[go: up one dir, main page]

CN107036618A - A kind of AGV paths planning methods based on shortest path depth optimization algorithm - Google Patents

A kind of AGV paths planning methods based on shortest path depth optimization algorithm Download PDF

Info

Publication number
CN107036618A
CN107036618A CN201710376356.9A CN201710376356A CN107036618A CN 107036618 A CN107036618 A CN 107036618A CN 201710376356 A CN201710376356 A CN 201710376356A CN 107036618 A CN107036618 A CN 107036618A
Authority
CN
China
Prior art keywords
node
agv
path
nodes
task
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710376356.9A
Other languages
Chinese (zh)
Inventor
吴焱明
王吉祥
王浩
赵韩
杨少锋
杨强
朱家诚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEFEI UNIVERSITY OF TECHNOLOGY (MAANSHAN) HIGH-TECH INSTITUTE
Hefei University of Technology
Original Assignee
HEFEI UNIVERSITY OF TECHNOLOGY (MAANSHAN) HIGH-TECH INSTITUTE
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEFEI UNIVERSITY OF TECHNOLOGY (MAANSHAN) HIGH-TECH INSTITUTE, Hefei University of Technology filed Critical HEFEI UNIVERSITY OF TECHNOLOGY (MAANSHAN) HIGH-TECH INSTITUTE
Priority to CN201710376356.9A priority Critical patent/CN107036618A/en
Publication of CN107036618A publication Critical patent/CN107036618A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/343Calculating itineraries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention relates to a kind of AGV paths planning methods based on shortest path depth optimization algorithm, including:PC scheduling system receives task requests and sends solicited message to every AGV vehicle-mounted monitoring management system;The positional information of the positional information and task requests that perform task AGV is transferred to path optimizing system by AGV vehicle-mounted monitorings management system;Path optimizing system is by the feedback of the information of optimal path into PC scheduling system;After AGV completion tasks, task completed information is fed back into PC scheduling system.The present invention combs the detailed Optimization Steps of AGV path planning systems again, removes the flow of tradition AGV overcomplicated, on the basis for retaining critical workflow node, and the co-ordination relation between AGV system modules is planned again.

Description

一种基于最短路径深度优化算法的AGV路径规划方法An AGV path planning method based on the shortest path depth optimization algorithm

技术领域technical field

本发明涉及AGV的路径优化方法和调度管理系统技术领域,尤其是一种基于最短路径深度优化算法的AGV路径规划方法。The invention relates to the technical field of an AGV path optimization method and a dispatch management system, in particular to an AGV path planning method based on a shortest path depth optimization algorithm.

背景技术Background technique

AGV是自动导引运输车(Automated Guided Vehicle)的缩写,是一种最常见的无人车间配送物料的运输装备,目前的AGV在工业上采用激光导引方式进行定位导航,车上搭载PC机具备编程、反馈、监控等功能。AGV is the abbreviation of Automated Guided Vehicle (Automated Guided Vehicle). It is the most common transportation equipment for delivering materials in unmanned workshops. The current AGV uses laser guidance for positioning and navigation in the industry, and the car is equipped with a PC. With programming, feedback, monitoring and other functions.

目前,AGV路径规划系统常用的路径规划算法有Dijkstra、A*算法等,其中,Dijkstra算法主要用于单源最短路径,采用邻接矩阵储存地图模型节点,将节点分为两组:一组存储最短路径的节点集A,另一组存储未确定路径的节点集B,按照Dijkstra算法的所搜方式依次搜索B集中的节点并将其加入至A集,在加入的过程中进行比较更新,保持从起始节点到A集中每个节点的距离均不大于到B集中节点的最短距离。现有的Dijkstra算法搜索是会遍历所有的路径节点和节点存储、搜索的方式,大大降低了算法的运行速度,会使AGV路径规划系统异常缓慢。AGV路径规划系统中针对路径信息的反馈大多采用报警信息反馈,当AGV执行任务出现异常时,AGV系统会反馈报警信息并采取相应的措施。At present, the path planning algorithms commonly used in the AGV path planning system include Dijkstra, A* algorithm, etc. Among them, the Dijkstra algorithm is mainly used for the single-source shortest path, and the adjacency matrix is used to store the map model nodes, and the nodes are divided into two groups: one group stores the shortest The node set A of the path, and another set of node sets B that store undetermined paths, search for the nodes in the B set in turn according to the search method of the Dijkstra algorithm and add them to the A set. The distance from the starting node to each node in set A is not greater than the shortest distance to the nodes in set B. The existing Dijkstra algorithm search is a way of traversing all path nodes and node storage and search, which greatly reduces the running speed of the algorithm and makes the AGV path planning system extremely slow. The feedback of path information in the AGV path planning system mostly adopts alarm information feedback. When the AGV performs tasks abnormally, the AGV system will feed back the alarm information and take corresponding measures.

发明内容Contents of the invention

本发明的目的在于提供一种提高系统中节点和路段的使用率,优化AGV系统中路径规划的工作流程,提升系统的效率和稳定性的基于最短路径深度优化算法的AGV路径规划方法。The purpose of the present invention is to provide a method for improving the utilization rate of nodes and road sections in the system, optimizing the workflow of path planning in the AGV system, and improving the efficiency and stability of the system. AGV path planning method based on the shortest path depth optimization algorithm.

为实现上述目的,本发明采用了以下技术方案:一种基于最短路径深度优化算法的AGV路径规划方法,该方法包括下列顺序的步骤:In order to achieve the above object, the present invention adopts the following technical solutions: an AGV path planning method based on the shortest path depth optimization algorithm, the method includes the steps of the following order:

(1)初始化AGV调度管理系统,PC机调度系统读取数据库中已经建立的路径地图模型,提取地图中的关键节点P和路段L的信息,并采用优化存储方式对节点信息进行存储,同时PC机调度系统读取激光导航系统反馈的全部AGV状态信息,对AGV进行监控定位,同时车机监控管理系统实时接收系统中不同加工点的货物输送的任务请求,PC机调度系统接收任务请求并将请求信息发送至每台AGV车载监控管理系统;(1) Initialize the AGV dispatch management system. The PC dispatch system reads the path map model already established in the database, extracts the information of key nodes P and road sections L in the map, and stores the node information in an optimized storage method. At the same time, the PC The machine scheduling system reads all the AGV status information fed back by the laser navigation system, monitors and positions the AGV, and at the same time, the vehicle machine monitoring and management system receives the task requests for cargo delivery at different processing points in the system in real time, and the PC machine scheduling system receives the task requests and sends them The request information is sent to each AGV on-board monitoring and management system;

(2)AGV车载监控管理系统接收任务请求信息后,读取当前AGV运行状态,判断当前AGV是否处于空闲状态:若非处于空闲状态,则反馈当前AGV处于工作状态,不接收任务请求;若处于空闲状态,读取AGV当前位置坐标信息,将AGV的位置坐标信息反馈至PC机调度系统;PC机调度系统通过请求任务的位置坐标和AGV坐标位置计算AGV执行任务路径的运送时长的权值,根据AGV执行任务路径的运送时长的权值大小设定AGV的优先级顺序,选取优先级最高的AGV执行任务,AGV车载监控管理系统将执行任务AGV的位置信息和任务请求的位置信息传递至路径优化系统;(2) After the AGV on-board monitoring and management system receives the task request information, it reads the current AGV running status and judges whether the current AGV is in the idle state: if it is not in the idle state, it will feedback that the current AGV is in the working state and does not receive the task request; if it is idle State, read the current position coordinate information of the AGV, and feed back the position coordinate information of the AGV to the PC dispatching system; the PC dispatching system calculates the weight of the delivery time of the AGV execution task path through the position coordinates of the requested task and the coordinate position of the AGV, according to The weight of the delivery time of the AGV execution task path sets the priority order of the AGV, selects the AGV with the highest priority to perform the task, and the AGV vehicle monitoring management system transmits the location information of the AGV and the location information of the task request to the path optimization system;

(3)路径优化系统接收AGV的位置信息后,初始化并更新数据库中路径地图模型的信息,将AGV当前位置记为起始节点P0,有任务请求的加工工位位置记为终止节点Pn,路径优化系统读取路径地图模型中节点和路段信息,采用基于最短运送时长的最优路径算法即Dijkstra算法,Dijkstra算法根据起始节点P0、终止节点Pn和路径节点的占用信息计算出节点之间的可行路径,并根据评估函数评估可行路径并从中选取最优路径,路径优化系统将最优路径的信息反馈至PC机调度系统中;(3) After receiving the location information of the AGV, the route optimization system initializes and updates the information of the route map model in the database, records the current position of the AGV as the starting node P 0 , and records the position of the processing station with the task request as the ending node Pn, The route optimization system reads the node and road section information in the route map model, and adopts the optimal route algorithm based on the shortest transportation time, that is, the Dijkstra algorithm. The feasible path among them is evaluated according to the evaluation function and the optimal path is selected from it, and the path optimization system feeds back the information of the optimal path to the PC dispatching system;

(4)PC机调度系统接收到路径优化系统反馈的最优路径信息后,将最优路径转化为车载工控机能够识别的运动控制指令,根据任务的优先级顺序的大小,依次将任务路径的运动控制指令发送至车载控制系统中,车载控制系统接收运动指令后执行动作,并将动作执行的信息反馈至车机监控管理系统,车机监控管理系统读取激光导航系统中AGV的实际位置信息,并比较与车载控制系统反馈的动作位置信息差值,对反馈的动作位置与AGV实际位置之间的差值采取线性插补策略,对AGV的运动轨迹进行模糊控制,通过调节模糊控制器的控制参数(kα,kβ,kγ),其中kβ为比例因子、kα和kγ为量化因子;AGV完成任务后,将任务完成信息反馈至PC机调度系统;(4) After the PC scheduling system receives the optimal path information fed back by the path optimization system, it converts the optimal path into motion control instructions that can be recognized by the vehicle-mounted industrial computer, and sequentially converts the task paths according to the priority order of the tasks. The motion control command is sent to the on-board control system, the on-board control system executes the action after receiving the motion command, and feeds back the information of the action execution to the on-board monitoring and management system, which reads the actual position information of the AGV in the laser navigation system , and compared with the difference between the action position information fed back by the vehicle control system, a linear interpolation strategy is adopted for the difference between the feedback action position and the actual position of the AGV, and fuzzy control is performed on the trajectory of the AGV. By adjusting the fuzzy controller Control parameters (k α , k β , k γ ), where k β is a proportional factor, k α and k γ are quantitative factors; after the AGV completes the task, it will feed back the task completion information to the PC scheduling system;

(5)PC机调度系统接收任务完成信息后,为AGV设定固定的等待时间值,在等待时间到达之后,若有新任务分配时,AGV接收任务并完成;若无新任务分配时,AGV自动启动自动回仓程序,为其分配最优的回仓路径,AGV将自动启动并返回至仓库,并释放路径中节点和路段的资源。(5) After the PC scheduling system receives the task completion information, it sets a fixed waiting time value for the AGV. After the waiting time arrives, if there is a new task assignment, the AGV receives the task and completes it; if there is no new task assignment, the AGV Automatically start the automatic warehouse return program, assign the optimal warehouse return path, the AGV will automatically start and return to the warehouse, and release the resources of the nodes and road sections in the path.

