CN107024907B - Embedded full-life-cycle machine tool thermal error compensation system and method - Google Patents
Embedded full-life-cycle machine tool thermal error compensation system and method Download PDFInfo
- Publication number
- CN107024907B CN107024907B CN201710210700.7A CN201710210700A CN107024907B CN 107024907 B CN107024907 B CN 107024907B CN 201710210700 A CN201710210700 A CN 201710210700A CN 107024907 B CN107024907 B CN 107024907B
- Authority
- CN
- China
- Prior art keywords
- machine tool
- temperature
- compensation
- controller
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37509—Intelligent sensor, incorporation temperature compensation
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Automatic Control Of Machine Tools (AREA)
Abstract
本发明公开了一种嵌入式全生命周期机床热误差补偿系统及方法,包括上位机、PLC控制器、核心控制器、可编程逻辑控制器、温度滤波调理电路、存储芯片以及用于采集机床温度的温度传感器,其中,温度传感器的输出端经温度滤波调理电路与可编程逻辑控制器相连接,可编程逻辑控制器与存储芯片、PLC控制器及核心控制器相连接,上位机与核心控制器相连接,该系统及方法能够精确实现机床的热误差补偿,并且操作较为简单。
The invention discloses an embedded full life cycle machine tool thermal error compensation system and method. The output end of the temperature sensor is connected with the programmable logic controller through the temperature filtering and conditioning circuit, the programmable logic controller is connected with the memory chip, the PLC controller and the core controller, and the host computer is connected with the core controller. Connected, the system and method can accurately realize thermal error compensation of the machine tool, and the operation is relatively simple.
Description
技术领域technical field
本发明属于数控机床热误差补偿领域,涉及一种嵌入式全生命周期机床热误差补偿系统及方法。The invention belongs to the field of thermal error compensation of numerically controlled machine tools, and relates to an embedded full life cycle machine tool thermal error compensation system and method.
背景技术Background technique
随着零部件加工精度和机床装配技术水平的提高,传统的机床由于制造和装配造成的误差已明显下降,而之前不是主要因素的热误差则占据了现代加工误差的40%~70%,热误差补偿技术正越来越受到重视。在热平衡设计和热误差反向补偿这两种方法中,第二种由于研发周期短,通用性好而得到广泛使用。热误差反向补偿需要高效率,高精度,高可靠性的补偿装置,如申请号为201511020629.3,名称为“一种精密数控机床热误差测量及温度补偿系统”的专利公开了一种利用温度传感器和电感位移传感器综合建模计算补偿,并将补偿量转换为电机驱动信号来控制轴的运动的装置,此装置适用于绝大多数的机床,且建模较精确,拥有较高精度。但是,在实际加工零件时由于电感式传感器加工时布置困难,可实施性较差,并且需要与伺服电机驱动器接线,如在出厂前机床未留电机驱动器接口,在用户现场安装使用此装置时极为不便。又如申请号为201610036937.3,名称为“一种机床热变形误差人工智能补偿器及补偿方法”的专利公开了一种基于人工智能的补偿模型计算装置,可根据激光干涉仪实验数据与温度传感器数据自动学习建模。此系统适应性强,可用于多种机床的实验建模,但存在两个问题,第一个是每次实验需要用到激光干涉仪来测量误差,对于单台机床,使用激光干涉仪可以进行精确测量建模,但现在机床热误差的一致性未得到验证,对于大批机床需要一一实验,对于已经销售的机床,再进行实验十分困难,不利于用户的方便使用。第二个是需要长时间占用网口通信,在实际机床使用加工时,网口还需进行其他操作,会对机床使用者安排工作造成较大不便。在现有的补偿装置中,建立模型都必须通过电涡流进行“五点法”实验测量误差或通过激光干涉仪进行误差测量,这种测量作为出厂实验方法很合适,但对于用户来说,对机床做实验需要付出机床停产,甚至生产线停工的代价,不利于大规模推广。在补偿量发送上,需要通过占用网口或其他PLC面板通讯端口方式来实现,但PLC使用时这些端口还有其他操作要完成,如何合理的安排操作流程对加工工人的操作水平要求较高。在模型建立上,上述测量装置虽然可以较为精确的建立热误差模型,但机床的热误差模型是会随着机床的使用而变化的,模型需要及时的修正,上述建模实验的操作复杂,重复实验代价高昂,影响了实际使用的效果。综上所述,一种结构简单,精度较高,操作简便且适用于工厂生产线中运用的热误差实时补偿系统是现在所需要的。With the improvement of parts machining accuracy and machine tool assembly technology, the errors caused by traditional machine tools due to manufacturing and assembly have dropped significantly, while thermal errors, which were not the main factor before, accounted for 40% to 70% of modern machining errors. Error compensation technology is getting more and more attention. Among the two methods of thermal balance design and thermal error reverse compensation, the second method is widely used due to its short development cycle and good versatility. Thermal error reverse compensation requires a high-efficiency, high-precision, high-reliability compensation device. For example, the patent with the application number of 201511020629.3 and the title of "A Precision CNC Machine Tool Thermal Error Measurement and Temperature Compensation System" discloses a method using a temperature sensor It is a device that calculates compensation through comprehensive modeling with an inductive displacement sensor, and converts the compensation amount into a motor drive signal to control the movement of the shaft. This device is suitable for most machine tools, and the modeling is more accurate and has high precision. However, in the actual machining of parts, due to