CN107015573A - The control method and system of electromagnetic motion platform - Google Patents
The control method and system of electromagnetic motion platform Download PDFInfo
- Publication number
- CN107015573A CN107015573A CN201710166952.4A CN201710166952A CN107015573A CN 107015573 A CN107015573 A CN 107015573A CN 201710166952 A CN201710166952 A CN 201710166952A CN 107015573 A CN107015573 A CN 107015573A
- Authority
- CN
- China
- Prior art keywords
- electromagnetic
- motion
- platform
- current
- permanent magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 187
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000003321 amplification Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 8
- 238000004590 computer program Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000036544 posture Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
本发明公开了一种电磁式运动平台的控制方法及系统,该系统包括:运动数据获取单元、位置控制单元、电流控制单元和电磁式运动平台,其中,电磁式运动平台至少包括:设置在上平台上的多个永磁铁、设置在下平台上的多个电磁线圈和设置在各个永磁铁上的位置传感器,运动数据获取单元用于获取各个永磁铁的运动数据,并将各个永磁铁的运动数据发送至位置控制单元,位置控制单元用于根据各个永磁铁的运动数据计算得到通过各个电磁线圈的电流值,并将各个电磁线圈的电流值发送至电流控制单元,电流控制单元用于根据接收到的各个电磁线圈的电流值控制通入各个电磁线圈的电流,位置传感器用于将各个永磁铁的运动位置数据反馈至位置控制单元。
The invention discloses a control method and system for an electromagnetic motion platform. The system includes: a motion data acquisition unit, a position control unit, a current control unit and an electromagnetic motion platform, wherein the electromagnetic motion platform at least includes: A plurality of permanent magnets on the platform, a plurality of electromagnetic coils arranged on the lower platform and position sensors arranged on each permanent magnet, the motion data acquisition unit is used to obtain the motion data of each permanent magnet, and transfer the motion data of each permanent magnet to Send to the position control unit, the position control unit is used to calculate the current value passing through each electromagnetic coil according to the motion data of each permanent magnet, and send the current value of each electromagnetic coil to the current control unit, and the current control unit is used to receive The current value of each electromagnetic coil controls the current passing into each electromagnetic coil, and the position sensor is used to feed back the moving position data of each permanent magnet to the position control unit.
Description
技术领域technical field
本发明涉及运动模拟体验技术领域,更具体地,涉及一种电磁式运动平台的控制方法及系统。The present invention relates to the technical field of motion simulation experience, and more specifically, to a control method and system for an electromagnetic motion platform.
背景技术Background technique
目前多自由度运动平台的控制系统的驱动源基本为伺服电机+丝杠以及直线电机这两种。伺服电机和丝杠本身重量较大,直线电机重量大,其实体轨道尺寸较长,因此以上两种驱动源无法实现多自由度运动平台的小型化和轻量化。上述两种驱动源在驱动时,均存在机械结构摩擦,机械结构摩擦容易产生噪音进而导致驱动源的寿命降低。另外,对驱动源的控制仅针对驱动执行机构(例如,电机)进行闭环反馈,对于驱动执行机构之后的传动机构(例如,电缸、气缸、传动铰链)并未进行闭环反馈,由于多自由度运动平台是和传动机构直接连接,传动机构的运动误差也会导致多自由度运动平台的运动不到位,使得控制系统的控制精度较低。At present, the driving sources of the control system of the multi-degree-of-freedom motion platform are basically two types: servo motor + lead screw and linear motor. Servo motors and lead screws are heavy, linear motors are heavy, and their physical track dimensions are long. Therefore, the above two driving sources cannot realize the miniaturization and light weight of the multi-degree-of-freedom motion platform. When the above two kinds of driving sources are driven, there is mechanical structure friction, and the mechanical structure friction is likely to generate noise, thereby reducing the service life of the driving source. In addition, the control of the driving source only performs closed-loop feedback for driving the actuator (for example, a motor), and does not perform closed-loop feedback for the transmission mechanism (for example, electric cylinder, cylinder, transmission hinge) after driving the actuator. Due to the multi-degree-of-freedom The motion platform is directly connected to the transmission mechanism, and the motion error of the transmission mechanism will also cause the motion of the multi-degree-of-freedom motion platform to be inappropriate, resulting in low control accuracy of the control system.
发明内容Contents of the invention
本发明的一个目的是提供一种电磁式运动平台的控制方法及系统的新技术方案。An object of the present invention is to provide a new technical solution for a control method and system of an electromagnetic motion platform.
