场常量,ρ(Qc,Qobs)为无人车与障碍物的相对距离,D为安全距离。In the formula: K r is the repulsion potential field constant, ρ(Q c , Q obs ) is the relative distance between the unmanned vehicle and the obstacle, and D is the safety distance.
本发明将全局路径规划与局部路径规划相结合,在寻找最优路径的同时可以进行局部避障,使无人车的运行更灵活,在遇到障碍物时运行距离更短,提高了仓储无人车的工作效率。The present invention combines global path planning with local path planning, and can perform local obstacle avoidance while searching for an optimal path, so that the operation of the unmanned vehicle is more flexible, the running distance is shorter when encountering obstacles, and the storage space is improved. Work efficiency of people and vehicles.
下面结合实施例对本发明做进一步详细的描述。The present invention will be further described in detail below in conjunction with the examples.
实施例Example
结合图1,本发明基于仓储无人车的车辆路径规划方法,具体实施步骤如下:In conjunction with Fig. 1, the present invention is based on the vehicle path planning method of warehouse unmanned vehicles, and the specific implementation steps are as follows:
步骤1、制作仓储环境拓扑地图,如图2所示为仓储环境的示意地图,图中矩形代表货架,采集仓储环境无人车可行路径与货架的相对位置,根据采集到的信息,设置无人车可以到达的节点,然后根据节点信息创建基于拓扑地图的邻接矩阵;Step 1. Make a topological map of the storage environment, as shown in Figure 2. The schematic map of the storage environment is shown in Figure 2. The rectangle in the figure represents the shelf. Collect the feasible path of the unmanned vehicle in the storage environment and the relative position of the shelf. According to the collected information, set the unmanned The nodes that the car can reach, and then create an adjacency matrix based on the topological map according to the node information;
步骤1-1、如图3所示,采集环境地图信息,以环境地图中每个路口拐点及无人车需要停靠的点作为一个拓扑节点,与该拓扑节点相通的道路作为一条拓扑边,因此可将环境地图抽象为由拓扑节点和拓扑边组成的拓扑地图,该拓扑地图用符号可以表示为G=(V,E),其中V为节点集合,E为连接节点的边的集合,在该仓储环境中,可设置如图3所示A至O共15个拓扑节点,即矩阵Step 1-1, as shown in Figure 3, collect the environmental map information, take each intersection turning point and the point where the unmanned vehicle needs to stop in the environmental map as a topological node, and the road connected to the topological node as a topological edge, so The environment map can be abstracted as a topological map composed of topological nodes and topological edges. The topological map can be expressed as G=(V, E), where V is a set of nodes, and E is a set of edges connecting nodes. In this In the storage environment, a total of 15 topological nodes from A to O as shown in Figure 3 can be set, that is, the matrix
V=[0.5,0.5;2.5,0.5;4.5,0.5;0.5,2.5;2.5,2.5;4.5,2.5;5.5,2.5;0.5,4.5;2.5,4.5;4.5,4.5;5.5,4.5;0.5,6.5;2.5,6.5;4.5,6.5;5.5,0.5];V=[0.5,0.5; 2.5,0.5; 4.5,0.5; 0.5,2.5; 2.5,2.5; 4.5,2.5; 5.5,2.5; 0.5,4.5; ;2.5,6.5;4.5,6.5;5.5,0.5];
步骤1-2、为了便于对该拓扑图的保存和搜索,用邻接矩阵来表示各节点之间的关系。若拓扑地图中共有n个拓扑节点v1,v2,…,vn,则该邻接矩阵是一个n×n的矩阵,通过赋予各条边的属性,以区分可通行路径和不可通行路径,这里将可通行路径的权值属性设为1,不可通行路径的权值属性设为0。进而,该邻接矩阵中的第(i,j)个元素可以表示为Step 1-2. In order to facilitate the storage and search of the topological graph, an adjacency matrix is used to represent the relationship between nodes. If there are n topological nodes v 1 , v 2 ,...,v n in the topological map, then the adjacency matrix is an n×n matrix, and the passable path and the impassable path are distinguished by assigning attributes to each edge, Here, the weight attribute of the passable path is set to 1, and the weight attribute of the impassable path is set to 0. Furthermore, the (i, j)th element in the adjacency matrix can be expressed as
在该拓扑地图中n=15,则邻接矩阵是一个15×15的矩阵,表示为In this topological map n=15, then the adjacency matrix is a 15×15 matrix, expressed as
步骤2、离线进行全局路径规划,即采用改进后A*算法,以离线的方式计算出从起始点至目标点的最优路径,如图4所示,为全局路径规划的流程图;Step 2. Perform global path planning offline, that is, use the improved A* algorithm to calculate the optimal path from the starting point to the target point in an offline manner, as shown in Figure 4, which is a flow chart of global path planning;
步骤2-1、采用A*算法,对每个道路节点均设计一个估价函数,如下式所示:Step 2-1. Use the A* algorithm to design an evaluation function for each road node, as shown in the following formula:
f(s)=g(s)+h(s)f(s)=g(s)+h(s)
式中,f(s)表示从起始节点经过节点s到达目标节点的估计长度,g(s)表示从起始节点到当前节点的路径长度,h(s)为启发函数,是当前节点到目标节点的估计值;In the formula, f(s) represents the estimated length from the starting node to the target node through node s, g(s) represents the path length from the starting node to the current node, and h(s) is a heuristic function, which is the path length from the current node to the current node. Estimated value of the target node;