在步骤(1)中,针对物流车间的实际工作环境建立与之相对应的关键节点P和路段L,在保留关键的运送流程的基础之上,简化地图模型中的关键节点P和路段L,建立较为疏散的无向地图模型G(P’,L’),其中P’={1,2,3……,n}为节点的集合即节点集,L’为节点之间的弧集即路段集,根据P’和L’的信息建立无向地图的距离矩阵D=(dij)n*n,其中,In step (1), the corresponding key node P and road section L are established for the actual working environment of the logistics workshop, and the key node P and road section L in the map model are simplified on the basis of retaining the key delivery process. Establish a relatively sparse undirected map model G(P',L'), where P'={1,2,3...,n} is the set of nodes, that is, the node set, and L' is the arc set between nodes, namely Road section set, according to the information of P' and L', establish the distance matrix D=(d ij ) n*n of the undirected map, where,

其中,Lij表示节点Pi与节点Pj之间的距离值;+∞表示节点Pi与节点Pj节之间不相邻,距离是无穷大;0表示节点Pi与节点Pj重合。Among them, L ij represents the distance value between node P i and node P j ; +∞ means that node P i is not adjacent to node P j , and the distance is infinite; 0 means that node P i coincides with node P j .

在步骤(1)中,所述优化存储方式是指采用邻接链表的存储方式进行存储以减少无用矩阵的存储,对路径地图模型中的每个节点建立一个邻接关系的单链表,并将其表头指针用向量的形式进行存储;关键节点P的存储设计包含四个域:一是节点的序列号ID,二是邻接点域AdjacentP,用于存储于节点P相邻的节点,三是权值域WeightP,用于存储节点P与相邻节点之间的距离权值,四是邻接域NextP,用于链接节点P的邻接表中的下一个节点。In step (1), the optimized storage method refers to adopting the storage method of adjacency linked list to store to reduce the storage of useless matrix, and to establish a single-linked list of adjacency relationship for each node in the path map model, and list it The head pointer is stored in the form of a vector; the storage design of the key node P includes four fields: one is the serial number ID of the node, the other is the adjacent point field AdjacentP, which is used to store the nodes adjacent to the node P, and the third is the weight Domain WeightP is used to store the distance weight between node P and adjacent nodes, and the fourth is adjacent domain NextP, which is used to link the next node in the adjacency list of node P.

在步骤(3)中,初始化地图模型中的所有节点,其中邻接节点集合记为集合M,已求出最优路径中已标记的节点集合记为集合N,初始化时集合N中仅包含路径节点中的起始节点P0,在邻接节点集合M中等待排序的存储节点集合记为集合R,对于集合R中无序序列的待存储节点,即未确定最优路径的节点,假设有n个无序序列的节点,将n个无序序列的节点采用堆排序优化存储得到小顶堆,新建一个一维数组A[]存放n个无序序列节点,并对其进行最小化堆排序,其中每个节点均是以完全二叉树的存储顺序的存储方式进行存储,树的顶点存放的是已经调整后的堆顶节点,以堆顶节点作为中间节点,并以此中间节点计算从起始节点P0至已标记的节点的集合N的补集中的各个节点经过中间节点可达的最优路径的长度权值,依次类推,多次反复迭代至邻接节点的集合M中的全部节点均添加至已标记节点的集合N中,从而可以得到起始节点P0至邻接节点的集合M中的任何一个节点Pk的最短路径集合,并从得到的最短路径集合中选择以P0作为起始节点,Pn作为终止节点的路径作为AGV执行任务的路径。In step (3), all nodes in the map model are initialized, where the set of adjacent nodes is marked as set M, and the set of marked nodes in the optimal path that has been obtained is marked as set N, and set N contains only path nodes during initialization The starting node P 0 in , the set of storage nodes waiting to be sorted in the set of adjacent nodes M is denoted as set R, for the nodes to be stored in the unordered sequence in the set R, that is, the nodes for which the optimal path has not been determined, it is assumed that there are n Unordered sequence nodes, store n unordered sequence nodes using heap sorting optimization to obtain a small top heap, create a one-dimensional array A[] to store n unordered sequence nodes, and perform minimum heap sorting on it, where Each node is stored in the storage order of a complete binary tree. The vertex of the tree stores the adjusted top node of the heap. The top node of the heap is used as the intermediate node, and the intermediate node is calculated from the starting node P The length weight of the optimal path reachable by each node in the complement set from 0 to the set N of marked nodes through the intermediate node, and so on, and iteratively repeats for many times until all the nodes in the set M of adjacent nodes are added to the set In the set N of marked nodes, the shortest path set from the starting node P 0 to any node P k in the set M of adjacent nodes can be obtained, and P 0 is selected as the starting node from the obtained shortest path set, Pn is used as the path of the terminal node as the path for AGV to perform tasks.

在步骤(3)中,所述评估基于最小运送时长的距离评估函数的公式为:In step (3), the formula of the evaluation function based on the distance evaluation function of the minimum delivery time is:

f(n)=∑ωij+∑(f(θij)+μ)f(n)=∑ω ij +∑(f(θ ij )+μ)

其中,θij是路径中AGV在节点i与节点j之间的转弯角度,f(θij)是转弯角度的转弯时长代价函数,μ是转弯的代价系数;路径行走的评估指标为∑ωij,ωij是节点i与节点j之间的距离权值。Among them, θ ij is the turning angle of the AGV between node i and node j in the path, f(θ ij ) is the turning time cost function of turning angle, μ is the cost coefficient of turning; the evaluation index of path walking is ∑ω ij , ω ij is the distance weight between node i and node j.

在步骤(3)中,所述根据Dijkstra算法选取最优路径包括以下步骤:In step (3), described selecting optimal path according to Dijkstra algorithm comprises the following steps:

(6a)初始化,其中最优路径节点集合N’中仅包含起始节点P0,未经排序的节点集合R’中包含邻接节点集合M’中除去集合N’之外的所有节点;且任意两个节点之间的相邻关系和距离权值已知,并初始化系统中地图模型的无向图和距离链表;(6a) Initialization, where the optimal path node set N' only contains the starting node P 0 , the unsorted node set R' contains all nodes in the adjacent node set M' except the set N'; and any The adjacent relationship and distance weight between two nodes are known, and the undirected graph and distance list of the map model in the system are initialized;

(6b)在未经排序的节点集合R’中,对与起始节点P0相邻的待排序节点进行最小堆排序,并选取距离权值最小的节点Pi作为堆顶点,起始节点P0和节点Pi之间的距离权值即最短路径的距离权值,将节点Pi放至集合M’中,节点P0到节点Pi的最优路径的距离权值大小即运送的时长,最短路径即是P0->Pi(6b) In the unsorted node set R', perform minimum heap sorting on the nodes to be sorted adjacent to the start node P 0 , and select the node P i with the smallest distance weight as the heap vertex, the start node P The distance weight between 0 and node P i is the distance weight of the shortest path, put node P i into the set M', the distance weight of the optimal path from node P 0 to node P i is the delivery time , the shortest path is P 0 ->P i ;

(6c)以节点Pi为新的中间节点,从未经排序的节点集合R’中选取与中间节点Pi相邻关系的节点,若从起始节点P0到集合R’中节点的距离权值比原先路径的距离权值小,则修改未经排序的节点集合集合R’中已经计算经过中间节点Pi的路径,其中修改过后的路径权值为经过新的中间节点Pi的路径权值;(6c) Take the node P i as the new intermediate node, select the nodes adjacent to the intermediate node P i from the unsorted node set R', if the distance from the starting node P 0 to the nodes in the set R' If the weight is smaller than the distance weight of the original path, modify the path that has been calculated through the intermediate node P i in the unsorted node set R', where the modified path weight is the path that passes through the new intermediate node P i Weight;

(6d)重复执行步骤(6b)与(6c),不停的迭代处理,遍历搜索未经排序的节点集合R’中未经排序的节点,直至将集合R’中所有的节点全部包含到最优路径节点集合N’中或者直至起始节点P0与终止节点Pn之间找到最优的路径为止。(6d) Repeat steps (6b) and (6c), iteratively process, traverse and search the unsorted nodes in the unsorted node set R', until all the nodes in the set R' are included to the final In the optimal path node set N' or until the optimal path is found between the starting node P 0 and the ending node P n .

在步骤(4)中,所述车载工控机即是AGV车上搭载的工控机,所述车载控制系统包含以工控机为上位机、ABB控制器为下位机、闭环伺服系统为执行模块的运动控制系统,用于控制AGV的转向、倒车、出入库。In step (4), the vehicle-mounted industrial computer is the industrial computer carried on the AGV vehicle, and the vehicle-mounted control system includes a movement with the industrial computer as the upper computer, the ABB controller as the lower computer, and the closed-loop servo system as the execution module. The control system is used to control the steering, reversing, and entry and exit of the AGV.

在步骤(5)中,AGV完成输送的任务、反馈任务完成信息之后,为避免占用节点和路段的资源,在等待时间到达后:若无任务分配,AGV将启动自动回仓程序,PC机调度系统将AGV当前位置设为起始节点P'0,仓库空闲的位置设为P'n,PC机调度系统为这台AGV规划返回仓库的最短路径,使其自动返回至停车库;完成后,AGV释放占用的节点和路段资源;若有任务分配,则AGV接受任务。In step (5), after the AGV completes the task of delivery and feeds back the task completion information, in order to avoid occupying the resources of nodes and road sections, after the waiting time arrives: if there is no task allocation, the AGV will start the automatic warehouse return program, and the PC will schedule The system sets the current position of the AGV as the starting node P' 0 , and the idle position of the warehouse as P' n , and the PC scheduling system plans the shortest path back to the warehouse for this AGV so that it can automatically return to the parking garage; after completion, The AGV releases the occupied node and road section resources; if there is a task assignment, the AGV accepts the task.

由上述技术方案可知,本发明的优点在于:第一,重新梳理AGV路径规划系统的详细优化步骤,去除传统AGV的过度复杂的流程,在保留关键流程节点的基础之上,重新规划AGV系统各个模块之间的协调工作关系;第二,AGV系统的地图模型是基于车间实际环境而建立,在保留关键的运送流程的节点基础之上,简化地图中的节点和路段,通过调用节点在数据库中已经储存的完整数据信息,大大提升节点信息的调用效率;第三,对基于最短运送时长的路径搜索算法即Dijkstra算法进行优化,从节点的邻接表的建立、节点结构的存储方式、算法的搜索方式等进行优化工作,从而大幅度提高路径规划系统的稳定性与效率;第四,针对无序节点采用的堆排序方法、得到最小值的小顶堆,并以该顶点校正起始节点经过中间节点至其他的邻接节点之间可达的最短路径长度。It can be seen from the above technical solution that the advantages of the present invention are: first, reorganize the detailed optimization steps of the AGV path planning system, remove the overly complicated process of the traditional AGV, and re-plan the AGV system on the basis of retaining key process nodes. Coordinated working relationship between modules; Second, the map model of the AGV system is established based on the actual environment of the workshop. On the basis of retaining the nodes of the key delivery process, the nodes and road sections in the map are simplified, and the nodes are stored in the database by calling the nodes. The complete data information that has been stored greatly improves the calling efficiency of node information; thirdly, optimizes the path search algorithm based on the shortest delivery time, that is, the Dijkstra algorithm, from the establishment of the node adjacency list, the storage method of the node structure, and the algorithm search way, etc., so as to greatly improve the stability and efficiency of the path planning system; fourth, the heap sorting method adopted for unordered nodes, obtain the minimum value of the small top heap, and use this vertex to correct the starting node through the middle The length of the shortest path reachable between a node and other adjacent nodes.