the difficulty in the arrangement of the inductive sensor during machining, the implementability is poor, and it needs to be wired with the servo motor driver. inconvenient. Another example is the patent application number 201610036937.3, titled "An artificial intelligence compensator and compensation method for thermal deformation error of machine tools", which discloses a compensation model calculation device based on artificial intelligence, which can be calculated according to the experimental data of the laser interferometer and the data of the temperature sensor. Automatically learn to model. This system has strong adaptability and can be used for experimental modeling of various machine tools, but there are two problems. The first is that a laser interferometer needs to be used to measure the error in each experiment. For a single machine tool, the laser interferometer can be used to measure the error. Accurate measurement and modeling, but now the consistency of thermal error of machine tools has not been verified, one by one experiment is required for a large number of machine tools, and it is very difficult to conduct experiments for machine tools that have been sold, which is not conducive to the convenience of users. The second is that the network port needs to be occupied for a long time for communication. When the actual machine tool is used for processing, the network port needs to perform other operations, which will cause great inconvenience to the machine tool user to arrange work. In the existing compensation devices, the establishment of the model must be carried out by the "five-point method" experimental measurement error by eddy current or by the laser interferometer to measure the error. This kind of measurement is very suitable as a factory experimental method, but for users, it is necessary to Experiments with machine tools need to pay the price of stopping production of machine tools and even production lines, which is not conducive to large-scale promotion. In the sending of compensation amount, it needs to be realized by occupying the network port or other PLC panel communication ports. However, when the PLC is used, these ports have other operations to be completed. How to reasonably arrange the operation process requires a high level of operation of the processing workers. In terms of model establishment, although the above measurement device can establish a relatively accurate thermal error model, the thermal error model of the machine tool will change with the use of the machine tool, and the model needs to be corrected in time. The operation of the above modeling experiment is complicated and repetitive. Experimentation is expensive and affects the effect of actual use. To sum up, a real-time thermal error compensation system with simple structure, high precision, simple operation and suitable for use in factory production lines is needed now.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服上述现有技术的缺点,提供了一种嵌入式全生命周期机床热误差补偿系统及方法,该系统及方法能够实时、精确实现机床的热误差补偿,并且操作较为简单。The purpose of the present invention is to overcome the above shortcomings of the prior art, and to provide an embedded full life cycle machine tool thermal error compensation system and method.
为达到上述目的,本发明所述的嵌入式全生命周期机床热误差补偿系统包括上位机、PLC控制器、核心控制器、可编程逻辑控制器、温度滤波调理电路、存储芯片以及用于采集机床温度的温度传感器,其中,温度传感器的输出端经温度滤波调理电路与可编程逻辑控制器相连接,可编程逻辑控制器与存储芯片、PLC控制器及核心控制器相连接,上位机与核心控制器相连接。In order to achieve the above purpose, the embedded full life cycle machine tool thermal error compensation system according to the present invention includes a host computer, a PLC controller, a core controller, a programmable logic controller, a temperature filtering and conditioning circuit, a memory chip, and a machine tool for collecting data. A temperature sensor for temperature, wherein the output end of the temperature sensor is connected with a programmable logic controller through a temperature filtering and conditioning circuit, the programmable logic controller is connected with a memory chip, a PLC controller and a core controller, and the host computer and the core control connected to the device.