步骤2-1-1、记录从起始节点到当前节点的路径长度设计为g(s);Step 2-1-1, record the path length from the starting node to the current node as g(s);
步骤2-1-2、h(s)为启发函数,是当前节点到目标节点的估计值。A*算法一定能搜索到最优路径的前提条件:Step 2-1-2, h(s) is a heuristic function, which is the estimated value from the current node to the target node. A* algorithm must be able to search the prerequisites for the optimal path:
h(s)≤cost*(s,sgoal)h(s)≤cost*(s,s goal )
式中,cost*(s,sgoal)为当前节点到目标节点的最优距离。满足上式的h(s)值越大,则扩展节点越少。为了保证搜索路径的最优性,本方法将欧几里德距离作为启发函数。对于给定的两个位置坐标(xi,yi)和(xj,yj),它们的欧几里德距离de如下式所示:In the formula, cost*(s,s goal ) is the optimal distance from the current node to the target node. The larger the value of h(s) satisfying the above formula, the fewer the expanded nodes. In order to ensure the optimality of the search path, this method uses Euclidean distance as a heuristic function. For given two position coordinates ( xi , y) and (x j , y j ) , their Euclidean distance d e is shown as follows:
步骤2-2、创建OPEN和CLOSED两个集合来管理道路节点。OPEN存放扩展过的道路节点的子节点。它们属于待扩展节点。CLOSED存放扩展过的节点;Step 2-2. Create two collections, OPEN and CLOSED, to manage road nodes. OPEN stores the child nodes of the expanded road node. They belong to the nodes to be expanded. CLOSED stores expanded nodes;
步骤2-3、开始进行全局路径规划,每次都从OPEN中选择f(s)值最小的节点s进行扩展。节点s被扩展到的子节点存放于OPEN中。节点s扩展完成后,从OPEN中移到CLOSED中。循环上述过程,直到扩展到目标节点或者OPEN为空时,终止算法,记录规划出的路径。如图5所示,为全局路径规划的结果图。Step 2-3: Start global path planning, and select the node s with the smallest f(s) value from OPEN for expansion each time. The child nodes to which node s is expanded are stored in OPEN. After node s is expanded, it is moved from OPEN to CLOSED. Repeat the above process until the target node is expanded or OPEN is empty, then the algorithm is terminated and the planned path is recorded. As shown in Figure 5, it is the result map of the global path planning.
步骤3、路径跟踪,即无人车通过自身携带的循迹模块,以及在仓储环境中预先设置的标记物进行无人车相对于仓储环境的定位,从而实现对规划好的全局路径的跟踪。如图6中粗实线所示,在没有障碍物的路段直接进行循迹跟踪,降低定位成本。Step 3, path tracking, that is, the unmanned vehicle uses the tracking module carried by itself and the markers preset in the storage environment to locate the unmanned vehicle relative to the storage environment, so as to realize the tracking of the planned global path. As shown by the thick solid line in Figure 6, tracking is directly performed on road sections without obstacles to reduce positioning costs.
步骤4、探测并采集随机障碍物信息,判断路径环境,并进行全局路径规划和局部路径规划两种算法之间的切换;Step 4. Detect and collect random obstacle information, judge the path environment, and switch between the two algorithms of global path planning and local path planning;
步骤4-1、无人车通过自身携带的超声波模块,实时探测路径上的随机障碍物,生成障碍边界以及相对位置等信息;Step 4-1. The unmanned vehicle detects random obstacles on the path in real time through the ultrasonic module carried by itself, and generates information such as obstacle boundaries and relative positions;
步骤4-2、通过传感器采集到的障碍物信息,对道路环境进行判断,并根据判断结果进行全局路劲规划和局部路径规划算法间的切换;Step 4-2, judge the road environment through the obstacle information collected by the sensor, and switch between the global road strength planning and the local path planning algorithm according to the judgment result;
步骤4-3、设计无人车与障碍物之间的安全距离,该仓储模型设置安全距离为0.3个单位,若障碍物边界与墙壁之间距离小于该安全距离,认为无人车无法通过,如图7所示,则以当前无人车所在拓扑节点为起始点,并且设置该拓扑节点与下一节点之间的拓扑边为不可通行,更新邻接矩阵,将邻接矩阵更新为:Step 4-3. Design the safe distance between the unmanned vehicle and the obstacle. The storage model sets the safe distance to 0.3 units. If the distance between the boundary of the obstacle and the wall is less than the safe distance, it is considered that the unmanned vehicle cannot pass. As shown in Figure 7, take the topological node where the current unmanned vehicle is located as the starting point, and set the topological edge between this topological node and the next node as inaccessible, update the adjacency matrix, and update the adjacency matrix to:
返回步骤2重新规划全局路径,重新规划的路径如图7中粗实线所示;Return to step 2 to re-plan the global path, and the re-planned path is shown in the thick solid line in Figure 7;
步骤4-4、如图6所示,若障碍物边界与墙壁之间距离大于步骤4-3中设计的安全距离,则切换至局部路径规划算法进行避障。Step 4-4, as shown in Figure 6, if the distance between the obstacle boundary and the wall is greater than the safety distance designed in step 4-3, switch to the local path planning algorithm for obstacle avoidance.