附图说明Description of drawings

图1为AGV系统的系统框架图;Figure 1 is a system framework diagram of the AGV system;

图2为本发明的工作流程图;Fig. 2 is a work flow chart of the present invention;

图3为AGV实际工作环境的平面图;Figure 3 is a plan view of the actual working environment of the AGV;

图4为邻接表节点的结构示意图。FIG. 4 is a schematic structural diagram of an adjacency list node.

具体实施方式detailed description

如图2所示,一种基于最短路径深度优化算法的AGV路径规划方法,该方法包括下列顺序的步骤:As shown in Figure 2, an AGV path planning method based on the shortest path depth optimization algorithm, the method includes the following sequential steps:

(1)初始化AGV调度管理系统,PC机调度系统读取数据库中已经建立的路径地图模型,提取地图中的关键节点P和路段L的信息,并采用优化存储方式对节点信息进行存储,同时PC机调度系统读取激光导航系统反馈的全部AGV状态信息,对AGV进行监控定位,同时车机监控管理系统实时接收系统中不同加工点的货物输送的任务请求,PC机调度系统接收任务请求并将请求信息发送至每台AGV车载监控管理系统;(1) Initialize the AGV dispatch management system. The PC dispatch system reads the established path map model in the database, extracts the information of key nodes P and road sections L in the map, and stores the node information in an optimized storage method. At the same time, the PC The machine dispatching system reads all the AGV status information fed back by the laser navigation system, monitors and positions the AGV, and at the same time, the car machine monitoring and management system receives the task requests for cargo delivery at different processing points in the system in real time, and the PC machine dispatching system receives the task requests and sends them The request information is sent to each AGV on-board monitoring and management system;

(2)AGV车载监控管理系统接收任务请求信息后,读取当前AGV运行状态,判断当前AGV是否处于空闲状态:若非处于空闲状态,则反馈当前AGV处于工作状态,不接收任务请求;若处于空闲状态,读取AGV当前位置坐标信息,将AGV的位置坐标信息反馈至PC机调度系统;PC机调度系统通过请求任务的位置坐标和AGV坐标位置计算AGV执行任务路径的运送时长的权值,根据AGV执行任务路径的运送时长的权值大小设定AGV的优先级顺序,选取优先级最高的AGV执行任务,AGV车载监控管理系统将执行任务AGV的位置信息和任务请求的位置信息传递至路径优化系统;(2) After the AGV on-board monitoring and management system receives the task request information, it reads the current AGV running status and judges whether the current AGV is in the idle state: if it is not in the idle state, it will feedback that the current AGV is in the working state and does not receive the task request; if it is idle State, read the current position coordinate information of the AGV, and feed back the position coordinate information of the AGV to the PC dispatching system; the PC dispatching system calculates the weight of the delivery time of the AGV execution task path through the position coordinates of the requested task and the coordinate position of the AGV, according to The weight of the delivery time of the AGV execution task path sets the priority order of the AGV, selects the AGV with the highest priority to perform the task, and the AGV vehicle monitoring management system transmits the location information of the AGV and the location information of the task request to the path optimization system;

(3)路径优化系统接收AGV的位置信息后,初始化并更新数据库中路径地图模型的信息,将AGV当前位置记为起始节点P0,有任务请求的加工工位位置记为终止节点Pn,路径优化系统读取路径地图模型中节点和路段信息,采用基于最短运送时长的最优路径算法即Dijkstra算法,Dijkstra算法根据起始节点P0、终止节点Pn和路径节点的占用信息计算出节点之间的可行路径,并根据评估函数评估可行路径并从中选取最优路径,路径优化系统将最优路径的信息反馈至PC机调度系统中;(3) After receiving the location information of the AGV, the route optimization system initializes and updates the information of the route map model in the database, records the current position of the AGV as the starting node P 0 , and records the position of the processing station with the task request as the ending node Pn, The route optimization system reads the node and road section information in the route map model, and adopts the optimal route algorithm based on the shortest transportation time, that is, the Dijkstra algorithm. The feasible path among them is evaluated according to the evaluation function and the optimal path is selected from it, and the path optimization system feeds back the information of the optimal path to the PC dispatching system;

(4)PC机调度系统接收到路径优化系统反馈的最优路径信息后,将最优路径转化为车载工控机能够识别的运动控制指令,根据任务的优先级顺序的大小,依次将任务路径的运动控制指令发送至车载控制系统中,车载控制系统接收运动指令后执行动作,并将动作执行的信息反馈至车机监控管理系统,车机监控管理系统读取激光导航系统中AGV的实际位置信息,并比较与车载控制系统反馈的动作位置信息差值,对反馈的动作位置与AGV实际位置之间的差值采取线性插补策略,对AGV的运动轨迹进行模糊控制,通过调节模糊控制器的控制参数(kα,kβ,kγ),其中kβ为比例因子、kα和kγ为量化因子;AGV完成任务后,将任务完成信息反馈至PC机调度系统;(4) After the PC scheduling system receives the optimal path information fed back by the path optimization system, it converts the optimal path into motion control instructions that can be recognized by the vehicle-mounted industrial computer, and sequentially converts the task paths according to the priority order of the tasks. The motion control command is sent to the on-board control system, the on-board control system executes the action after receiving the motion command, and feeds back the information of the action execution to the on-board monitoring and management system, which reads the actual position information of the AGV in the laser navigation system , and compared with the difference between the action position information fed back by the vehicle control system, a linear interpolation strategy is adopted for the difference between the feedback action position and the actual position of the AGV, and fuzzy control is performed on the trajectory of the AGV. By adjusting the fuzzy controller Control parameters (k α , k β , k γ ), where k β is a proportional factor, k α and k γ are quantitative factors; after the AGV completes the task, it will feed back the task completion information to the PC scheduling system;

(5)PC机调度系统接收任务完成信息后,为AGV设定固定的等待时间值,在等待时间到达之后,若有新任务分配时,AGV接收任务并完成;若无新任务分配时,AGV自动启动自动回仓程序,为其分配最优的回仓路径,AGV将自动启动并返回至仓库,并释放路径中节点和路段的资源。(5) After the PC scheduling system receives the task completion information, it sets a fixed waiting time value for the AGV. After the waiting time arrives, if there is a new task assignment, the AGV receives the task and completes it; if there is no new task assignment, the AGV Automatically start the automatic warehouse return program, assign the optimal warehouse return path, the AGV will automatically start and return to the warehouse, and release the resources of the nodes and road sections in the path.

在步骤(1)中,针对物流车间的实际工作环境建立与之相对应的关键节点P和路段L,在保留关键的运送流程的基础之上,简化地图模型中的关键节点P和路段L,建立较为疏散的无向地图模型G(P’,L’),其中P’={1,2,3……,n}为节点的集合即节点集,L’为节点之间的弧集即路段集,根据P’和L’的信息建立无向地图的距离矩阵D=(dij)n*n,其中,In step (1), the corresponding key node P and road section L are established for the actual working environment of the logistics workshop, and the key node P and road section L in the map model are simplified on the basis of retaining the key delivery process. Establish a relatively sparse undirected map model G(P',L'), where P'={1,2,3...,n} is the set of nodes, that is, the node set, and L' is the arc set between nodes, namely Road segment set, according to the information of P' and L', establish the distance matrix D=(d ij ) n*n of the undirected map, where,

其中,Lij表示节点Pi与节点Pj之间的距离值;+∞表示节点Pi与节点Pj节之间不相邻,距离是无穷大;0表示节点Pi与节点Pj重合。Among them, L ij represents the distance value between node P i and node P j ; +∞ means that node P i is not adjacent to node P j , and the distance is infinite; 0 means that node P i coincides with node P j .

如图4所示,在步骤(1)中,所述优化存储方式是指采用邻接链表的存储方式进行存储以减少无用矩阵的存储,对路径地图模型中的每个节点建立一个邻接关系的单链表,并将其表头指针用向量的形式进行存储;关键节点P的存储设计包含四个域:一是节点的序列号ID,二是邻接点域AdjacentP,用于存储于节点P相邻的节点,三是权值域WeightP,用于存储节点P与相邻节点之间的距离权值,四是邻接域NextP,用于链接节点P的邻接表中的下一个节点。As shown in Fig. 4, in step (1), described optimized storage mode refers to adopting the storage mode of adjacency linked list to store to reduce the storage of useless matrix, each node in the path map model is set up a single adjacency relationship Linked list, and its head pointer is stored in the form of vector; the storage design of the key node P includes four fields: one is the serial number ID of the node, and the other is the adjacent point field AdjacentP, which is used to store the data adjacent to the node P Node, the third is the weight field WeightP, which is used to store the distance weight between the node P and the adjacent node, and the fourth is the adjacency field NextP, which is used to link the next node in the adjacency list of the node P.

在步骤(3)中,初始化地图模型中的所有节点,其中邻接节点集合记为集合M,已求出最优路径中已标记的节点集合记为集合N,初始化时集合N中仅包含路径节点中的起始节点P0,在邻接节点集合M中等待排序的存储节点集合记为集合R,对于集合R中无序序列的待存储节点,即未确定最优路径的节点,假设有n个无序序列的节点,将n个无序序列的节点采用堆排序优化存储得到小顶堆,新建一个一维数组A[]存放n个无序序列节点,并对其进行最小化堆排序,其中每个节点均是以完全二叉树的存储顺序的存储方式进行存储,树的顶点存放的是已经调整后的堆顶节点,以堆顶节点作为中间节点,并以此中间节点计算从起始节点P0至已标记的节点的集合N的补集中的各个节点经过中间节点可达的最优路径的长度权值,依次类推,多次反复迭代至邻接节点的集合M中的全部节点均添加至已标记节点的集合N中,从而可以得到起始节点P0至邻接节点的集合M中的任何一个节点Pk的最短路径集合,并从得到的最短路径集合中选择以P0作为起始节点,Pn作为终止节点的路径作为AGV执行任务的路径。In step (3), all nodes in the map model are initialized, where the set of adjacent nodes is marked as set M, and the set of marked nodes in the optimal path that has been obtained is marked as set N, and set N contains only path nodes during initialization The starting node P 0 in , the set of storage nodes waiting to be sorted in the set of adjacent nodes M is denoted as set R, for the nodes to be stored in the unordered sequence in the set R, that is, the nodes for which the optimal path has not been determined, it is assumed that there are n Unordered sequence nodes, store n unordered sequence nodes using heap sorting optimization to obtain a small top heap, create a one-dimensional array A[] to store n unordered sequence nodes, and perform minimum heap sorting on it, where Each node is stored in the storage order of a complete binary tree. The vertex of the tree stores the adjusted top node of the heap. The top node of the heap is used as the intermediate node, and the intermediate node is calculated from the starting node P The length weight of the optimal path reachable by each node in the complement set from 0 to the set N of marked nodes through the intermediate node, and so on, and iteratively repeats for many times until all the nodes in the set M of adjacent nodes are added to the set In the set N of marked nodes, the shortest path set from the starting node P 0 to any node P k in the set M of adjacent nodes can be obtained, and P 0 is selected as the starting node from the obtained shortest path set, Pn is used as the path of the terminal node as the path for AGV to perform tasks.