可编程逻辑控制器与PLC控制器之间通过I/O端口相连接。The programmable logic controller and the PLC controller are connected through the I/O port.
核心控制器与上位机之间通过USB接口、RS232接口及网口相连接。The core controller and the host computer are connected through the USB interface, the RS232 interface and the network port.
温度传感器为PT100铂热电阻。The temperature sensor is a PT100 platinum thermal resistance.
本发明所述的嵌入式全生命周期机床热误差补偿方法包括以下步骤:The embedded full life cycle machine tool thermal error compensation method of the present invention includes the following steps:
用户向上位机中输入工件的理想尺寸,上位机根据工件的理想尺寸构建补偿模型,并将建立的补偿模型存储到存储芯片中;The user inputs the ideal size of the workpiece to the upper computer, and the upper computer builds a compensation model according to the ideal size of the workpiece, and stores the established compensation model in the memory chip;
核心控制器产生温度采集指令,并将所述温度采集指令发送至可编程逻辑控制器中,可编程逻辑控制器根据所述温度采集指令通过温度传感器进行温度的采集,其中,温度传感器采集机床的温度信息,所述机床的温度信息经温度滤波调理电路进行滤波及调理后输入到可编程逻辑控制器中,PLC控制器获取机床的运转状态,当机床加工运行时,PLC控制器指定I/O端口产生高电平信号,再将所述高电平信号输入到可编程逻辑控制器中并由核心控制器读取,核心控制器根据所述高电平信号控制可编程逻辑控制器从存储芯片中提取补偿模型的升温公式,并机床的温度信息代入补偿模型的升温公式中,得机床热误差补偿值,然后将机床热误差补偿值发送至上位机及PLC控制器中;当机床没有加工运行时,PLC控制器指定I/O端口产生低电平信号,并将所述低电平信号输入到可编程逻辑控制器中并由核心控制器读取,核心控制器根据所述低电平信号控制可编程逻辑控制器从存储芯片中提取补偿模型的降温公式,并将机床的温度信息代入补偿模型的降温公式,得机床的热误差补偿值,然后将机床的热误差补偿值发送至上位机及PLC控制器中;The core controller generates a temperature collection instruction, and sends the temperature collection instruction to the programmable logic controller, and the programmable logic controller collects the temperature through a temperature sensor according to the temperature collection instruction, wherein the temperature sensor collects the temperature of the machine tool. Temperature information, the temperature information of the machine tool is filtered and conditioned by the temperature filtering and conditioning circuit and then input into the programmable logic controller, the PLC controller obtains the running state of the machine tool, and when the machine tool is running, the PLC controller specifies the I/O The port generates a high-level signal, and then the high-level signal is input into the programmable logic controller and read by the core controller. The core controller controls the programmable logic controller from the memory chip according to the high-level signal. The heating formula of the compensation model is extracted from the computer, and the temperature information of the machine tool is substituted into the heating formula of the compensation model to obtain the thermal error compensation value of the machine tool, and then the thermal error compensation value of the machine tool is sent to the upper computer and the PLC controller; when the machine tool is not running When the PLC controller designates the I/O port to generate a low-level signal, the low-level signal is input into the programmable logic controller and read by the core controller, and the core controller is based on the low-level signal. Control the programmable logic controller to extract the cooling formula of the compensation model from the memory chip, and substitute the temperature information of the machine tool into the cooling formula of the compensation model to obtain the thermal error compensation value of the machine tool, and then send the thermal error compensation value of the machine tool to the upper computer and PLC controller;
核心控制器根据机床热误差补偿值进行机床的热误差补偿,完成嵌入式全生命周期机床热误差补偿。The core controller performs thermal error compensation of the machine tool according to the thermal error compensation value of the machine tool, and completes the thermal error compensation of the embedded full-life cycle machine tool.