步骤5、躲避随机障碍物,即采用人工势场法在线进行局部路径规划,达到局部避障的目的,效果如图6所示,在有障碍物的路段切换至人工势场法进行局部避障。Step 5. Avoid random obstacles, that is, use the artificial potential field method to perform local path planning online to achieve the purpose of local obstacle avoidance. The effect is shown in Figure 6. Switch to the artificial potential field method for local obstacle avoidance on the road section with obstacles .
步骤5-1、建立局部路径规划的起始点以及终点,本方法以无人车当前所处节点为起始点,以全局路径规划中该节点的下一节点终点,在该仓储模型中即以L点和M点为局部路径规划的起点和终点;Step 5-1. Establish the starting point and end point of the local path planning. This method takes the current node of the unmanned vehicle as the starting point, and takes the end point of the next node of the node in the global path planning. In the storage model, L Point and M point are the starting point and end point of local path planning;
步骤5-2、根据无人车尺寸,确定障碍物作用域;Step 5-2, according to the size of the unmanned vehicle, determine the range of obstacles;
步骤5-3、建立人工势场法的引力势场函数和斥力势场函数,切换至A*算法进行局部避障;Step 5-3, establish the gravitational potential field function and the repulsion potential field function of the artificial potential field method, and switch to the A* algorithm for local obstacle avoidance;
步骤5-3-1、建立引力势场函数,公式如下:Step 5-3-1, establish the gravitational potential field function, the formula is as follows:
式中:Ka为引力势场常量,Qc为无人车地球坐标系位置向量,Qg为地球坐标系中目标点的位置向量,在该方法中,引力势场常量设为1,(Qc-Qg)2为无人车与目标点之间的欧氏距离,随着无人车的移动随时更新,则最终引力势场函数为In the formula: K a is the gravitational potential field constant, Q c is the position vector of the earth coordinate system of the unmanned vehicle, Q g is the position vector of the target point in the earth coordinate system, in this method, the gravitational potential field constant is set to 1, ( Q c -Q g ) 2 is the Euclidean distance between the unmanned vehicle and the target point, which is updated at any time as the unmanned vehicle moves, and the final gravitational potential field function is
步骤5-3-2、建立斥力势场函数,公式如下:Step 5-3-2, establish the repulsion potential field function, the formula is as follows:
式中:Kr为斥力势场常量,ρ(Qc,Qobs)为无人车与障碍物的相对距离,D为安全距离,在该方法中,斥力势场常量设置为1,ρ(Qc,Qobs)随着无人车的运动实时更新,D设置为0.3,则斥力势场函数为In the formula: K r is the repulsion potential field constant, ρ(Q c , Q obs ) is the relative distance between the unmanned vehicle and the obstacle, D is the safety distance, in this method, the repulsion potential field constant is set to 1, ρ( Q c , Q obs ) are updated in real time with the movement of the unmanned vehicle, and D is set to 0.3, then the repulsion potential field function is
本发明将全局路径规划与局部路径规划相结合,在寻找最优路径的同时可以进行局部避障,使无人车的运行更灵活,在遇到障碍物时运行距离更短,提高了仓储无人车的工作效率。The present invention combines global path planning with local path planning, and can perform local obstacle avoidance while searching for an optimal path, so that the operation of the unmanned vehicle is more flexible, the running distance is shorter when encountering obstacles, and the storage space is improved. Work efficiency of people and vehicles.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710209283.4A CN107037812A (en) | 2017-03-31 | 2017-03-31 | A kind of vehicle path planning method based on storage unmanned vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710209283.4A CN107037812A (en) | 2017-03-31 | 2017-03-31 | A kind of vehicle path planning method based on storage unmanned vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107037812A true CN107037812A (en) | 2017-08-11 |
Family
ID=59534739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710209283.4A Pending CN107037812A (en) | 2017-03-31 | 2017-03-31 | A kind of vehicle path planning method based on storage unmanned vehicle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107037812A (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107727098A (en) * | 2017-09-26 | 2018-02-23 | 上海大学 | A kind of unmanned water surface ship paths planning method for multiple target locations of patrolling successively |
CN107885194A (en) * | 2017-11-10 | 2018-04-06 | 广东工业大学 | A kind of unmanned exploration device and its control method, system |
CN108225326A (en) * | 2017-12-31 | 2018-06-29 | 南京理工大学 | A kind of AGV paths planning methods based on A* algorithms |
CN108253984A (en) * | 2017-12-19 | 2018-07-06 | 昆明理工大学 | A kind of method for planning path for mobile robot based on improvement A star algorithms |
CN108829105A (en) * | 2018-06-21 | 2018-11-16 | 浙江工业大学 | It is a kind of to dispatch avoidance optimization method based on the warehouse logistics of KM algorithm and Artificial Potential Field Method |