根据本发明的一个方面,提供了一种电磁式运动平台的控制系统,包括:运动数据获取单元、位置控制单元、电流控制单元和电磁式运动平台,其中,所述电磁式运动平台至少包括:设置在上平台上的多个永磁铁、设置在下平台上的多个电磁线圈和设置在各个永磁铁上的位置传感器,所述运动数据获取单元用于获取所述各个永磁铁的运动数据,并将所述各个永磁铁的运动数据发送至所述位置控制单元,所述位置控制单元用于根据所述各个永磁铁的运动数据计算得到通入所述各个电磁线圈的电流的电流值,并将通入所述各个电磁线圈的电流的电流值发送至所述电流控制单元,所述电流控制单元用于根据接收到的通入所述各个电磁线圈的电流的电流值控制通入所述各个电磁线圈的电流,所述位置传感器用于将所述各个永磁铁的运动位置数据反馈至所述位置控制单元。According to one aspect of the present invention, a control system of an electromagnetic motion platform is provided, including: a motion data acquisition unit, a position control unit, a current control unit, and an electromagnetic motion platform, wherein the electromagnetic motion platform includes at least: A plurality of permanent magnets arranged on the upper platform, a plurality of electromagnetic coils arranged on the lower platform and position sensors arranged on each permanent magnet, the motion data acquisition unit is used to acquire the motion data of each permanent magnet, and Send the motion data of each permanent magnet to the position control unit, and the position control unit is used to calculate the current value of the current passed into each electromagnetic coil according to the motion data of each permanent magnet, and send The current value of the current passed into each electromagnetic coil is sent to the current control unit, and the current control unit is used to control the current value of the current passed into each electromagnetic coil according to the received current value of the current passed into each electromagnetic coil. The current of the coil, the position sensor is used to feed back the movement position data of each permanent magnet to the position control unit.
可选地,所述运动数据获取单元至少包括:接收单元和运动数据反解单元,其中,所述接收单元用于接收所述电磁式运动平台外接设备的运动指令,并根据所述运动指令得到所述电磁式运动平台的运动数据,并将所述电磁式运动平台的运动数据发送至所述运动数据反解单元,Optionally, the motion data acquisition unit at least includes: a receiving unit and a motion data inversion unit, wherein the receiving unit is used to receive motion instructions from the external device of the electromagnetic motion platform, and obtain the motion data of the electromagnetic motion platform, and send the motion data of the electromagnetic motion platform to the motion data inversion unit,
所述运动数据反解单元用于根据所述电磁式运动平台的运动数据反解得到所述各个永磁铁的运动数据。The motion data inversion unit is used to inversely analyze the motion data of the electromagnetic motion platform to obtain the motion data of each permanent magnet.
可选地,所述电磁式运动平台还包括:多个电流传感器,所述各个电磁线圈的两端均设置有电流传感器,所述电流传感器用于将通入所述各个电磁线圈的电流的实际电流值反馈至所述电流控制单元。Optionally, the electromagnetic motion platform further includes: a plurality of current sensors, current sensors are provided at both ends of each electromagnetic coil, and the current sensors are used to convert the actual The current value is fed back to the current control unit.
可选地,所述电磁式运动平台还包括:支撑部件,所述支撑部件的一端与所述上平台连接,所述支撑部件的另一端与所述下平台连接。Optionally, the electromagnetic motion platform further includes: a support component, one end of the support component is connected to the upper platform, and the other end of the support component is connected to the lower platform.
可选地,所述支撑部件至少包括:多个导向杆、法兰盘和万向节,其中,所述多个导向杆的一端固定在所述下平台上,所述导向杆的另一端与所述上平台留有间隙,所述法兰盘开设有与所述导向杆数量相同的通孔,每一个导向杆均穿过一个通孔,所述万向节的一端与所述法兰盘连接,所述万向节的另一端与所述上平台连接。Optionally, the support component at least includes: a plurality of guide rods, flanges and universal joints, wherein one end of the plurality of guide rods is fixed on the lower platform, and the other end of the guide rods is connected to the lower platform. There is a gap left on the upper platform, and the flange is provided with the same number of through holes as the guide rods, each guide rod passes through a through hole, and one end of the universal joint is connected to the flange. connected, the other end of the universal joint is connected with the upper platform.
可选地,所述支撑部件包括有三个导向杆,所述三个导向杆均匀固定在所述下平台上。Optionally, the supporting component includes three guide rods, and the three guide rods are evenly fixed on the lower platform.
可选地,所述电流控制单元至少包括:电流运算单元、电流调制单元和电流驱动放大单元。Optionally, the current control unit at least includes: a current operation unit, a current modulation unit, and a current drive amplification unit.