用户向上位机中输入工件的尺寸,上位机根据工件的尺寸构建补偿模型,并将构建的补偿模型存储到存储芯片中的具体操作为:The user inputs the size of the workpiece to the upper computer, and the upper computer constructs a compensation model according to the size of the workpiece, and stores the constructed compensation model in the memory chip. The specific operations are as follows:
1)用户将工件的理想尺寸输入到上位机中,上位机将工件的理想尺寸作为误差计算基准,并设置允许的公差带;1) The user inputs the ideal size of the workpiece into the upper computer, and the upper computer takes the ideal size of the workpiece as the error calculation benchmark, and sets the allowable tolerance zone;
2)当加工完一件工件时,则实测该工件的尺寸,并将该工件的实测尺寸输入到上位机中;2) When a workpiece is processed, the size of the workpiece is measured, and the measured size of the workpiece is input into the host computer;
3)上位机根据工件的实测尺寸与工件的理想尺寸计算补偿量,同时存储工件的温度、尺寸及补偿量;3) The host computer calculates the compensation amount according to the measured size of the workpiece and the ideal size of the workpiece, and stores the temperature, size and compensation amount of the workpiece at the same time;
4)上位机根据工件的温度、尺寸及补偿量运用多目标粒子群智能算法计算补偿模型,然后将补偿模型存储到存储芯片中。4) The host computer uses the multi-objective particle swarm intelligent algorithm to calculate the compensation model according to the temperature, size and compensation amount of the workpiece, and then stores the compensation model in the memory chip.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明所述的嵌入式全生命周期机床热误差补偿系统及方法在具体操作时,先构建补偿模型,再将补偿模型存储到存储芯片中,然后根据机床的运行状态,对机床的温度信息利用补偿模型的降温公式及补偿模型的升温公式进行实时补偿,得到补偿热误差补偿值,然后再将机床热误差补偿值发送至上位机及PLC控制器中,实现加工的同时记录尺寸计算补偿值,适用于生产线等大批量生产条件,同时实现机床的热误差的精确补偿。In the specific operation of the embedded full life cycle machine tool thermal error compensation system and method of the present invention, a compensation model is constructed first, and then the compensation model is stored in the memory chip, and then the temperature information of the machine tool is used according to the operating state of the machine tool. The cooling formula of the compensation model and the heating formula of the compensation model are compensated in real time, and the compensation thermal error compensation value is obtained, and then the thermal error compensation value of the machine tool is sent to the upper computer and the PLC controller, and the size calculation compensation value is recorded while processing is realized. It is suitable for mass production conditions such as production lines, and at the same time realizes accurate compensation of thermal errors of machine tools.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明的原理图。FIG. 2 is a schematic diagram of the present invention.
其中,1为PLC控制器、2为上位机、3为可编程逻辑控制器、4为核心控制器、5为温度滤波调理电路、6为存储芯片、7为温度传感器。Among them, 1 is a PLC controller, 2 is a host computer, 3 is a programmable logic controller, 4 is a core controller, 5 is a temperature filter conditioning circuit, 6 is a memory chip, and 7 is a temperature sensor.