CN108983781A (en) * | 2018-07-25 | 2018-12-11 | 北京理工大学 | A kind of environment detection method in unmanned vehicle target acquisition system |
CN109035747A (en) * | 2018-06-12 | 2018-12-18 | 北京拜思克科技有限公司 | A kind of intelligent family moving platform system and its traffic control method |
CN109101022A (en) * | 2018-08-09 | 2018-12-28 | 北京智行者科技有限公司 | A kind of working path update method |
CN109101017A (en) * | 2018-07-27 | 2018-12-28 | 江苏盛海智能科技有限公司 | A kind of unmanned vehicle tracks route planning method and terminal |
CN109426222A (en) * | 2017-08-24 | 2019-03-05 | 中华映管股份有限公司 | Unmanned carrying system and operation method thereof |
CN109508016A (en) * | 2018-12-26 | 2019-03-22 | 北京工商大学 | Water quality sampling cruise ship path planning optimal method |
CN109596138A (en) * | 2018-12-29 | 2019-04-09 | 北京智行者科技有限公司 | Automatic Pilot charging vehicle parking path method and system for planning |
CN109656241A (en) * | 2017-10-10 | 2019-04-19 | 北京京东尚科信息技术有限公司 | Method and apparatus for controlling the carrier in unmanned storehouse |
CN109739219A (en) * | 2018-12-05 | 2019-05-10 | 北京百度网讯科技有限公司 | Planing method, device, equipment and the readable storage medium storing program for executing of pass |
CN109737980A (en) * | 2018-12-29 | 2019-05-10 | 上海岚豹智能科技有限公司 | A kind of air navigation aid and its corresponding robot |
CN109945882A (en) * | 2019-03-27 | 2019-06-28 | 上海交通大学 | An unmanned vehicle path planning and control system and method |
CN109947120A (en) * | 2019-04-29 | 2019-06-28 | 西安电子科技大学 | Path Planning Method in Warehousing System |
CN110045727A (en) * | 2018-12-03 | 2019-07-23 | 江西洪都航空工业集团有限责任公司 | A kind of garden unmanned vehicle path planning and control method |
CN110275535A (en) * | 2019-06-27 | 2019-09-24 | 大连理工大学 | A Multi-state Vehicle Route Planning Method Based on Improved A-Star Algorithm |
CN110333659A (en) * | 2019-07-15 | 2019-10-15 | 中国人民解放军军事科学院国防科技创新研究院 | A kind of pilotless automobile local paths planning method based on improvement A star search |
CN110348341A (en) * | 2019-06-26 | 2019-10-18 | 纵目科技(上海)股份有限公司 | A kind of memory parking system, method, terminal and storage medium |
CN110455305A (en) * | 2019-08-20 | 2019-11-15 | 云南梦工厂机器人有限公司 | AGV trolley control method with autonomous path planning function |
CN110487290A (en) * | 2019-07-29 | 2019-11-22 | 中国人民解放军军事科学院国防科技创新研究院 | Pilotless automobile local paths planning method based on variable step A star search |
CN110533209A (en) * | 2018-05-25 | 2019-12-03 | 南京理工大学 | A multi-floor path planning method for parking lot with diversion of people and vehicles |
CN110554688A (en) * | 2018-05-30 | 2019-12-10 | 北京京东尚科信息技术有限公司 | Method and device for generating topological map |
CN111189468A (en) * | 2020-01-13 | 2020-05-22 | 天津工业大学 | Wave glider global path planning method |
CN111326003A (en) * | 2020-02-24 | 2020-06-23 | 五邑大学 | A method, system and storage medium for tracking and driving of an intelligent car |
CN111435249A (en) * | 2019-01-10 | 2020-07-21 | 招商局国际信息技术有限公司 | Control method, device and equipment of unmanned equipment and storage medium |
CN111439257A (en) * | 2019-06-26 | 2020-07-24 | 纵目科技(上海)股份有限公司 | Memory parking system, method, terminal and cloud server |
CN111473795A (en) * | 2020-04-08 | 2020-07-31 | 江苏盛海智能科技有限公司 | Obstacle avoidance method and terminal for unmanned vehicle |
CN111489023A (en) * | 2020-04-03 | 2020-08-04 | 武汉理工大学 | Multifunctional intelligent robot system for processing dynamic crew service demand information |
CN111532641A (en) * | 2020-04-30 | 2020-08-14 | 西安电子科技大学 | Parallel path planning method for automatic guided vehicles in warehouse sorting |
CN111650934A (en) * | 2020-05-26 | 2020-09-11 | 坤泰车辆系统(常州)有限公司 | Method for planning local path of automatic driving system |
CN111857160A (en) * | 2020-08-17 | 2020-10-30 | 武汉中海庭数据技术有限公司 | Unmanned vehicle path planning method and device |
CN111912411A (en) * | 2020-08-26 | 2020-11-10 | 中国电力科学研究院有限公司 | Robot navigation positioning method, system and storage medium |
CN111966096A (en) * | 2020-07-31 | 2020-11-20 | 智慧航海(青岛)科技有限公司 | Intelligent ship local path planning terminal point automatic selection method |
CN112013866A (en) * | 2020-08-31 | 2020-12-01 | 电子科技大学 | Path planning method based on intelligent navigation system |
CN112034833A (en) * | 2019-05-15 | 2020-12-04 | 百度(美国)有限责任公司 | Online agent to plan open space trajectories for autonomous vehicles |
CN112097781A (en) * | 2019-06-17 | 2020-12-18 | 郑州宇通客车股份有限公司 | Path planning method and device based on multi-stage tentacles |
CN112270306A (en) * | 2020-11-17 | 2021-01-26 | 中国人民解放军军事科学院国防科技创新研究院 | Unmanned vehicle track prediction and navigation method based on topological road network |