在步骤(3)中,所述评估基于最小运送时长的距离评估函数的公式为:In step (3), the formula of the evaluation function based on the distance evaluation function of the minimum delivery time is:

f(n)=∑ωij+∑(f(θij)+μ)f(n)=∑ω ij +∑(f(θ ij )+μ)

其中,θij是路径中AGV在节点i与节点j之间的转弯角度,f(θij)是转弯角度的转弯时长代价函数,μ是转弯的代价系数;路径行走的评估指标为∑ωij,ωij是节点i与节点j之间的距离权值。Among them, θ ij is the turning angle of the AGV between node i and node j in the path, f(θ ij ) is the turning time cost function of turning angle, μ is the cost coefficient of turning; the evaluation index of path walking is ∑ω ij , ω ij is the distance weight between node i and node j.

在步骤(3)中,所述根据Dijkstra算法选取最优路径包括以下步骤:In step (3), described selecting optimal path according to Dijkstra algorithm comprises the following steps:

(6a)初始化,其中最优路径节点集合N’中仅包含起始节点P0,未经排序的节点集合R’中包含邻接节点集合M’中除去集合N’之外的所有节点;且任意两个节点之间的相邻关系和距离权值已知,并初始化系统中地图模型的无向图和距离链表;(6a) Initialization, where the optimal path node set N' only contains the starting node P 0 , and the unsorted node set R' contains all nodes in the adjacent node set M' except the set N'; and any The adjacent relationship and distance weight between two nodes are known, and the undirected graph and distance list of the map model in the system are initialized;

(6b)在未经排序的节点集合R’中,对与起始节点P0相邻的待排序节点进行最小堆排序,并选取距离权值最小的节点Pi作为堆顶点,起始节点P0和节点Pi之间的距离权值即最短路径的距离权值,将节点Pi放至集合M’中,节点P0到节点Pi的最优路径的距离权值大小即运送的时长,最短路径即是P0->Pi(6b) In the unsorted node set R', perform minimum heap sorting on the nodes to be sorted adjacent to the start node P 0 , and select the node P i with the smallest distance weight as the heap vertex, the start node P The distance weight between 0 and node P i is the distance weight of the shortest path, put node P i into the set M', the distance weight of the optimal path from node P 0 to node P i is the delivery time , the shortest path is P 0 ->P i ;

(6c)以节点Pi为新的中间节点,从未经排序的节点集合R’中选取与中间节点Pi相邻关系的节点,若从起始节点P0到集合R’中节点的距离权值比原先路径的距离权值小,则修改未经排序的节点集合集合R’中已经计算经过中间节点Pi的路径,其中修改过后的路径权值为经过新的中间节点Pi的路径权值;(6c) Take the node P i as the new intermediate node, select the nodes adjacent to the intermediate node P i from the unsorted node set R', if the distance from the starting node P 0 to the nodes in the set R' If the weight is smaller than the distance weight of the original path, modify the path that has been calculated through the intermediate node P i in the unsorted node set R', where the modified path weight is the path that passes through the new intermediate node P i Weight;

(6d)重复执行步骤(6b)与(6c),不停的迭代处理,遍历搜索未经排序的节点集合R’中未经排序的节点,直至将集合R’中所有的节点全部包含到最优路径节点集合N’中或者直至起始节点P0与终止节点Pn之间找到最优的路径为止。(6d) Repeat steps (6b) and (6c), iteratively process, traverse and search the unsorted nodes in the unsorted node set R', until all the nodes in the set R' are included to the final In the optimal path node set N' or until the optimal path is found between the starting node P 0 and the ending node P n .

在步骤(4)中,所述车载工控机即是AGV车上搭载的工控机,所述车载控制系统包含以工控机为上位机、ABB控制器为下位机、闭环伺服系统为执行模块的运动控制系统,用于控制AGV的转向、倒车、出入库。In step (4), the vehicle-mounted industrial computer is the industrial computer carried on the AGV vehicle, and the vehicle-mounted control system includes a movement with the industrial computer as the upper computer, the ABB controller as the lower computer, and the closed-loop servo system as the execution module. The control system is used to control the steering, reversing, and entry and exit of the AGV.

在步骤(5)中,AGV完成输送的任务、反馈任务完成信息之后,为避免占用节点和路段的资源,在等待时间到达后:若无任务分配,AGV将启动自动回仓程序,PC机调度系统将AGV当前位置设为起始节点P'0,仓库空闲的位置设为P'n,PC机调度系统为这台AGV规划返回仓库的最短路径,使其自动返回至停车库;完成后,AGV释放占用的节点和路段资源;若有任务分配,则AGV接受任务。In step (5), after the AGV completes the task of delivery and feeds back the task completion information, in order to avoid occupying the resources of nodes and road sections, after the waiting time arrives: if there is no task allocation, the AGV will start the automatic warehouse return program, and the PC will schedule The system sets the current position of the AGV as the starting node P' 0 , and the idle position of the warehouse as P' n , and the PC scheduling system plans the shortest path back to the warehouse for this AGV so that it can automatically return to the parking garage; after completion, The AGV releases the occupied node and road section resources; if there is a task assignment, the AGV accepts the task.

如图1所示,AGV系统主要包括PC机调度管理系统、激光导航系统、车机伺服控制系统、车机监控管理系统等,车机监控管理系统通过读取加工工位的任务请求信息,接受任务请求,指派AGV执行任务,路径规划系统通过调用数据库中的节点信息为AGV规划最短用时的路径,AGV执行任务并将任务执行的信息实时反馈至PC机调度管理系统,PC机调度管理系统通过差值比较,实时调整减小差值,使AGV高精度完成任务,当任务完成时,AGV接受新的任务或者执行自动回仓程序。As shown in Figure 1, the AGV system mainly includes PC scheduling management system, laser navigation system, vehicle machine servo control system, vehicle machine monitoring management system, etc. The vehicle machine monitoring management system reads the task request information of the processing station, accepts Task request, assign AGV to execute the task, the path planning system plans the path with the shortest time for the AGV by calling the node information in the database, the AGV executes the task and feeds back the task execution information to the PC scheduling management system in real time, and the PC scheduling management system passes Difference comparison, real-time adjustment to reduce the difference, so that the AGV can complete the task with high precision. When the task is completed, the AGV accepts the new task or executes the automatic warehouse return procedure.

如图3所示,图3是针对AGV实际的工作环境,而创建的节点地图模型,在加工位、货架位、检测位、缓存位和充电维修位建立关键的路径节点,去除其他非必要的节点,建立较为疏散的地图模型,从而提升系统的运行稳定性,缩短算法搜索的时长和降低算法的复杂度。As shown in Figure 3, Figure 3 is a node map model created for the actual working environment of the AGV. Key path nodes are established at the processing position, shelf position, detection position, cache position and charging maintenance position, and other unnecessary Nodes, establish a relatively sparse map model, thereby improving the operational stability of the system, shortening the search time of the algorithm and reducing the complexity of the algorithm.

综上所述,本发明重新梳理AGV路径规划系统的详细优化步骤,去除传统AGV的过度复杂的流程,在保留关键流程节点的基础之上,重新规划AGV系统各个模块之间的协调工作关系;AGV系统的地图模型是基于车间实际环境而建立,在保留关键的运送流程的节点基础之上,简化地图中的节点和路段,通过调用节点在数据库中已经储存的完整数据信息,大大提升节点信息的调用效率。In summary, the present invention reorganizes the detailed optimization steps of the AGV path planning system, removes the overly complicated process of the traditional AGV, and re-plans the coordination and working relationship between the various modules of the AGV system on the basis of retaining key process nodes; The map model of the AGV system is established based on the actual environment of the workshop. On the basis of retaining the nodes of the key transportation process, the nodes and road sections in the map are simplified, and the node information is greatly improved by calling the complete data information of the nodes already stored in the database. call efficiency.

Claims (8)