具体实施方式Detailed ways
下面结合附图对本发明做进一步详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:
参考图1,本发明所述的嵌入式全生命周期机床热误差补偿系统包括上位机2、PLC控制器1、核心控制器4、可编程逻辑控制器3、温度滤波调理电路5、存储芯片6以及用于采集机床温度的温度传感器7,其中,温度传感器7的输出端经温度滤波调理电路5与可编程逻辑控制器3相连接,可编程逻辑控制器3与存储芯片6、PLC控制器1及核心控制器4相连接,上位机2与核心控制器4相连接。Referring to FIG. 1, the embedded full life cycle machine tool thermal error compensation system according to the present invention includes a
可编程逻辑控制器3与PLC控制器1之间通过I/O端口相连接;核心控制器4与上位机2之间通过USB接口、RS232接口及网口相连接;温度传感器7为PT100铂热电阻。The
本发明所述的嵌入式全生命周期机床热误差补偿方法包括以下步骤:The embedded full life cycle machine tool thermal error compensation method of the present invention includes the following steps:
用户向上位机2中输入工件的理想尺寸,上位机2根据工件的理想尺寸构建补偿模型,并将建立的补偿模型存储到存储芯片6中;The user inputs the ideal size of the workpiece into the
核心控制器4产生温度采集指令,并将所述温度采集指令发送至可编程逻辑控制器3中,可编程逻辑控制器3根据所述温度采集指令通过温度传感器7进行温度的采集,其中,温度传感器7采集机床的温度信息,所述机床的温度信息经温度滤波调理电路5进行滤波及调理后输入到可编程逻辑控制器3中,PLC控制器1获取机床的运转状态,当机床加工运行时,PLC控制器1指定I/O端口产生高电平信号,再将所述高电平信号输入到可编程逻辑控制器3中并由核心控制器4读取,核心控制器4根据所述高电平信号控制可编程逻辑控制器3从存储芯片6中提取补偿模型的升温公式,并机床的温度信息代入补偿模型的升温公式中,得机床热误差补偿值,然后将机床热误差补偿值发送至上位机2及PLC控制器1中;当机床没有加工运行时,PLC控制器1指定I/O端口产生低电平信号,并将所述低电平信号输入到可编程逻辑控制器3中并由核心控制器4读取,核心控制器4根据所述低电平信号控制可编程逻辑控制器3从存储芯片6中提取补偿模型的降温公式,并将机床的温度信息代入补偿模型的降温公式,得机床的热误差补偿值,然后将机床的热误差补偿值发送至上位机2及PLC控制器1中;The
核心控制器4根据机床热误差补偿值进行机床的热误差补偿,完成嵌入式全生命周期机床热误差补偿。The
所述核心处理器与可编程逻辑控制器3之间传输指令的操作方式与访问存储芯片6的方式相同,命令格式如下:The operation mode of transmitting instructions between the core processor and the
操作类型+(操作地址)+操作内容+(数据)Operation type + (operation address) + operation content + (data)
存储芯片6将补偿后机床的温度信息进行分区存储,每个分区数据的起始地址索引会统一保存在存储芯片6的划定位置,以方便获取指定时间的机床温度数据。在实际操作中,下位机存储数据之前先读取上次数据的存储地址,并在上次数据的存储地址后寻找尚未使用的空存储区,然后再空存储区中建立本次数据存储的地址。The
通过光耦将PLC控制器1的I/O接口与下位机的I/O接口相隔离。The I/O interface of the
所述系统补偿工作流程如下:当上位机2通过USB接口或RS232串口将补偿模型经核心控制器4及可编程逻辑控制器3存储到存储芯片6中,可编程逻辑控制器3每获取一次温度数据,核心控制器4就会通过所述补偿模型对该温度数据进行一次温度补偿,其中,补偿模型在NandFlash芯片中的存储格式如下:The system compensation workflow is as follows: when the
轴号+补偿系数1+补偿系数2+…补偿系数n+偏置调整值Axis number +
补偿值计算公式如下:The formula for calculating the compensation value is as follows:
温度1*补偿系数1+温度2*补偿系数2…温度n*补偿系数n+偏置调整值;temperature1*compensation coefficient1+temperature2*compensation coefficient2...temperaturen*compensation coefficientn+offset adjustment value;
另外,上位机2提出存储芯片6中机床的温度信息,并根据机床的温度信息绘制机床的温度曲线,同时回放查看机床的温度信息,并建立机床的温度信息与工件误差的关系建立模型。In addition, the
本发明运用多目标智能算法粒子群算法计算补偿模型,具体的,根据机床的结构特性、机床材料的热特性及机床工作环境确定目标函数及约束条件,然后再结合粒子群算法及多目标回归分析得补偿模型其中,所述目标函数及约束条件的计算过程为:The invention uses the multi-objective intelligent algorithm particle swarm algorithm to calculate the compensation model. Specifically, the objective function and constraint conditions are determined according to the structural characteristics of the machine tool, the thermal characteristics of the machine tool material and the working environment of the machine tool, and then combined with the particle swarm algorithm and the multi-objective regression analysis. The compensation model is obtained, wherein the calculation process of the objective function and the constraint conditions is:
基本多目标智能算法粒子群算法的框架为:The framework of the basic multi-objective intelligent algorithm particle swarm algorithm is:
x=[x1,x2,…,xD]T x=[x 1 ,x 2 ,...,x D ] T
minf(x)={f1(x),f2(x),…,fm(x)}minf(x)={f 1 (x),f 2 (x),...,f m (x)}
s.t. x∈S={xgj(x)≤0,j=1,2,…,p}st x∈S={xg j (x)≤0,j=1,2,…,p}
其中:补偿模型温度系数x=[x1,x2,…,xD]T,D由选取热关键点的个数决定,热关键的个数随机床结构的变化而不同;Among them: compensation model temperature coefficient x=[x 1 , x 2 ,...,x D ] T , D is determined by the number of selected thermal key points, and the number of thermal key points varies with the change of the bed structure;