CN112378397A (en) * | 2020-11-02 | 2021-02-19 | 中国兵器工业计算机应用技术研究所 | Unmanned aerial vehicle target tracking method and device and unmanned aerial vehicle |
CN112499298A (en) * | 2021-02-08 | 2021-03-16 | 苏州澳昆智能机器人技术有限公司 | Transport robot for loading |
CN112539750A (en) * | 2020-11-25 | 2021-03-23 | 湖北三环智能科技有限公司 | Intelligent transportation vehicle path planning method |
CN112748733A (en) * | 2020-12-16 | 2021-05-04 | 广东电网有限责任公司 | Cable drum carriage path planning method, device, equipment and storage medium |
CN112762950A (en) * | 2020-12-15 | 2021-05-07 | 浙江大学 | Hybrid A-autonomous parking path planning method based on artificial potential field guidance |
CN112828883A (en) * | 2020-12-25 | 2021-05-25 | 香港中文大学深圳研究院 | Robot environment exploration method and system in unknown environment |
CN113075921A (en) * | 2019-12-17 | 2021-07-06 | 北京京东尚科信息技术有限公司 | Local path planning method and device for unmanned equipment |
CN113391633A (en) * | 2021-06-21 | 2021-09-14 | 南京航空航天大学 | Urban environment-oriented mobile robot fusion path planning method |
WO2021189882A1 (en) * | 2020-03-27 | 2021-09-30 | 比亚迪股份有限公司 | Vehicle scheduling method, apparatus and system |
CN113778097A (en) * | 2021-09-15 | 2021-12-10 | 龙岩学院 | L-shaped path trend improved A-STAR algorithm for intelligent warehouse logistics robot path planning method |
CN114035568A (en) * | 2021-03-27 | 2022-02-11 | 浙江大学 | Method for planning path of stratum drilling robot in combustible ice trial production area |
CN114200924A (en) * | 2021-11-02 | 2022-03-18 | 深圳优地科技有限公司 | Path planning method, unmanned vehicle and computer readable storage medium |
CN114355940A (en) * | 2021-12-30 | 2022-04-15 | 深兰人工智能(深圳)有限公司 | Automatic driving path planning method and device, electronic equipment and storage medium |
CN114594767A (en) * | 2022-02-25 | 2022-06-07 | 珠海紫燕无人飞行器有限公司 | A path re-planning method for unmanned vehicles based on air-ground coordination |
CN114625162A (en) * | 2022-02-10 | 2022-06-14 | 广东工业大学 | Optimal path planning method, system and medium for UAV based on hybrid algorithm |
CN114879687A (en) * | 2022-05-30 | 2022-08-09 | 浙江大旗新能源汽车有限公司 | Intelligent control method for unmanned logistics vehicle |
CN115143967A (en) * | 2022-07-20 | 2022-10-04 | 中国工商银行股份有限公司 | Robot fixed point navigation method and device |
CN115200576A (en) * | 2022-07-13 | 2022-10-18 | 九天创新(广东)智能科技有限公司 | Route planning, navigation and scheduling system of unmanned vehicle |
CN115220451A (en) * | 2022-07-18 | 2022-10-21 | 杭州海康机器人股份有限公司 | A scheduling control method, device and electronic device |
CN115344049A (en) * | 2022-09-14 | 2022-11-15 | 江苏天一航空工业股份有限公司 | Automatic path planning and vehicle control method and device for passenger boarding vehicle |
CN115951683A (en) * | 2023-01-29 | 2023-04-11 | 南京理工大学紫金学院 | Artificial Potential Field Path Planning Method by Hybrid Gradient Descent and Beetle Search |
CN117129001A (en) * | 2023-10-24 | 2023-11-28 | 博创联动科技股份有限公司 | Automatic driving path planning method and system based on artificial intelligence |
CN118067131A (en) * | 2024-04-17 | 2024-05-24 | 山东省科学院海洋仪器仪表研究所 | A path planning control method for underwater robot |
-
2017
- 2017-03-31 CN CN201710209283.4A patent/CN107037812A/en active Pending
Non-Patent Citations (1)
Title |
---|
JIAN WANG 等: "Improved Hybrid Algorithm of Path Planning for Automated Guided Vehicle in Storage System", 《2ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, AND ARTIFICIAL INTELLIGENCE(CAAI 2017)》 * |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109426222A (en) * | 2017-08-24 | 2019-03-05 | 中华映管股份有限公司 | Unmanned carrying system and operation method thereof |
CN107727098A (en) * | 2017-09-26 | 2018-02-23 | 上海大学 | A kind of unmanned water surface ship paths planning method for multiple target locations of patrolling successively |
CN109656241B (en) * | 2017-10-10 | 2022-04-12 | 北京京东乾石科技有限公司 | Method and device for controlling a transport vehicle in an unmanned cabin |
CN109656241A (en) * | 2017-10-10 | 2019-04-19 | 北京京东尚科信息技术有限公司 | Method and apparatus for controlling the carrier in unmanned storehouse |
CN107885194A (en) * | 2017-11-10 | 2018-04-06 | 广东工业大学 | A kind of unmanned exploration device and its control method, system |
CN108253984A (en) * | 2017-12-19 | 2018-07-06 | 昆明理工大学 | A kind of method for planning path for mobile robot based on improvement A star algorithms |
CN108225326A (en) * | 2017-12-31 | 2018-06-29 | 南京理工大学 | A kind of AGV paths planning methods based on A* algorithms |