1.一种基于最短路径深度优化算法的AGV路径规划方法,其特征在于:该方法包括下列顺序的步骤:1. An AGV path planning method based on the shortest path depth optimization algorithm, characterized in that: the method comprises the steps of the following order: (1)初始化AGV调度管理系统,PC机调度系统读取数据库中已经建立的路径地图模型,提取地图中的关键节点P和路段L的信息,并采用优化存储方式对节点信息进行存储,同时PC机调度系统读取激光导航系统反馈的全部AGV状态信息,对AGV进行监控定位,同时车机监控管理系统实时接收系统中不同加工点的货物输送的任务请求,PC机调度系统接收任务请求并将请求信息发送至每台AGV车载监控管理系统;(1) Initialize the AGV dispatch management system. The PC dispatch system reads the established path map model in the database, extracts the information of key nodes P and road sections L in the map, and stores the node information in an optimized storage method. At the same time, the PC The machine dispatching system reads all the AGV status information fed back by the laser navigation system, monitors and positions the AGV, and at the same time, the car machine monitoring and management system receives the task requests for cargo delivery at different processing points in the system in real time, and the PC machine dispatching system receives the task requests and sends them The request information is sent to each AGV on-board monitoring and management system; (2)AGV车载监控管理系统接收任务请求信息后,读取当前AGV运行状态,判断当前AGV是否处于空闲状态:若非处于空闲状态,则反馈当前AGV处于工作状态,不接收任务请求;若处于空闲状态,读取AGV当前位置坐标信息,将AGV的位置坐标信息反馈至PC机调度系统;PC机调度系统通过请求任务的位置坐标和AGV坐标位置计算AGV执行任务路径的运送时长的权值,根据AGV执行任务路径的运送时长的权值大小设定AGV的优先级顺序,选取优先级最高的AGV执行任务,AGV车载监控管理系统将执行任务AGV的位置信息和任务请求的位置信息传递至路径优化系统;(2) After the AGV on-board monitoring and management system receives the task request information, it reads the current AGV running status and judges whether the current AGV is in an idle state: if it is not in an idle state, it will feedback that the current AGV is in a working state and does not receive a task request; if it is idle State, read the current position coordinate information of the AGV, and feed back the position coordinate information of the AGV to the PC scheduling system; the PC scheduling system calculates the weight of the delivery time of the AGV execution task path through the position coordinates of the requested task and the AGV coordinate position, according to The weight of the delivery time of the AGV execution task path sets the priority order of the AGV, selects the AGV with the highest priority to perform the task, and the AGV vehicle monitoring management system transmits the location information of the AGV and the location information of the task request to the path optimization system; (3)路径优化系统接收AGV的位置信息后,初始化并更新数据库中路径地图模型的信息,将AGV当前位置记为起始节点P0,有任务请求的加工工位位置记为终止节点Pn,路径优化系统读取路径地图模型中节点和路段信息,采用基于最短运送时长的最优路径算法即Dijkstra算法,Dijkstra算法根据起始节点P0、终止节点Pn和路径节点的占用信息计算出节点之间的可行路径,并根据评估函数评估可行路径并从中选取最优路径,路径优化系统将最优路径的信息反馈至PC机调度系统中;(3) After receiving the location information of the AGV, the route optimization system initializes and updates the information of the route map model in the database, records the current position of the AGV as the starting node P 0 , and records the position of the processing station with the task request as the ending node Pn, The route optimization system reads the node and road section information in the route map model, and adopts the optimal route algorithm based on the shortest transportation time, that is, the Dijkstra algorithm. The feasible path among them is evaluated according to the evaluation function and the optimal path is selected from it, and the path optimization system feeds back the information of the optimal path to the PC dispatching system; (4)PC机调度系统接收到路径优化系统反馈的最优路径信息后,将最优路径转化为车载工控机能够识别的运动控制指令,根据任务的优先级顺序的大小,依次将任务路径的运动控制指令发送至车载控制系统中,车载控制系统接收运动指令后执行动作,并将动作执行的信息反馈至车机监控管理系统,车机监控管理系统读取激光导航系统中AGV的实际位置信息,并比较与车载控制系统反馈的动作位置信息差值,对反馈的动作位置与AGV实际位置之间的差值采取线性插补策略,对AGV的运动轨迹进行模糊控制,通过调节模糊控制器的控制参数(kα,kβ,kγ),其中kβ为比例因子、kα和kγ为量化因子;AGV完成任务后,将任务完成信息反馈至PC机调度系统;(4) After the PC scheduling system receives the optimal path information fed back by the path optimization system, it converts the optimal path into motion control instructions that can be recognized by the vehicle-mounted industrial computer, and sequentially converts the task paths according to the priority order of the tasks. The motion control command is sent to the on-board control system, the on-board control system executes the action after receiving the motion command, and feeds back the information of the action execution to the on-board monitoring and management system, which reads the actual position information of the AGV in the laser navigation system , and compared with the difference between the action position information fed back by the vehicle control system, a linear interpolation strategy is adopted for the difference between the feedback action position and the actual position of the AGV, and fuzzy control is performed on the trajectory of the AGV. By adjusting the fuzzy controller Control parameters (k α , k β , k γ ), where k β is a proportional factor, k α and k γ are quantitative factors; after the AGV completes the task, it will feed back the task completion information to the PC scheduling system; (5)PC机调度系统接收任务完成信息后,为AGV设定固定的等待时间值,在等待时间到达之后,若有新任务分配时,AGV接收任务并完成;若无新任务分配时,AGV自动启动自动回仓程序,为其分配最优的回仓路径,AGV将自动启动并返回至仓库,并释放路径中节点和路段的资源。(5) After the PC scheduling system receives the task completion information, it sets a fixed waiting time value for the AGV. After the waiting time arrives, if there is a new task assignment, the AGV receives the task and completes it; if there is no new task assignment, the AGV Automatically start the automatic warehouse return program, assign the optimal warehouse return path, the AGV will automatically start and return to the warehouse, and release the resources of the nodes and road sections in the path. 2.根据权利要求1所述的基于最短路径深度优化算法的AGV路径规划方法,其特征在于:在步骤(1)中,针对物流车间的实际工作环境建立与之相对应的关键节点P和路段L,在保留关键的运送流程的基础之上,简化地图模型中的关键节点P和路段L,建立较为疏散的无向地图模型G(P’,L’),其中P’={1,2,3……,n}为节点的集合即节点集,L’为节点之间的弧集即路段集,根据P’和L’的信息建立无向地图的距离矩阵D=(dij)n*n,其中,2. the AGV path planning method based on the shortest path depth optimization algorithm according to claim 1, is characterized in that: in step (1), set up corresponding key node P and road section for the actual working environment of logistics workshop L, on the basis of retaining the key transportation process, simplify the key node P and road section L in the map model, and establish a relatively evacuated undirected map model G(P',L'), where P'={1,2 ,3...,n} is the set of nodes, i.e. the node set, L' is the arc set between the nodes, i.e. the road section set, and the distance matrix D=(d ij ) n of the undirected map is established according to the information of P' and L' *n , where 其中,Lij表示节点Pi与节点Pj之间的距离值;+∞表示节点Pi与节点Pj节之间不相邻,距离是无穷大;0表示节点Pi与节点Pj重合。Among them, L ij represents the distance value between node P i and node P j ; +∞ means that node P i is not adjacent to node P j , and the distance is infinite; 0 means that node P i coincides with node P j . 3.根据权利要求1所述的基于最短路径深度优化算法的AGV路径规划方法,其特征在于:在步骤(1)中,所述优化存储方式是指采用邻接链表的存储方式进行存储以减少无用矩阵的存储,对路径地图模型中的每个节点建立一个邻接关系的单链表,并将其表头指针用向量的形式进行存储;关键节点P的存储设计包含四个域:一是节点的序列号ID,二是邻接点域AdjacentP,用于存储于节点P相邻的节点,三是权值域WeightP,用于存储节点P与相邻节点之间的距离权值,四是邻接域NextP,用于链接节点P的邻接表中的下一个节点。3. the AGV path planning method based on the shortest path depth optimization algorithm according to claim 1, is characterized in that: in step (1), described optimization storage mode refers to adopting the storage mode of adjacency linked list to store to reduce useless For the storage of the matrix, a single-linked list of adjacency relationship is established for each node in the path map model, and its head pointer is stored in the form of a vector; the storage design of the key node P includes four fields: one is the sequence of nodes The second is the adjacent point field AdjacentP, which is used to store the nodes adjacent to the node P, the third is the weight field WeightP, which is used to store the distance weight between the node P and the adjacent node, and the fourth is the adjacent field NextP, The next node in the adjacency list for linking node P. 4.根据权利要求1所述的基于最短路径深度优化算法的AGV路径规划方法,其特征在于:在步骤(3)中,初始化地图模型中的所有节点,其中邻接节点集合记为集合M,已求出最优路径中已标记的节点集合记为集合N,初始化时集合N中仅包含路径节点中的起始节点P0,在邻接节点集合M中等待排序的存储节点集合记为集合R,对于集合R中无序序列的待存储节点,即未确定最优路径的节点,假设有n个无序序列的节点,将n个无序序列的节点采用堆排序优化存储得到小顶堆,新建一个一维数组A[]存放n个无序序列节点,并对其进行最小化堆排序,其中每个节点均是以完全二叉树的存储顺序的存储方式进行存储,树的顶点存放的是已经调整后的堆顶节点,以堆顶节点作为中间节点,并以此中间节点计算从起始节点P0至已标记的节点的集合N的补集中的各个节点经过中间节点可达的最优路径的长度权值,依次类推,多次反复迭代至邻接节点的集合M中的全部节点均添加至已标记节点的集合N中,从而可以得到起始节点P0至邻接节点的集合M中的任何一个节点Pk的最短路径集合,并从得到的最短路径集合中选择以P0作为起始节点,Pn作为终止节点的路径作为AGV执行任务的路径。4. the AGV path planning method based on the shortest path depth optimization algorithm according to claim 1, is characterized in that: in step (3), all nodes in the initialization map model, wherein adjacent node set is denoted as set M, has Find the set of marked nodes in the optimal path and record it as set N. At the time of initialization, set N only includes the starting node P 0 in the path node, and the set of storage nodes waiting to be sorted in the set of adjacent nodes M is marked as set R. For the nodes to be stored in the unordered sequence in the set R, that is, the node for which the optimal path has not been determined, assuming that there are n nodes in the unordered sequence, the n nodes in the unordered sequence are optimally stored by heap sorting to obtain a small top heap, and a new A one-dimensional array A[] stores n unordered sequence nodes, and minimizes heap sorting. Each node is stored in the storage order of a complete binary tree, and the vertices of the tree are stored. After the top node of the heap, the top node of the heap is used as the intermediate node, and the optimal path of each node in the complement set from the starting node P 0 to the set N of marked nodes is calculated through the intermediate node. Length weight, and so on, all nodes in the set M of adjacent nodes are added to the set N of marked nodes through repeated iterations, so that any one of the set M from the starting node P 0 to the adjacent nodes can be obtained The shortest path set of node P k , and select the path with P 0 as the starting node and P n as the terminating node from the obtained shortest path set as the path for AGV to perform tasks. 5.根据权利要求1所述的基于最短路径深度优化算法的AGV路径规划方法,其特征在于:在步骤(3)中,所述评估基于最小运送时长的距离评估函数的公式为:5. the AGV path planning method based on the shortest path depth optimization algorithm according to claim 1, is characterized in that: in step (3), described evaluation is based on the formula of the distance evaluation function of minimum delivery duration: f(n)=∑ωij+∑(f(θij)+μ)f(n)=∑ω ij +∑(f(θ ij )+μ) 其中,θij是路径中AGV在节点i与节点j之间的转弯角度,f(θij)是转弯角度的转弯时长代价函数,μ是转弯的代价系数;路径行走的评估指标为∑ωij,ωij是节点i与节点j之间的距离权值。Among them, θ ij is the turning angle of the AGV between node i and node j in the path, f(θ ij ) is the turning time cost function of turning angle, μ is the cost coefficient of turning; the evaluation index of path walking is ∑ω ij , ω ij is the distance weight between node i and node j. 6.根据权利要求1所述的基于最短路径深度优化算法的AGV路径规划方法,其特征在于:在步骤(3)中,所述根据Dijkstra算法选取最优路径包括以下步骤:6. the AGV path planning method based on the shortest path depth optimization algorithm according to claim 1, is characterized in that: in step (3), described selecting optimum path according to Dijkstra algorithm comprises the following steps: (6a)初始化,其中最优路径节点集合N’中仅包含起始节点P0,未经排序的节点集合R’中包含邻接节点集合M’中除去集合N’之外的所有节点;且任意两个节点之间的相邻关系和距离权值已知,并初始化系统中地图模型的无向图和距离链表;(6a) Initialization, where the optimal path node set N' only contains the starting node P 0 , and the unsorted node set R' contains all nodes in the adjacent node set M' except the set N'; and any The adjacent relationship and distance weight between two nodes are known, and the undirected graph and distance list of the map model in the system are initialized; (6b)在未经排序的节点集合R’中,对与起始节点P0相邻的待排序节点进行最小堆排序,并选取距离权值最小的节点Pi作为堆顶点,起始节点P0和节点Pi之间的距离权值即最短路径的距离权值,将节点Pi放至集合M’中,节点P0到节点Pi的最优路径的距离权值大小即运送的时长,最短路径即是P0->Pi(6b) In the unsorted node set R', perform minimum heap sorting on the nodes to be sorted adjacent to the start node P 0 , and select the node P i with the smallest distance weight as the heap vertex, the start node P The distance weight between 0 and node P i is the distance weight of the shortest path, put node P i into the set M', the distance weight of the optimal path from node P 0 to node P i is the delivery time , the shortest path is P 0 ->P i ; (6c)以节点Pi为新的中间节点,从未经排序的节点集合R’中选取与中间节点Pi相邻关系的节点,若从起始节点P0到集合R’中节点的距离权值比原先路径的距离权值小,则修改未经排序的节点集合集合R’中已经计算经过中间节点Pi的路径,其中修改过后的路径权值为经过新的中间节点Pi的路径权值;(6c) Take the node P i as the new intermediate node, select the nodes adjacent to the intermediate node P i from the unsorted node set R', if the distance from the starting node P 0 to the nodes in the set R' If the weight is smaller than the distance weight of the original path, modify the path that has been calculated through the intermediate node P i in the unsorted node set R', where the modified path weight is the path that passes through the new intermediate node P i Weight; (6d)重复执行步骤(6b)与(6c),不停的迭代处理,遍历搜索未经排序的节点集合R’中未经排序的节点,直至将集合R’中所有的节点全部包含到最优路径节点集合N’中或者直至起始节点P0与终止节点Pn之间找到最优的路径为止。(6d) Repeat steps (6b) and (6c), iteratively process, traverse and search the unsorted nodes in the unsorted node set R', until all the nodes in the set R' are included to the final In the optimal path node set N' or until the optimal path is found between the starting node P 0 and the ending node P n . 7.根据权利要求1所述的基于最短路径深度优化算法的AGV路径规划方法,其特征在于:在步骤(4)中,所述车载工控机即是AGV车上搭载的工控机,所述车载控制系统包含以工控机为上位机、ABB控制器为下位机、闭环伺服系统为执行模块的运动控制系统,用于控制AGV的转向、倒车、出入库。7. the AGV path planning method based on the shortest path depth optimization algorithm according to claim 1, is characterized in that: in step (4), the vehicle-mounted industrial computer is the industrial computer carried on the AGV car, and the vehicle-mounted The control system includes a motion control system with the industrial computer as the upper computer, the ABB controller as the lower computer, and the closed-loop servo system as the execution module, which are used to control the steering, reversing, and entry and exit of the AGV. 8.根据权利要求1所述的基于最短路径深度优化算法的AGV路径规划方法,其特征在于:在步骤(5)中,AGV完成输送的任务、反馈任务完成信息之后,为避免占用节点和路段的资源,在等待时间到达后:若无任务分配,AGV将启动自动回仓程序,PC机调度系统将AGV当前位置设为起始节点P'0,仓库空闲的位置设为P'n,PC机调度系统为这台AGV规划返回仓库的最短路径,使其自动返回至停车库;完成后,AGV释放占用的节点和路段资源;若有任务分配,则AGV接受任务。8. the AGV path planning method based on the shortest path depth optimization algorithm according to claim 1, is characterized in that: in step (5), after AGV completes the task of conveying, feedback task completion information, in order to avoid occupying node and road section resources, after the waiting time is up: if there is no task assigned, the AGV will start the automatic warehouse return procedure, and the PC scheduling system will set the current position of the AGV as the starting node P' 0 , the idle position of the warehouse as P' n , and the PC The computer scheduling system plans the shortest path back to the warehouse for this AGV, so that it can automatically return to the parking garage; after completion, the AGV releases the occupied node and road section resources; if there is a task assignment, the AGV accepts the task.
CN201710376356.9A 2017-05-24 2017-05-24 A kind of AGV paths planning methods based on shortest path depth optimization algorithm Pending CN107036618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710376356.9A CN107036618A (en) 2017-05-24 2017-05-24 A kind of AGV paths planning methods based on shortest path depth optimization algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710376356.9A CN107036618A (en) 2017-05-24 2017-05-24 A kind of AGV paths planning methods based on shortest path depth optimization algorithm