fk(x)为第k个目标函数,即搜索寻优的判据;f k (x) is the kth objective function, that is, the criterion for search optimization;
gj(x)≤0,gj(x)为第j个不等式约束条件,可以省略;g j (x)≤0, g j (x) is the jth inequality constraint, which can be omitted;
S为决策变量可行域。S is the feasible region of the decision variable.
则本发明中的目标函数及约束条件为:Then the objective function and constraints in the present invention are:
其中:目标函数f1(X)的意义是温度和系数乘积算出的补偿量与测量误差曲线最接近;为各温度理论计算系数,根据机床理想结构的膨胀系数计算得到;目标函数f2(X)的意义是粒子群算法产生的系数与理论值有足够的接近度;约束条件g1的意义是系数与理论膨胀系数之差的绝对值必须小于1。Among them: the meaning of objective function f 1 (X) is that the compensation amount calculated by the product of temperature and coefficient is the closest to the measurement error curve; The theoretical calculation coefficient for each temperature is calculated according to the expansion coefficient of the ideal structure of the machine tool; the meaning of the objective function f 2 (X) is that the coefficient generated by the particle swarm algorithm is close enough to the theoretical value; the meaning of the constraint condition g 1 is the coefficient The absolute value of the difference from the theoretical expansion coefficient must be less than 1.
所述上位机2软件的工件实时建模模块由使用者通过向上位机2中输入工件尺寸来对机床的热误差进行实时补偿得到,具体建模步骤如下:The workpiece real-time modeling module of the software of the
1)在机床开始加工前,布置温度传感器7至温度测点,将核心控制器4与上位机2接好;1) Before the machine tool starts processing, arrange the
2)加工者将工件的理想尺寸输入到上位机2中作为误差计算基准,并设置允许的公差带;2) The processor inputs the ideal size of the workpiece into the
3)每加工完成一件工件,则将实测工件尺寸输入进上位机2中;3) Each time a workpiece is processed, input the measured workpiece size into the
4)上位机2根据工件尺寸的变化情况进行补偿值的输入,具体当连续m个工件的变化超过预设值时,上位机2进行计算补偿量,补偿值设置为n个尺寸超过设定预设值的工件的误差的均值或预设的固定值;4) The
5)上位机2记录温度、尺寸及补偿操作信息,储存并生成文件,文件格式如下:5) The
尺寸+温度+加补偿误差+未加补偿误差+本次补偿值+总补偿值Size + temperature + plus compensation error + uncompensated error + current compensation value + total compensation value
6)加工结束后,上位机2根据保存的文件和温度数据文件运用多目标粒子群智能算法算出新的补偿模型,并将补偿模型存储到存储芯片6中。6) After the processing is completed, the
所述温度补偿系统的全生命周期补偿模块是除上述基础建模外的扩展功能,下位机可以将机床全生命周期运转状况以及模型变更情况记录到NandFlash存储芯片6。如果使用者发现已有模型出现偏差时,可以运行工件实时建模或离线建模程序根据机床运行状况的变化建立新的模型替代原有模型,模型变更记录会存储在NandFlash存储芯片6,并作为以后建立全生命周期模型的学习样本。如果同型号机床有足够的全生命周期的状态及误差和模型修正变化数据,可通过编制的软件通过数据挖掘算法直接找出其规律并根据机床运行时间等自动切换模型。全生命周期建模方法如下:The whole life cycle compensation module of the temperature compensation system is an extension function in addition to the above basic modeling, and the lower computer can record the whole life cycle operation status of the machine tool and the model change to the
1)使用者建立机床各个特征的量化形式,所述特征包括床型、工作环境、工作温度、加工类型及使用频率;量化是指将文字描述的指标以数字形式表达出来;1) The user establishes the quantitative form of each feature of the machine tool, the features include bed type, working environment, working temperature, processing type and frequency of use; quantification refers to the numerical expression of the indicators described in text;
2)根据量化指标将不同机床聚类分析,指标相近的机床聚类为一组样本;2) Cluster analysis of different machine tools according to quantitative indicators, and cluster machine tools with similar indicators into a group of samples;
3)运用数据挖掘技术归类出一组样本的全生命周热误差变化规律并作为知识积累起来;3) Use data mining technology to classify the whole life cycle thermal error variation law of a group of samples and accumulate them as knowledge;
4)根据给定要进行热误差补偿机床的量化指标,将与工作状况最接近的学习样本机床的补偿公式导入至要进行热误差补偿机床的存储芯片6中,根据使用时间改变核心处理器计算所使用的补偿模型,实现机床全生命周期的误差补偿。4) According to the given quantitative index of the machine tool to be subjected to thermal error compensation, the compensation formula of the learning sample machine tool closest to the working condition is imported into the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710210700.7A CN107024907B (en) | 2017-03-31 | 2017-03-31 | Embedded full-life-cycle machine tool thermal error compensation system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710210700.7A CN107024907B (en) | 2017-03-31 | 2017-03-31 | Embedded full-life-cycle machine tool thermal error compensation system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107024907A CN107024907A (en) | 2017-08-08 |