可选地,所述电磁式运动平台包括三个所述永磁铁和三个所述电磁线圈,其中,所述三个永磁铁均匀固定在所述上平台上,所述三个电磁线圈均匀固定在所述下平台上。Optionally, the electromagnetic moving platform includes three permanent magnets and three electromagnetic coils, wherein the three permanent magnets are evenly fixed on the upper platform, and the three electromagnetic coils are evenly fixed on the lower platform.
根据本发明的第二方面,提供了一种电磁式运动平台的控制方法,所述电磁式运动平台包括:设置在上平台上的多个永磁铁和设置在下平台上的多个电磁线圈,According to the second aspect of the present invention, there is provided a control method of an electromagnetic moving platform, the electromagnetic moving platform includes: a plurality of permanent magnets arranged on the upper platform and a plurality of electromagnetic coils arranged on the lower platform,
所述方法包括:获取所述各个永磁铁的运动数据;根据所述各个永磁铁的运动数据计算得到通入所述各个电磁线圈的电流的电流值;根据通入所述各个电磁线圈的电流的电流值控制通入所述各个电磁线圈的电流;当所述各个电磁线圈通入控制电流后,所述各个永磁铁运动至对应的位置,获取所述各个永磁铁的运动位置数据;根据获取到的所述各个永磁铁的运动位置数据,对所述计算得到的通入所述各个电磁线圈的电流进行调整。The method includes: acquiring the motion data of each permanent magnet; calculating the current value of the current passed into each electromagnetic coil according to the motion data of each permanent magnet; The current value controls the current passed into each of the electromagnetic coils; when the control current is passed into each of the electromagnetic coils, each of the permanent magnets moves to a corresponding position, and the movement position data of each of the permanent magnets is obtained; according to the acquired The moving position data of the respective permanent magnets is used to adjust the calculated currents passed into the respective electromagnetic coils.
可选地,所述获取所述各个永磁铁的运动数据,包括:接收所述电磁式运动平台外接设备的运动指令,并根据所述运动指令得到所述电磁式运动平台的运动数据;根据所述电磁式运动平台的运动数据反解得到所述各个永磁铁的运动数据。Optionally, the acquisition of the motion data of each permanent magnet includes: receiving a motion command of the external device of the electromagnetic motion platform, and obtaining the motion data of the electromagnetic motion platform according to the motion command; according to the The motion data of the above-mentioned electromagnetic motion platform is inversely resolved to obtain the motion data of each permanent magnet.
可选地,在所述各个电磁线圈通入所述控制电流后,还包括:测量通入所述各个电磁线圈的电流的实际电流值;根据所述通入所述各个电磁线圈的电流的实际电流值对通入所述各个电磁线圈的控制电流的电流值进行调整。Optionally, after the control current is supplied to each electromagnetic coil, it also includes: measuring the actual current value of the current supplied to each electromagnetic coil; according to the actual current value of the current supplied to each electromagnetic coil The current value adjusts the current value of the control current passed to the respective electromagnetic coils.
本发明提供的电磁式运动平台的控制方法及系统,通过控制流入各个电磁线圈的电流的大小产生不同强度的磁场,与对应的永磁铁相互作用产生吸力或推力,进而实现上平台的各种运动姿态,本发明采用非接触的电磁力驱动运动平台的运动,与现有技术相比,避免了机械结构之间的摩擦引起的噪音以及寿命较低的问题。另外,本发明通过在各个永磁铁上设置的位置传感器,将各个永磁铁的运动位置数据反馈至位置控制单元,实现了电磁式运动平台的闭环控制,相对于现有技术中仅对驱动机构进行闭环反馈而言,由于各个永磁铁的运动位置决定了电磁式运动平台的运动姿态,本发明是直接对电磁式运动平台的运动位置数据进行反馈,提高了电磁式运动平台的控制系统的控制精准度。The control method and system of the electromagnetic motion platform provided by the present invention generate magnetic fields of different strengths by controlling the magnitude of the current flowing into each electromagnetic coil, and interact with the corresponding permanent magnets to generate suction or thrust, thereby realizing various movements of the upper platform Attitude, the present invention uses non-contact electromagnetic force to drive the motion of the motion platform. Compared with the prior art, it avoids the problems of noise caused by friction between mechanical structures and low service life. In addition, the present invention feeds back the motion position data of each permanent magnet to the position control unit through the position sensors installed on each permanent magnet, and realizes the closed-loop control of the electromagnetic motion platform. Compared with the prior art, only the drive mechanism is In terms of closed-loop feedback, since the motion position of each permanent magnet determines the motion posture of the electromagnetic motion platform, the present invention directly feeds back the motion position data of the electromagnetic motion platform, which improves the control accuracy of the control system of the electromagnetic motion platform Spend.