Publications (1)

Publication Number Publication Date
CN107036618A true CN107036618A (en) 2017-08-11

Family

ID=59538953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710376356.9A Pending CN107036618A (en) 2017-05-24 2017-05-24 A kind of AGV paths planning methods based on shortest path depth optimization algorithm

Country Status (1)

Country Link
CN (1) CN107036618A (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107479403A (en) * 2017-09-14 2017-12-15 长春北方化工灌装设备股份有限公司 Annular RGV semi-matter simulating systems based on virtual reality and run dispatching algorithm without sky
CN107618803A (en) * 2017-09-25 2018-01-23 芜湖智久机器人有限公司 A kind of quick storehouse management AGV trolley control systems for quickly taking cargo transport thing
CN107703943A (en) * 2017-10-23 2018-02-16 清华大学 A kind of method and its system that control multiple mobile robots concurrently to run
CN107730975A (en) * 2017-09-13 2018-02-23 浙江大学 Supermarket's stopping guide reverse car seeking and the system and method for the guiding that appears on the scene
CN107727099A (en) * 2017-09-29 2018-02-23 山东大学 The more AGV scheduling of material transportation and paths planning method in a kind of factory
CN107885198A (en) * 2017-09-25 2018-04-06 湖南大学 AGV dispatching methods
CN107943029A (en) * 2017-11-15 2018-04-20 苏州佳世达电通有限公司 Transportation resources and transportation system
CN107993025A (en) * 2017-12-25 2018-05-04 厦门大学嘉庚学院 A kind of real-time dynamic unlocking dispatching method of more AGV
CN108021135A (en) * 2017-12-05 2018-05-11 合肥泰禾光电科技股份有限公司 The control method and device of a kind of automatic guided vehicle
CN108062645A (en) * 2017-12-18 2018-05-22 青岛港国际股份有限公司 A kind of automated container terminal AGV dispatching methods and system
CN108195380A (en) * 2017-12-26 2018-06-22 广东嘉腾机器人自动化有限公司 A kind of AGV optimal route selection methods based on shortest path
CN108227716A (en) * 2018-01-19 2018-06-29 广东美的智能机器人有限公司 The paths planning method and system of mobile robot
CN108304964A (en) * 2018-01-08 2018-07-20 深圳市易成自动驾驶技术有限公司 AGV shortest path planning methods, device and computer readable storage medium
CN108520326A (en) * 2018-04-20 2018-09-11 湖北工业大学 A Real-time Synthesis Method of Supervisory Controller Based on AGV Task Path Scheduling
CN108638071A (en) * 2018-05-22 2018-10-12 四川超影科技有限公司 A kind of crusing robot optimal path dynamic programming method
CN108873892A (en) * 2018-05-31 2018-11-23 杭州晶智能科技有限公司 A kind of automatic dust absorption machine people's optimum path planning method based on path density analysis
CN109189097A (en) * 2018-10-18 2019-01-11 国网河北省电力有限公司沧州供电分公司 Unmanned transmission line faultlocating method
CN109190840A (en) * 2018-09-21 2019-01-11 中电科技(合肥)博微信息发展有限责任公司 A kind of freezer shuttle dispatching management information system and dispatching method
CN109557883A (en) * 2018-11-30 2019-04-02 山东师范大学 A kind of multi-process intelligence RGV paths planning method, apparatus and system
CN109668572A (en) * 2018-12-28 2019-04-23 芜湖哈特机器人产业技术研究院有限公司 A kind of laser fork truck method for searching path based on floyd algorithm
CN109682379A (en) * 2019-01-03 2019-04-26 北京计算机技术及应用研究所 A kind of motion control device for the intelligent AGV towards critical equipment manufacturing
CN109697529A (en) * 2018-12-21 2019-04-30 心怡科技股份有限公司 A kind of flexible task allocation algorithms based on the double neighbour's positioning of local
CN109726841A (en) * 2017-10-27 2019-05-07 北京京东尚科信息技术有限公司 AGV path calculation method and AGV driving path control method based on unmanned storehouse
CN109816131A (en) * 2017-11-20 2019-05-28 北京京东尚科信息技术有限公司 Paths planning method, path planning apparatus and computer readable storage medium
CN109901596A (en) * 2019-04-20 2019-06-18 上海森恒环保科技有限公司 Monitoring early-warning system is stored in dangerous waste source under a kind of Internet of Things
CN109934438A (en) * 2017-12-18 2019-06-25 中国科学院沈阳自动化研究所 A Multi-AGV Scheduling Method Based on Semantic Modeling
CN109948883A (en) * 2019-01-17 2019-06-28 芜湖智久机器人有限公司 A kind of station AGV point task distribution system and method
CN109978251A (en) * 2019-03-21 2019-07-05 上海赛摩物流科技有限公司 A kind of dispatching method, scheduling system and the device with store function
CN109995653A (en) * 2019-04-15 2019-07-09 深圳市迅雷网络技术有限公司 Data transmission method, device, system and readable storage medium across nodes
WO2019141219A1 (en) * 2018-01-19 2019-07-25 库卡机器人(广东)有限公司 Method and system for scheduling multiple mobile robots
CN110174891A (en) * 2019-04-08 2019-08-27 江苏大学 A kind of AGV cluster control system and method based on WIFI wireless communication
CN110232486A (en) * 2019-06-26 2019-09-13 哈尔滨理工大学 More workshop integrated dispatch methods based on K shortest path
CN110244711A (en) * 2019-05-16 2019-09-17 芜湖智久机器人有限公司 Robot path planning's system and method, computer readable storage medium, device
CN110262408A (en) * 2019-05-08 2019-09-20 盐城品迅智能科技服务有限公司 A kind of intelligent storage route identification device and method for more AGV
CN110264062A (en) * 2019-08-12 2019-09-20 南京邮电大学 Distributed more AGV dynamic task allocations and its paths planning method and system
CN110298518A (en) * 2019-07-09 2019-10-01 四川三秦电气有限责任公司 A kind of fire rescue route planning method
CN110471418A (en) * 2019-08-22 2019-11-19 北京交通大学 AGV dispatching method in intelligent parking lot
CN110515380A (en) * 2019-08-22 2019-11-29 北京交通大学 Shortest Path Planning Method Based on Turn Weight Constraints
CN110514224A (en) * 2019-08-26 2019-11-29 中国人民解放军军事科学院国防科技创新研究院 A kind of pilotless automobile local paths planning method of evaluating performance
CN110530369A (en) * 2019-08-22 2019-12-03 北京交通大学 AGV method for scheduling task based on time window
WO2019242652A1 (en) * 2018-06-21 2019-12-26 北京极智嘉科技有限公司 Robot scheduling and robot path control method, server and storage medium
CN110888407A (en) * 2019-11-28 2020-03-17 浙江大华技术股份有限公司 Task allocation method and device in AGV (automatic guided vehicle) scheduling system
CN110965449A (en) * 2019-12-23 2020-04-07 郑州大学 Automatic crack pouring method and device
CN111060127A (en) * 2019-12-31 2020-04-24 深圳一清创新科技有限公司 Vehicle starting point positioning method and device, computer equipment and storage medium
CN111079988A (en) * 2019-11-28 2020-04-28 浙江大华技术股份有限公司 Task execution method and device, storage medium and electronic device
CN111380554A (en) * 2018-12-28 2020-07-07 哲内提 Efficient searching through meaningful links within a defined topology
CN111780776A (en) * 2020-06-19 2020-10-16 上海东普信息科技有限公司 Multi-frequency vehicle path planning method, device, equipment and storage medium
CN111830952A (en) * 2019-03-29 2020-10-27 阿里巴巴集团控股有限公司 Method and device for scheduling transport vehicles in physical shop
CN111832816A (en) * 2020-07-03 2020-10-27 浙江大学医学院附属妇产科医院 A medical AGV group logistics control system and method based on scheduling algorithm
CN112013840A (en) * 2020-08-19 2020-12-01 安克创新科技股份有限公司 Sweeping robot and map construction method and device thereof
CN112096154A (en) * 2020-09-11 2020-12-18 江苏小白兔智造科技有限公司 Implementation method for dispatching parking robot based on path planning
CN112474368A (en) * 2019-09-12 2021-03-12 北京京东乾石科技有限公司 Goods sorting method, device, equipment and computer readable medium
CN112559287A (en) * 2020-12-11 2021-03-26 万达信息股份有限公司 Method and device for optimizing task flow in data
CN112578782A (en) * 2019-09-29 2021-03-30 杭州海康机器人技术有限公司 Automatic guided vehicle task path planning method and device
CN112631232A (en) * 2020-12-28 2021-04-09 北京星航机电装备有限公司 Method and system for realizing scheduling control of automatic guided vehicle based on openTCS
CN112731929A (en) * 2020-12-23 2021-04-30 浙江大学 Ackerman model-based mobile robot obstacle avoidance path planning method
CN112836078A (en) * 2021-02-20 2021-05-25 山东省计算中心(国家超级计算济南中心) A method, device, system and storage medium for shortest path security query on a graph
US11092973B2 (en) * 2018-09-28 2021-08-17 Invia Robotics, Inc. Coordinated operation of autonomous robots
CN113479655A (en) * 2021-07-07 2021-10-08 江苏杰瑞信息科技有限公司 Vehicle scheduling method based on fuzzy path
CN113673918A (en) * 2020-05-15 2021-11-19 北京京东乾石科技有限公司 Control method and device for transport device and storage medium
CN114089774A (en) * 2022-01-14 2022-02-25 中国科学院微电子研究所 AGV path planning method and device in storage environment
CN114442627A (en) * 2022-01-24 2022-05-06 电子科技大学 Dynamic desktop path finding system and method for smart home mobile device
CN114706395A (en) * 2022-04-02 2022-07-05 安歌科技(集团)股份有限公司 Four-way shuttle RGV cluster scheduling system
CN114707012A (en) * 2022-04-08 2022-07-05 合肥工业大学 Graph encryption shortest path query method and system supporting k unordered nodes
CN114943366A (en) * 2022-04-11 2022-08-26 中国人民解放军海军航空大学 Aircraft equipment transfer scheduling method and device considering taking and delivering coordination
CN114964285A (en) * 2022-04-25 2022-08-30 上海西井信息科技有限公司 Navigation method, system, device and storage medium based on dynamic waiting area
CN115617047A (en) * 2022-11-03 2023-01-17 广州丰桥智能装备有限公司 A path planning method, system and storage medium
CN116060327A (en) * 2019-07-02 2023-05-05 因特利格雷特总部有限责任公司 Robot sorting system
CN116366524A (en) * 2023-05-31 2023-06-30 天翼云科技有限公司 Path calculation method and device based on content distribution network
CN116451890A (en) * 2023-02-14 2023-07-18 广州景瑞达工程咨询有限公司 Smart city management method and system based on cloud computing
CN116501046A (en) * 2023-04-26 2023-07-28 江苏亿控智能装备有限公司 A logistics handling accuracy feedback check system and check method for a high-precision workshop
CN116934059A (en) * 2023-09-18 2023-10-24 华芯(嘉兴)智能装备有限公司 Crown block scheduling method, crown block scheduling device, crown block scheduling equipment and readable storage medium
CN117575451A (en) * 2024-01-12 2024-02-20 深圳市今天国际物流技术股份有限公司 Logistics order control method, device, computer equipment and storage medium
WO2024045423A1 (en) * 2022-09-01 2024-03-07 浙江衣拿智能科技股份有限公司 Automatic return-to-station control method and apparatus for on-track units
CN118485365A (en) * 2024-07-16 2024-08-13 中国科学院福建物质结构研究所 A method, system and storage medium for batch transfer of materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014111396A1 (en) * 2014-08-11 2016-02-11 SSI Schäfer Noell GmbH Lager- und Systemtechnik System for unloading piece goods
CN106444791A (en) * 2016-12-20 2017-02-22 南阳师范学院 Design method of multiple AGV (Automatic Guided Vehicle) unified dispatching system by upper computer
CN106444758A (en) * 2016-09-27 2017-02-22 华南农业大学 Road identification and path optimization AGV (automatic guided vehicle) based on machine vision and control system of AGV