CN110533209B (en) * | 2018-05-25 | 2022-09-16 | 南京理工大学 | Multi-floor path planning method for parking lot with people and vehicles separated |
CN110533209A (en) * | 2018-05-25 | 2019-12-03 | 南京理工大学 | A multi-floor path planning method for parking lot with diversion of people and vehicles |
CN110554688A (en) * | 2018-05-30 | 2019-12-10 | 北京京东尚科信息技术有限公司 | Method and device for generating topological map |
CN110554688B (en) * | 2018-05-30 | 2024-01-16 | 北京京东乾石科技有限公司 | Method and device for generating topological map |
CN109035747A (en) * | 2018-06-12 | 2018-12-18 | 北京拜思克科技有限公司 | A kind of intelligent family moving platform system and its traffic control method |
CN108829105A (en) * | 2018-06-21 | 2018-11-16 | 浙江工业大学 | It is a kind of to dispatch avoidance optimization method based on the warehouse logistics of KM algorithm and Artificial Potential Field Method |
CN108983781B (en) * | 2018-07-25 | 2020-07-07 | 北京理工大学 | An environment detection method in an unmanned vehicle target search system |
CN108983781A (en) * | 2018-07-25 | 2018-12-11 | 北京理工大学 | A kind of environment detection method in unmanned vehicle target acquisition system |
CN109101017A (en) * | 2018-07-27 | 2018-12-28 | 江苏盛海智能科技有限公司 | A kind of unmanned vehicle tracks route planning method and terminal |
CN109101022A (en) * | 2018-08-09 | 2018-12-28 | 北京智行者科技有限公司 | A kind of working path update method |
CN110045727B (en) * | 2018-12-03 | 2022-08-05 | 江西洪都航空工业集团有限责任公司 | Park unmanned vehicle path planning and control method |
CN110045727A (en) * | 2018-12-03 | 2019-07-23 | 江西洪都航空工业集团有限责任公司 | A kind of garden unmanned vehicle path planning and control method |
US11521495B2 (en) | 2018-12-05 | 2022-12-06 | Beijing Baidu Netcom Science Technology Co., Ltd. | Method, apparatus, device and readable storage medium for planning pass path |
CN109739219A (en) * | 2018-12-05 | 2019-05-10 | 北京百度网讯科技有限公司 | Planing method, device, equipment and the readable storage medium storing program for executing of pass |
CN109508016A (en) * | 2018-12-26 | 2019-03-22 | 北京工商大学 | Water quality sampling cruise ship path planning optimal method |
CN109737980A (en) * | 2018-12-29 | 2019-05-10 | 上海岚豹智能科技有限公司 | A kind of air navigation aid and its corresponding robot |
CN109596138A (en) * | 2018-12-29 | 2019-04-09 | 北京智行者科技有限公司 | Automatic Pilot charging vehicle parking path method and system for planning |
CN111435249B (en) * | 2019-01-10 | 2023-12-15 | 招商局国际科技有限公司 | Control method, device, equipment and storage medium of unmanned equipment |
CN111435249A (en) * | 2019-01-10 | 2020-07-21 | 招商局国际信息技术有限公司 | Control method, device and equipment of unmanned equipment and storage medium |
CN109945882A (en) * | 2019-03-27 | 2019-06-28 | 上海交通大学 | An unmanned vehicle path planning and control system and method |
CN109945882B (en) * | 2019-03-27 | 2021-11-02 | 上海交通大学 | An unmanned vehicle path planning and control system and method |
CN109947120B (en) * | 2019-04-29 | 2021-03-23 | 西安电子科技大学 | Path Planning Method in Warehousing System |
CN109947120A (en) * | 2019-04-29 | 2019-06-28 | 西安电子科技大学 | Path Planning Method in Warehousing System |
CN112034833A (en) * | 2019-05-15 | 2020-12-04 | 百度(美国)有限责任公司 | Online agent to plan open space trajectories for autonomous vehicles |
CN112097781B (en) * | 2019-06-17 | 2023-05-09 | 宇通客车股份有限公司 | Path planning method and device based on multistage tentacles |
CN112097781A (en) * | 2019-06-17 | 2020-12-18 | 郑州宇通客车股份有限公司 | Path planning method and device based on multi-stage tentacles |
CN110348341A (en) * | 2019-06-26 | 2019-10-18 | 纵目科技(上海)股份有限公司 | A kind of memory parking system, method, terminal and storage medium |
CN111439257A (en) * | 2019-06-26 | 2020-07-24 | 纵目科技(上海)股份有限公司 | Memory parking system, method, terminal and cloud server |
CN110275535B (en) * | 2019-06-27 | 2022-02-15 | 大连理工大学 | Multi-state vehicle path planning method based on improved A star algorithm |
CN110275535A (en) * | 2019-06-27 | 2019-09-24 | 大连理工大学 | A Multi-state Vehicle Route Planning Method Based on Improved A-Star Algorithm |
CN110333659B (en) * | 2019-07-15 | 2020-04-28 | 中国人民解放军军事科学院国防科技创新研究院 | Unmanned vehicle local path planning method based on improved A star search |
CN110333659A (en) * | 2019-07-15 | 2019-10-15 | 中国人民解放军军事科学院国防科技创新研究院 | A kind of pilotless automobile local paths planning method based on improvement A star search |
CN110487290A (en) * | 2019-07-29 | 2019-11-22 | 中国人民解放军军事科学院国防科技创新研究院 | Pilotless automobile local paths planning method based on variable step A star search |