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features of the present invention and advantages thereof will become apparent from the following detailed description of exemplary embodiments of the present invention with reference to the accompanying drawings.
附图说明Description of drawings
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
图1示出了根据本发明一个实施例的电磁式运动平台的控制系统的结构示意图。Fig. 1 shows a schematic structural diagram of a control system of an electromagnetic motion platform according to an embodiment of the present invention.
图2示出了根据本发明一个实施例的电磁式运动平台的结构示意图。Fig. 2 shows a schematic structural diagram of an electromagnetic motion platform according to an embodiment of the present invention.
图3示出了根据本发明一个实施例的电磁式运动平台的控制系统的另一种结构示意图。Fig. 3 shows another schematic structural diagram of the control system of the electromagnetic motion platform according to an embodiment of the present invention.
图4示出了根据本发明一个实施例的电磁式运动平台的控制方法的处理流程图。Fig. 4 shows a processing flowchart of a control method of an electromagnetic motion platform according to an embodiment of the present invention.
具体实施方式detailed description
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangements of components and steps, numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present invention unless specifically stated otherwise.
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and in no way taken as limiting the invention, its application or uses.
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered part of the description.
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other instances of the exemplary embodiment may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numbers and letters denote similar items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.
本发明提供了一种电磁式运动平台的控制系统。图1示出了根据本发明一个实施例的电磁式运动平台的控制系统的结构示意图。图2示出了根据本发明一个实施例的电磁式运动平台的结构示意图。参见图1,电磁式运动平台的控制系统100至少包括:运动数据获取单元110、位置控制单元120、电流控制单元130和电磁式运动平台140。参见图1和图2,电磁式运动平台140至少包括:上平台1410、下平台1420、多个永磁铁1430、多个电磁线圈1440和位置传感器1450,其中,多个永磁铁1430设置在上平台1410上,多个电磁线圈1440设置在下平台1420上,各个永磁铁上均设置有位置传感器1450。各个电磁线圈根据其流过的电流的大小产生不同强度的磁场,与对应的永磁铁相互作用产生吸力或推力,进而实现上平台的各种运动姿态。图1中示出的运动数据获取单元110用于获取各个永磁铁的运动数据,并将各个永磁铁的运动数据发送至位置控制单元120。位置控制单元120用于根据接收到的各个永磁铁的运动数据计算得到通入各个电磁线圈的电流的电流值,并将计算得到的通入各个电磁线圈的电流的电流值发送至电流控制单元130。电流控制单元130用于根据接收到的通入各个电磁线圈的电流的电流值控制通入各个电磁线圈的电流。设置在各个永磁铁上的位置传感器1450用于将感测得到的各个永磁铁的运动位置数据反馈至位置控制单元120。The invention provides a control system of an electromagnetic motion platform. Fig. 1 shows a schematic structural diagram of a control system of an electromagnetic motion platform according to an embodiment of the present invention. Fig. 2 shows a schematic structural diagram of an electromagnetic motion platform according to an embodiment of the present invention. Referring to FIG. 1 , the control system 100 of the electromagnetic motion platform at least includes: a motion data acquisition unit 110 , a position control unit 120 , a current control unit 130 and an electromagnetic motion platform 140 . 1 and 2, the electromagnetic motion platform 140 at least includes: an upper platform 1410, a lower platform 1420, a plurality of permanent magnets 1430, a plurality of electromagnetic coils 1440 and a position sensor 1450, wherein a plurality of permanent magnets 1430 are arranged on the upper platform On 1410, a plurality of electromagnetic coils 1440 are arranged on the lower platform 1420, and a position sensor 1450 is arranged on each permanent magnet. Each electromagnetic coil generates a magnetic field of different strength according to the magnitude of the current flowing through it, and interacts with the corresponding permanent magnet to generate suction or thrust, thereby realizing various motion postures of the upper platform. The motion data acquiring unit 110 shown in FIG. 1 is used to acquire the motion data of each permanent magnet, and send the motion data of each permanent magnet to the position control unit 120 . The position control unit 120 is used to calculate the current value of the current passing through each electromagnetic coil according to the received motion data of each permanent magnet, and send the calculated current value of the current passing through each electromagnetic coil to the current control unit 130 . The current control unit 130 is used for controlling the current passing through each electromagnetic coil according to the received current value of the current passing through each electromagnetic coil. The position sensor 1450 disposed on each permanent magnet is used to feed back the sensed motion position data of each permanent magnet to the position control unit 120 .