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014111396A1 (en) * 2014-08-11 2016-02-11 SSI Schäfer Noell GmbH Lager- und Systemtechnik System for unloading piece goods
CN106444758A (en) * 2016-09-27 2017-02-22 华南农业大学 Road identification and path optimization AGV (automatic guided vehicle) based on machine vision and control system of AGV
CN106444791A (en) * 2016-12-20 2017-02-22 南阳师范学院 Design method of multiple AGV (Automatic Guided Vehicle) unified dispatching system by upper computer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙奇: "AGV系统路径规划技术研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107730975A (en) * 2017-09-13 2018-02-23 浙江大学 Supermarket's stopping guide reverse car seeking and the system and method for the guiding that appears on the scene
CN107730975B (en) * 2017-09-13 2020-04-28 浙江大学 System and method for guiding reverse car finding and departure guiding in supermarket parking
CN107479403A (en) * 2017-09-14 2017-12-15 长春北方化工灌装设备股份有限公司 Annular RGV semi-matter simulating systems based on virtual reality and run dispatching algorithm without sky
CN107618803A (en) * 2017-09-25 2018-01-23 芜湖智久机器人有限公司 A kind of quick storehouse management AGV trolley control systems for quickly taking cargo transport thing
CN107885198A (en) * 2017-09-25 2018-04-06 湖南大学 AGV dispatching methods
CN107727099A (en) * 2017-09-29 2018-02-23 山东大学 The more AGV scheduling of material transportation and paths planning method in a kind of factory
CN107703943A (en) * 2017-10-23 2018-02-16 清华大学 A kind of method and its system that control multiple mobile robots concurrently to run
CN109726841B (en) * 2017-10-27 2022-02-01 北京京东乾石科技有限公司 AGV path calculation method based on unmanned cabin and AGV driving path control method
CN109726841A (en) * 2017-10-27 2019-05-07 北京京东尚科信息技术有限公司 AGV path calculation method and AGV driving path control method based on unmanned storehouse
CN107943029A (en) * 2017-11-15 2018-04-20 苏州佳世达电通有限公司 Transportation resources and transportation system
CN109816131A (en) * 2017-11-20 2019-05-28 北京京东尚科信息技术有限公司 Paths planning method, path planning apparatus and computer readable storage medium
CN108021135A (en) * 2017-12-05 2018-05-11 合肥泰禾光电科技股份有限公司 The control method and device of a kind of automatic guided vehicle
CN109934438A (en) * 2017-12-18 2019-06-25 中国科学院沈阳自动化研究所 A Multi-AGV Scheduling Method Based on Semantic Modeling
CN108062645A (en) * 2017-12-18 2018-05-22 青岛港国际股份有限公司 A kind of automated container terminal AGV dispatching methods and system
CN107993025A (en) * 2017-12-25 2018-05-04 厦门大学嘉庚学院 A kind of real-time dynamic unlocking dispatching method of more AGV
CN108195380A (en) * 2017-12-26 2018-06-22 广东嘉腾机器人自动化有限公司 A kind of AGV optimal route selection methods based on shortest path
CN108304964A (en) * 2018-01-08 2018-07-20 深圳市易成自动驾驶技术有限公司 AGV shortest path planning methods, device and computer readable storage medium
WO2019141219A1 (en) * 2018-01-19 2019-07-25 库卡机器人(广东)有限公司 Method and system for scheduling multiple mobile robots
WO2019141220A1 (en) * 2018-01-19 2019-07-25 库卡机器人(广东)有限公司 Mobile robot path planning method and system
CN108227716A (en) * 2018-01-19 2018-06-29 广东美的智能机器人有限公司 The paths planning method and system of mobile robot
CN108520326B (en) * 2018-04-20 2022-03-04 湖北工业大学 Real-time synthesis method of supervisory controller based on agv task path scheduling
CN108520326A (en) * 2018-04-20 2018-09-11 湖北工业大学 A Real-time Synthesis Method of Supervisory Controller Based on AGV Task Path Scheduling
CN108638071A (en) * 2018-05-22 2018-10-12 四川超影科技有限公司 A kind of crusing robot optimal path dynamic programming method
CN108873892A (en) * 2018-05-31 2018-11-23 杭州晶智能科技有限公司 A kind of automatic dust absorption machine people's optimum path planning method based on path density analysis
JP2021522618A (en) * 2018-06-21 2021-08-30 北京極智嘉科技股▲ふん▼有限公司Beijing Geekplus Technology Co.,Ltd. Robot scheduling, robot routing methods, servers and storage media
JP2022037223A (en) * 2018-06-21 2022-03-08 北京極智嘉科技股▲ふん▼有限公司 Robot path control methods, servers and storage media
JP2022037222A (en) * 2018-06-21 2022-03-08 北京極智嘉科技股▲ふん▼有限公司 Methods, servers and storage media for scheduling robot routes
WO2019242652A1 (en) * 2018-06-21 2019-12-26 北京极智嘉科技有限公司 Robot scheduling and robot path control method, server and storage medium
JP7005794B2 (en) 2018-06-21 2022-01-24 北京極智嘉科技股▲ふん▼有限公司 Robot scheduling, robot routing methods, servers and storage media
AU2019290096B2 (en) * 2018-06-21 2022-12-01 Beijing Geekplus Technology Co., Ltd. Robot scheduling and robot path control method, server and storage medium
US11969896B2 (en) 2018-06-21 2024-04-30 Beijing Geekplus Technology Co., Ltd. Robot scheduling and robot path control method, server and storage medium
CN109190840A (en) * 2018-09-21 2019-01-11 中电科技(合肥)博微信息发展有限责任公司 A kind of freezer shuttle dispatching management information system and dispatching method
US11092973B2 (en) * 2018-09-28 2021-08-17 Invia Robotics, Inc. Coordinated operation of autonomous robots
CN109189097A (en) * 2018-10-18 2019-01-11 国网河北省电力有限公司沧州供电分公司 Unmanned transmission line faultlocating method
CN109557883B (en) * 2018-11-30 2019-07-26 山东师范大学 A multi-process intelligent RGV path planning method, device and system
CN109557883A (en) * 2018-11-30 2019-04-02 山东师范大学 A kind of multi-process intelligence RGV paths planning method, apparatus and system
CN109697529A (en) * 2018-12-21 2019-04-30 心怡科技股份有限公司 A kind of flexible task allocation algorithms based on the double neighbour's positioning of local
CN111380554B (en) * 2018-12-28 2024-03-15 哲内提 Efficient searching over meaningful links within defined topologies
CN109668572A (en) * 2018-12-28 2019-04-23 芜湖哈特机器人产业技术研究院有限公司 A kind of laser fork truck method for searching path based on floyd algorithm
CN111380554A (en) * 2018-12-28 2020-07-07 哲内提 Efficient searching through meaningful links within a defined topology
CN109682379A (en) * 2019-01-03 2019-04-26 北京计算机技术及应用研究所 A kind of motion control device for the intelligent AGV towards critical equipment manufacturing
CN109948883A (en) * 2019-01-17 2019-06-28 芜湖智久机器人有限公司 A kind of station AGV point task distribution system and method
CN109978251A (en) * 2019-03-21 2019-07-05 上海赛摩物流科技有限公司 A kind of dispatching method, scheduling system and the device with store function
CN111830952A (en) * 2019-03-29 2020-10-27 阿里巴巴集团控股有限公司 Method and device for scheduling transport vehicles in physical shop
CN110174891A (en) * 2019-04-08 2019-08-27 江苏大学 A kind of AGV cluster control system and method based on WIFI wireless communication
CN109995653A (en) * 2019-04-15 2019-07-09 深圳市迅雷网络技术有限公司 Data transmission method, device, system and readable storage medium across nodes
CN109901596A (en) * 2019-04-20 2019-06-18 上海森恒环保科技有限公司 Monitoring early-warning system is stored in dangerous waste source under a kind of Internet of Things
CN110262408A (en) * 2019-05-08 2019-09-20 盐城品迅智能科技服务有限公司 A kind of intelligent storage route identification device and method for more AGV
CN110244711A (en) * 2019-05-16 2019-09-17 芜湖智久机器人有限公司 Robot path planning's system and method, computer readable storage medium, device
CN110232486A (en) * 2019-06-26 2019-09-13 哈尔滨理工大学 More workshop integrated dispatch methods based on K shortest path
CN110232486B (en) * 2019-06-26 2023-03-21 哈尔滨理工大学 Multi-workshop comprehensive scheduling method based on K shortest path
CN116060327A (en) * 2019-07-02 2023-05-05 因特利格雷特总部有限责任公司 Robot sorting system
CN110298518A (en) * 2019-07-09 2019-10-01 四川三秦电气有限责任公司 A kind of fire rescue route planning method
CN110264062A (en) * 2019-08-12 2019-09-20 南京邮电大学 Distributed more AGV dynamic task allocations and its paths planning method and system
CN110515380B (en) * 2019-08-22 2021-07-13 北京交通大学 Shortest path planning method based on turning weight constraints
CN110515380A (en) * 2019-08-22 2019-11-29 北京交通大学 Shortest Path Planning Method Based on Turn Weight Constraints
CN110471418A (en) * 2019-08-22 2019-11-19 北京交通大学 AGV dispatching method in intelligent parking lot
CN110530369A (en) * 2019-08-22 2019-12-03 北京交通大学 AGV method for scheduling task based on time window
CN110514224A (en) * 2019-08-26 2019-11-29 中国人民解放军军事科学院国防科技创新研究院 A kind of pilotless automobile local paths planning method of evaluating performance
CN112474368A (en) * 2019-09-12 2021-03-12 北京京东乾石科技有限公司 Goods sorting method, device, equipment and computer readable medium
CN112474368B (en) * 2019-09-12 2023-12-05 北京京东乾石科技有限公司 Goods picking method, device, equipment and computer readable medium
CN112578782A (en) * 2019-09-29 2021-03-30 杭州海康机器人技术有限公司 Automatic guided vehicle task path planning method and device
CN110888407A (en) * 2019-11-28 2020-03-17 浙江大华技术股份有限公司 Task allocation method and device in AGV (automatic guided vehicle) scheduling system
CN111079988B (en) * 2019-11-28 2024-02-20 浙江华睿科技股份有限公司 Task execution method and device, storage medium and electronic device
CN111079988A (en) * 2019-11-28 2020-04-28 浙江大华技术股份有限公司 Task execution method and device, storage medium and electronic device
CN110965449A (en) * 2019-12-23 2020-04-07 郑州大学 Automatic crack pouring method and device
CN110965449B (en) * 2019-12-23 2021-10-19 郑州大学 Automatic seam filling method and device
CN111060127A (en) * 2019-12-31 2020-04-24 深圳一清创新科技有限公司 Vehicle starting point positioning method and device, computer equipment and storage medium
CN113673918A (en) * 2020-05-15 2021-11-19 北京京东乾石科技有限公司 Control method and device for transport device and storage medium
CN111780776A (en) * 2020-06-19 2020-10-16 上海东普信息科技有限公司 Multi-frequency vehicle path planning method, device, equipment and storage medium
CN111780776B (en) * 2020-06-19 2021-09-03 上海东普信息科技有限公司 Multi-frequency vehicle path planning method, device, equipment and storage medium
CN111832816A (en) * 2020-07-03 2020-10-27 浙江大学医学院附属妇产科医院 A medical AGV group logistics control system and method based on scheduling algorithm
CN112013840A (en) * 2020-08-19 2020-12-01 安克创新科技股份有限公司 Sweeping robot and map construction method and device thereof
CN112096154A (en) * 2020-09-11 2020-12-18 江苏小白兔智造科技有限公司 Implementation method for dispatching parking robot based on path planning
CN112559287B (en) * 2020-12-11 2024-08-06 万达信息股份有限公司 Optimization method and device for task flow of data center station
CN112559287A (en) * 2020-12-11 2021-03-26 万达信息股份有限公司 Method and device for optimizing task flow in data
CN112731929A (en) * 2020-12-23 2021-04-30 浙江大学 Ackerman model-based mobile robot obstacle avoidance path planning method
CN112631232A (en) * 2020-12-28 2021-04-09 北京星航机电装备有限公司 Method and system for realizing scheduling control of automatic guided vehicle based on openTCS
CN112836078A (en) * 2021-02-20 2021-05-25 山东省计算中心(国家超级计算济南中心) A method, device, system and storage medium for shortest path security query on a graph
CN113479655A (en) * 2021-07-07 2021-10-08 江苏杰瑞信息科技有限公司 Vehicle scheduling method based on fuzzy path
CN114089774A (en) * 2022-01-14 2022-02-25 中国科学院微电子研究所 AGV path planning method and device in storage environment
CN114089774B (en) * 2022-01-14 2022-04-12 中国科学院微电子研究所 AGV path planning method and device in storage environment
CN114442627A (en) * 2022-01-24 2022-05-06 电子科技大学 Dynamic desktop path finding system and method for smart home mobile device
CN114442627B (en) * 2022-01-24 2023-10-13 电子科技大学 A dynamic desktop pathfinding system and method for smart home mobile devices
CN114706395A (en) * 2022-04-02 2022-07-05 安歌科技(集团)股份有限公司 Four-way shuttle RGV cluster scheduling system
CN114707012A (en) * 2022-04-08 2022-07-05 合肥工业大学 Graph encryption shortest path query method and system supporting k unordered nodes
CN114707012B (en) * 2022-04-08 2024-02-13 合肥工业大学 Graph encrypted shortest path query method and system supporting k disordered nodes
CN114943366B (en) * 2022-04-11 2024-10-25 中国人民解放军海军航空大学 Aircraft equipment transfer scheduling method and device considering pick-up and delivery coordination
CN114943366A (en) * 2022-04-11 2022-08-26 中国人民解放军海军航空大学 Aircraft equipment transfer scheduling method and device considering taking and delivering coordination
CN114964285A (en) * 2022-04-25 2022-08-30 上海西井信息科技有限公司 Navigation method, system, device and storage medium based on dynamic waiting area
WO2024045423A1 (en) * 2022-09-01 2024-03-07 浙江衣拿智能科技股份有限公司 Automatic return-to-station control method and apparatus for on-track units
CN115617047A (en) * 2022-11-03 2023-01-17 广州丰桥智能装备有限公司 A path planning method, system and storage medium
CN116451890B (en) * 2023-02-14 2023-12-12 上海勘测设计研究院有限公司 Smart city management method and system based on cloud computing
CN116451890A (en) * 2023-02-14 2023-07-18 广州景瑞达工程咨询有限公司 Smart city management method and system based on cloud computing
CN116501046A (en) * 2023-04-26 2023-07-28 江苏亿控智能装备有限公司 A logistics handling accuracy feedback check system and check method for a high-precision workshop
CN116366524A (en) * 2023-05-31 2023-06-30 天翼云科技有限公司 Path calculation method and device based on content distribution network
CN116366524B (en) * 2023-05-31 2023-08-04 天翼云科技有限公司 Path calculation method and device based on content distribution network
CN116934059A (en) * 2023-09-18 2023-10-24 华芯(嘉兴)智能装备有限公司 Crown block scheduling method, crown block scheduling device, crown block scheduling equipment and readable storage medium
CN116934059B (en) * 2023-09-18 2023-12-19 华芯(嘉兴)智能装备有限公司 Crown block scheduling method, crown block scheduling device, crown block scheduling equipment and readable storage medium
CN117575451B (en) * 2024-01-12 2024-04-30 深圳市今天国际物流技术股份有限公司 Logistics order control method, device, computer equipment and storage medium
CN117575451A (en) * 2024-01-12 2024-02-20 深圳市今天国际物流技术股份有限公司 Logistics order control method, device, computer equipment and storage medium
CN118485365A (en) * 2024-07-16 2024-08-13 中国科学院福建物质结构研究所 A method, system and storage medium for batch transfer of materials
CN118485365B (en) * 2024-07-16 2024-11-19 中国科学院福建物质结构研究所 Method, system and storage medium for transferring materials in batches