CN110487290B (en) * | 2019-07-29 | 2020-05-19 | 中国人民解放军军事科学院国防科技创新研究院 | Unmanned vehicle local path planning method based on variable step size A star search |
CN110455305A (en) * | 2019-08-20 | 2019-11-15 | 云南梦工厂机器人有限公司 | AGV trolley control method with autonomous path planning function |
CN113075921B (en) * | 2019-12-17 | 2024-02-09 | 北京京东尚科信息技术有限公司 | Local path planning method and device for unmanned equipment |
CN113075921A (en) * | 2019-12-17 | 2021-07-06 | 北京京东尚科信息技术有限公司 | Local path planning method and device for unmanned equipment |
CN111189468A (en) * | 2020-01-13 | 2020-05-22 | 天津工业大学 | Wave glider global path planning method |
CN111326003A (en) * | 2020-02-24 | 2020-06-23 | 五邑大学 | A method, system and storage medium for tracking and driving of an intelligent car |
WO2021189882A1 (en) * | 2020-03-27 | 2021-09-30 | 比亚迪股份有限公司 | Vehicle scheduling method, apparatus and system |
CN111489023A (en) * | 2020-04-03 | 2020-08-04 | 武汉理工大学 | Multifunctional intelligent robot system for processing dynamic crew service demand information |
CN111473795A (en) * | 2020-04-08 | 2020-07-31 | 江苏盛海智能科技有限公司 | Obstacle avoidance method and terminal for unmanned vehicle |
CN111532641A (en) * | 2020-04-30 | 2020-08-14 | 西安电子科技大学 | Parallel path planning method for automatic guided vehicles in warehouse sorting |
CN111532641B (en) * | 2020-04-30 | 2021-06-25 | 西安电子科技大学 | Parallel path planning method for automatic guided vehicles in warehouse sorting |
CN111650934A (en) * | 2020-05-26 | 2020-09-11 | 坤泰车辆系统(常州)有限公司 | Method for planning local path of automatic driving system |
CN111966096A (en) * | 2020-07-31 | 2020-11-20 | 智慧航海(青岛)科技有限公司 | Intelligent ship local path planning terminal point automatic selection method |
CN111857160A (en) * | 2020-08-17 | 2020-10-30 | 武汉中海庭数据技术有限公司 | Unmanned vehicle path planning method and device |
CN111912411A (en) * | 2020-08-26 | 2020-11-10 | 中国电力科学研究院有限公司 | Robot navigation positioning method, system and storage medium |
CN111912411B (en) * | 2020-08-26 | 2022-06-14 | 中国电力科学研究院有限公司 | A robot navigation and positioning method, system and storage medium |
CN112013866A (en) * | 2020-08-31 | 2020-12-01 | 电子科技大学 | Path planning method based on intelligent navigation system |
CN112378397B (en) * | 2020-11-02 | 2023-10-10 | 中国兵器工业计算机应用技术研究所 | Unmanned aerial vehicle target tracking method and device and unmanned aerial vehicle |
CN112378397A (en) * | 2020-11-02 | 2021-02-19 | 中国兵器工业计算机应用技术研究所 | Unmanned aerial vehicle target tracking method and device and unmanned aerial vehicle |
CN112270306A (en) * | 2020-11-17 | 2021-01-26 | 中国人民解放军军事科学院国防科技创新研究院 | Unmanned vehicle track prediction and navigation method based on topological road network |
CN112270306B (en) * | 2020-11-17 | 2022-09-30 | 中国人民解放军军事科学院国防科技创新研究院 | Unmanned vehicle track prediction and navigation method based on topological road network |
CN112539750A (en) * | 2020-11-25 | 2021-03-23 | 湖北三环智能科技有限公司 | Intelligent transportation vehicle path planning method |
CN112539750B (en) * | 2020-11-25 | 2022-08-16 | 湖北三环智能科技有限公司 | Intelligent transportation vehicle path planning method |
CN112762950A (en) * | 2020-12-15 | 2021-05-07 | 浙江大学 | Hybrid A-autonomous parking path planning method based on artificial potential field guidance |
CN112748733B (en) * | 2020-12-16 | 2024-05-07 | 广东电网有限责任公司 | Cable barrow path planning method, device, equipment and storage medium |
CN112748733A (en) * | 2020-12-16 | 2021-05-04 | 广东电网有限责任公司 | Cable drum carriage path planning method, device, equipment and storage medium |
CN112828883A (en) * | 2020-12-25 | 2021-05-25 | 香港中文大学深圳研究院 | Robot environment exploration method and system in unknown environment |
CN112499298A (en) * | 2021-02-08 | 2021-03-16 | 苏州澳昆智能机器人技术有限公司 | Transport robot for loading |
CN112499298B (en) * | 2021-02-08 | 2021-05-11 | 苏州澳昆智能机器人技术有限公司 | Transport robot for loading |
CN114035568A (en) * | 2021-03-27 | 2022-02-11 | 浙江大学 | Method for planning path of stratum drilling robot in combustible ice trial production area |
CN113391633A (en) * | 2021-06-21 | 2021-09-14 | 南京航空航天大学 | Urban environment-oriented mobile robot fusion path planning method |
CN113778097B (en) * | 2021-09-15 | 2023-05-19 | 龙岩学院 | L-shaped path trend improved A-STAR algorithm path planning method for intelligent warehousing logistics robot |
CN113778097A (en) * | 2021-09-15 | 2021-12-10 | 龙岩学院 | L-shaped path trend improved A-STAR algorithm for intelligent warehouse logistics robot path planning method |
CN114200924A (en) * | 2021-11-02 | 2022-03-18 | 深圳优地科技有限公司 | Path planning method, unmanned vehicle and computer readable storage medium |