CN107024907B true CN107024907B (en) | 2020-03-17 |
Family
ID=59527851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710210700.7A Active CN107024907B (en) | 2017-03-31 | 2017-03-31 | Embedded full-life-cycle machine tool thermal error compensation system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107024907B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107695775B (en) * | 2017-09-19 | 2019-06-25 | 武汉理工大学 | Heavy digital control machine tool heat error compensation control system and thermal error compensation method based on CPS |
CN108829033B (en) * | 2018-07-02 | 2020-10-30 | 湖北文理学院 | Temperature compensation method and system for numerically controlled machine tools |
CN108627268A (en) * | 2018-07-09 | 2018-10-09 | 安徽理工大学 | Numerically-controlled machine tool temperature measurement system based on Labview |
CN110568817A (en) * | 2019-09-13 | 2019-12-13 | 深圳市烨嘉为技术有限公司 | machine tool motion temperature difference compensation method based on big data analysis and prejudgment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102122146A (en) * | 2011-01-06 | 2011-07-13 | 上海交通大学 | Thermal-error real-time compensation system for high-speed precise machining and compensation method thereof |
CN103034169A (en) * | 2012-12-26 | 2013-04-10 | 西安理工大学 | Modeling and compensation method of heat error of numerical control machine tool |
CN104267667A (en) * | 2014-09-04 | 2015-01-07 | 武汉理工大学 | Embedded thermal error real-time compensation controller of numerical control machine tool |
CN105511401A (en) * | 2015-12-30 | 2016-04-20 | 青海模具制造科技有限公司 | System for measuring thermal error of precise numerically-controlled machine tool and compensating temperature |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201021959A (en) * | 2008-12-11 | 2010-06-16 | Ind Tech Res Inst | A thermal error compensation method for machine tools |
-
2017
- 2017-03-31 CN CN201710210700.7A patent/CN107024907B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102122146A (en) * | 2011-01-06 | 2011-07-13 | 上海交通大学 | Thermal-error real-time compensation system for high-speed precise machining and compensation method thereof |
CN103034169A (en) * | 2012-12-26 | 2013-04-10 | 西安理工大学 | Modeling and compensation method of heat error of numerical control machine tool |
CN104267667A (en) * | 2014-09-04 | 2015-01-07 | 武汉理工大学 | Embedded thermal error real-time compensation controller of numerical control machine tool |
CN105511401A (en) * | 2015-12-30 | 2016-04-20 | 青海模具制造科技有限公司 | System for measuring thermal error of precise numerically-controlled machine tool and compensating temperature |
Also Published As
Publication number | Publication date |
---|---|
CN107024907A (en) | 2017-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107024907B (en) | Embedded full-life-cycle machine tool thermal error compensation system and method | |
CN102736557B (en) | Numerical control machine tool error real-time compensation based on virtual instrument | |
CN101797704B (en) | Method for thermal deformation error compensation of digital control gear hobbing machine | |
CN102629121B (en) | Intelligent compensation system for geometrical and heating position errors of numerical control machine | |