Similar Documents

Publication Publication Date Title
CN107036618A (en) A kind of AGV paths planning methods based on shortest path depth optimization algorithm
CN113074728B (en) Multi-AGV path planning method based on hop pathfinding and cooperative obstacle avoidance
CN110989582A (en) Automatic avoidance type intelligent scheduling method for multiple AGV based on path pre-occupation
CN111882215B (en) Personalized customization flexible job shop scheduling method containing AGV
CN107179078A (en) A kind of AGV paths planning methods optimized based on time window
CN103279857B (en) The automatic distribution vehicle dispatching method of NC lathing
CN109685243B (en) Method for optimizing logistics distribution path of job shop based on genetic algorithm
CN113743747B (en) Multi-AGV cooperative scheduling method and device in workshop environment
CN110807236A (en) A Warehousing and Logistics Simulation System Based on Multi-robot
CN109489667A (en) A kind of improvement ant colony paths planning method based on weight matrix
CN106773686B (en) Path model method for building up is dispatched with piler under the double vehicle operational modes of rail
CN114444239B (en) Path-guided optimization method of job shop motion track based on hybrid genetic algorithm
Liu et al. Path planning and intelligent scheduling of multi-AGV systems in workshop
CN113895935B (en) Full-automatic intelligent chemical fiber POY wire ingot feeding equipment control method and control system
CN113515117A (en) Conflict resolution method for multi-AGV real-time scheduling based on time window
CN114815751A (en) Method for improving processing efficiency of intelligent manufacturing system based on label
Wang et al. Study on scheduling and path planning problems of multi-AGVs based on a heuristic algorithm in intelligent manufacturing workshop
CN116522801B (en) Layout simulation method and device for logistics system
Shi et al. Task allocation and path planning of many robots with motion uncertainty in a warehouse environment
Liu et al. Holonic manufacturing system for distributed control of automated guided vehicles
CN117215275B (en) A large-scale dynamic double-effect scheduling method for flexible workshops based on genetic programming
CN116451888B (en) A collaborative scheduling method for flexible production workshops based on multiple AGVs
Xia et al. A multi-AGV optimal scheduling algorithm based on particle swarm optimization
Zhao et al. Dynamic node allocation-based multirobot path planning
Zhang et al. Multi-AGVs pathfinding based on improved jump point search in logistic center

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 230009 Tunxi Road, Anhui, China, No. 193, No.

Applicant after: Hefei University of Technology

Applicant after: Hefei University of Technology (Maanshan) High-tech Institute

Address before: No. 578 Taibai Road, Ma'anshan Development Zone, Anhui Province, Anhui

Applicant before: Hefei University of Technology (Maanshan) High-tech Institute

Applicant before: Hefei University of Technology

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170811