CN114355940A (en) * | 2021-12-30 | 2022-04-15 | 深兰人工智能(深圳)有限公司 | Automatic driving path planning method and device, electronic equipment and storage medium |
CN114625162A (en) * | 2022-02-10 | 2022-06-14 | 广东工业大学 | Optimal path planning method, system and medium for UAV based on hybrid algorithm |
CN114594767A (en) * | 2022-02-25 | 2022-06-07 | 珠海紫燕无人飞行器有限公司 | A path re-planning method for unmanned vehicles based on air-ground coordination |
CN114879687A (en) * | 2022-05-30 | 2022-08-09 | 浙江大旗新能源汽车有限公司 | Intelligent control method for unmanned logistics vehicle |
CN115200576A (en) * | 2022-07-13 | 2022-10-18 | 九天创新(广东)智能科技有限公司 | Route planning, navigation and scheduling system of unmanned vehicle |
CN115220451A (en) * | 2022-07-18 | 2022-10-21 | 杭州海康机器人股份有限公司 | A scheduling control method, device and electronic device |
CN115143967A (en) * | 2022-07-20 | 2022-10-04 | 中国工商银行股份有限公司 | Robot fixed point navigation method and device |
CN115344049A (en) * | 2022-09-14 | 2022-11-15 | 江苏天一航空工业股份有限公司 | Automatic path planning and vehicle control method and device for passenger boarding vehicle |
CN115344049B (en) * | 2022-09-14 | 2023-08-29 | 江苏天一航空工业股份有限公司 | Automatic path planning and vehicle control method and device for passenger boarding vehicle |
CN115951683A (en) * | 2023-01-29 | 2023-04-11 | 南京理工大学紫金学院 | Artificial Potential Field Path Planning Method by Hybrid Gradient Descent and Beetle Search |
CN117129001B (en) * | 2023-10-24 | 2024-01-09 | 博创联动科技股份有限公司 | Automatic driving path planning method and system based on artificial intelligence |
CN117129001A (en) * | 2023-10-24 | 2023-11-28 | 博创联动科技股份有限公司 | Automatic driving path planning method and system based on artificial intelligence |
CN118067131A (en) * | 2024-04-17 | 2024-05-24 | 山东省科学院海洋仪器仪表研究所 | A path planning control method for underwater robot |
CN118067131B (en) * | 2024-04-17 | 2024-06-18 | 山东省科学院海洋仪器仪表研究所 | A path planning control method for underwater robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107037812A (en) | A kind of vehicle path planning method based on storage unmanned vehicle | |
Shah et al. | Viking: Vision-based kilometer-scale navigation with geographic hints | |
CN107450535B (en) | A kind of intelligence carrying robot optimal path combination chart discusses controlling planning method | |
Dong et al. | Mobile robot path planning based on improved DDPG reinforcement learning algorithm | |
Zhao et al. | The experience-memory Q-learning algorithm for robot path planning in unknown environment | |
Van Den Berg et al. | Anytime path planning and replanning in dynamic environments | |
Reshamwala et al. | Robot path planning using an ant colony optimization approach: a survey | |
Liu et al. | Path planning based on ant colony algorithm and distributed local navigation for multi-robot systems | |
CN106527448A (en) | Improved A* robot optimal path planning method suitable for warehouse environment | |
CN106371445A (en) | Unmanned vehicle planning control method based on topology map | |
Alarabi et al. | A PRM approach to path planning with obstacle avoidance of an autonomous robot | |
CN112344945B (en) | Indoor delivery robot path planning method, system and indoor delivery robot | |
Luo et al. | A computationally efficient neural dynamics approach to trajectory planning of an intelligent vehicle | |
Zhao | Optimal path planning for robot based on ant colony algorithm | |
Tao et al. | Motion planning for slam based on frontier exploration | |
CN115903823A (en) | Path planning method for unmanned environmental sanitation fleet | |
BAYGIN et al. | PSO based path planning approach for multi service robots in dynamic environments | |
Ali et al. | A novel approach for visibility search graph based path planning | |
Arul et al. | Ds-mpepc: Safe and deadlock-avoiding robot navigation in cluttered dynamic scenes | |
Dhiman et al. | A review of path planning and mapping technologies for autonomous mobile robot systems | |
Maravall et al. | Combination of model-based and reactive methods in autonomous navigation | |
Peasgood et al. | Complete and scalable multi-robot planning in tunnel environments | |
Tse et al. | Design of a navigation system for a household mobile robot using neural networks | |
Sedhumadhavan et al. | An analysis of path planning for autonomous motorized robots | |
Yuanhao et al. | Application of 3-D Path Planning and Obstacle Avoidance Algorithms on Obstacle-Overcoming Robots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170811 |
|
RJ01 | Rejection of invention patent application after publication |