CN105759718B (en) | Numerical control machining tool heat error online compensation method and system | |
CN109739182A (en) | A Spindle Thermal Error Compensation Method Insensitive to Cooling System Disturbance | |
CN103235554B (en) | A kind of lathe in machining workpiece energy consumption acquisition methods based on NC code | |
CN103576604A (en) | Dynamic real-time compensation system for positioning errors of numerical-control machine tool | |
CN103034169B (en) | Modeling and compensation method of heat error of numerical control machine tool | |
CN115562161A (en) | Tool cutting path machining error compensation method based on online monitoring | |
CN101122791A (en) | Real-time Compensation Device for Positioning Error of CNC Machine Tool | |
CN107861470A (en) | Main shaft of numerical control machine tool thermal stretching real-time error compensation method based on PMC controls | |
CN105607579B (en) | A kind of machine tooling intelligent power saving control method and system | |
CN107918357A (en) | A kind of numerical control machining center Spindle thermal error dynamic compensation method and system | |
CN103823409A (en) | Numerical machine tool machining state multi-parameter online active monitoring system and implement method thereof | |
CN102122146A (en) | Thermal-error real-time compensation system for high-speed precise machining and compensation method thereof | |
CN105397560B (en) | One kind is dry to cut chain digital control gear hobbing machine bed and workpiece method for thermal deformation error compensation | |
CN104950808B (en) | Thermal Error Compensation Method of Machine Tool Based on Reinforced Naive Bayesian Network | |
CN108614522A (en) | Numerically-controlled machine tool military service process axis system energy efficiency on-line monitoring method | |
CN1631614A (en) | A Real-time Compensator for CNC Machine Tool Errors Based on Offset of External Coordinate System of Machine Tool | |
CN118778543A (en) | A method, system and program product for intelligent control of numerical control machining process | |
CN114895627B (en) | A method for thermal error compensation of machine tools based on different regions | |
CN208945752U (en) | A thermal compensation device for an electric spindle of a CNC machine tool | |
CN102478820A (en) | Novel real-time compensation of digit control machine tool positioning error device | |
CN102478824A (en) | Real-time error compensator for numerical control machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210425 Address after: No.085, 1st building, jiaodayi village, Beilin District, Xi'an City, Shaanxi Province, 710000 Patentee after: Mei Xuesong Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28 Patentee before: XI'AN JIAOTONG University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210603 Address after: Room 1807, building 3, 311 Yanxin Road, Huishan Economic Development Zone, Wuxi City, Jiangsu Province, 214000 Patentee after: Wuxi Chaotong Intelligent Manufacturing Technology Research Institute Co.,Ltd. Address before: No.085, 1st building, jiaodayi village, Beilin District, Xi'an City, Shaanxi Province, 710000 Patentee before: Mei Xuesong |
|
TR01 | Transfer of patent right | ||
CB03 | Change of inventor or designer information |
Inventor after: Mei Xuesong Inventor after: Tao Tao Inventor after: Yan Zongzhuo Inventor after: Hou Ruisheng Inventor after: Du Hongyang Inventor after: Jiang Gedong Inventor before: Tao Tao Inventor before: Yan Zongzhuo Inventor before: Mei Xuesong Inventor before: Hou Ruisheng Inventor before: Du Hongyang Inventor before: Jiang Gedong |
|
CB03 | Change of inventor or designer information |