本发明提供的电磁式运动平台的控制系统,通过控制流入各个电磁线圈的电流的大小产生不同强度的磁场,与对应的永磁铁相互作用产生吸力或推力,进而实现上平台的各种运动姿态,本发明采用非接触的电磁力驱动运动平台的运动,与现有技术相比,避免了机械结构之间的摩擦引起的噪音以及寿命较低的问题。另外,本发明通过在各个永磁铁上设置的位置传感器,将各个永磁铁的运动位置数据反馈至位置控制单元,实现了电磁式运动平台的闭环控制,相对于现有技术中仅对驱动机构进行闭环反馈而言,由于各个永磁铁的运动位置决定了电磁式运动平台的运动姿态,本发明是直接对电磁式运动平台的运动位置数据进行反馈,提高了电磁式运动平台的控制系统的控制精准度。The control system of the electromagnetic motion platform provided by the present invention generates magnetic fields of different strengths by controlling the magnitude of the current flowing into each electromagnetic coil, and interacts with the corresponding permanent magnets to generate suction or thrust, thereby realizing various motion postures of the upper platform, The invention uses non-contact electromagnetic force to drive the motion of the motion platform, and compared with the prior art, it avoids the problems of noise caused by friction between mechanical structures and low service life. In addition, the present invention feeds back the motion position data of each permanent magnet to the position control unit through the position sensors installed on each permanent magnet, and realizes the closed-loop control of the electromagnetic motion platform. Compared with the prior art, only the drive mechanism is In terms of closed-loop feedback, since the motion position of each permanent magnet determines the motion posture of the electromagnetic motion platform, the present invention directly feeds back the motion position data of the electromagnetic motion platform, which improves the control accuracy of the control system of the electromagnetic motion platform Spend.
本发明实施例中,参见图3,运动数据获取单元110至少包括接收单元1110和运动数据反解单元1120。接收单元1110用于接收电磁式运动平台外接设备的运动指令,并根据该运动指令得到电磁式运动平台的运动数据。具体地,电磁式运动平台外接设备为一游戏手柄,用户根据游戏内容,操纵游戏手柄控制电磁式运动平台的运动,用户操纵游戏手柄发出一运动指令时,该游戏手柄将运动指令发送至电磁式运动平台的控制系统。电磁式运动平台的控制系统中的接收单元1110接收到该运动指令后,根据该运动指令得到电磁式运动平台的运动数据,例如,电磁式运动平台的加速度数据和角速度数据,并将电磁式运动平台的运动数据发送至运动数据反解单元1120。运动数据反解单元1120接收到电磁式运动平台的运动数据后,对电磁式运动平台的运动数据进行反解运算,得到各个永磁铁的运动数据,例如,各个永磁铁的位移、转动角度及角速度数据。本发明实施例涉及的电磁式运动平台的外接设备并不限于游戏手柄,还可为手环、遥控器。In the embodiment of the present invention, referring to FIG. 3 , the motion data acquisition unit 110 at least includes a receiving unit 1110 and a motion data inversion unit 1120 . The receiving unit 1110 is used to receive a motion command from an external device of the electromagnetic motion platform, and obtain motion data of the electromagnetic motion platform according to the motion command. Specifically, the external device of the electromagnetic motion platform is a game handle. The user manipulates the game handle to control the movement of the electromagnetic motion platform according to the game content. When the user manipulates the game handle to issue a motion command, the game handle sends the motion command to the electromagnetic The control system of the motion platform. After the receiving unit 1110 in the control system of the electromagnetic motion platform receives the motion instruction, the motion data of the electromagnetic motion platform is obtained according to the motion instruction, for example, the acceleration data and angular velocity data of the electromagnetic motion platform, and the electromagnetic motion The motion data of the platform is sent to the motion data inversion unit 1120 . After receiving the motion data of the electromagnetic motion platform, the motion data inversion unit 1120 performs inverse calculation on the motion data of the electromagnetic motion platform to obtain the motion data of each permanent magnet, for example, the displacement, rotation angle and angular velocity of each permanent magnet data. The external device of the electromagnetic motion platform involved in the embodiment of the present invention is not limited to a game controller, but may also be a bracelet or a remote controller.
参见图3,电磁式运动平台140还包括:多个电流传感器1460,各个电磁线圈的两端均设置有电流传感器1460。电流传感器1460用于将感测得到的通入各个电磁线圈的实际电流值反馈至电流控制单元130,以便于电流控制单元130根据接收到的通入各个电磁线圈的实际电流值与计算得到的通过各个电磁线圈的电流值进行比对,以进行电流补偿运算。Referring to FIG. 3 , the electromagnetic motion platform 140 further includes: a plurality of current sensors 1460 , and the current sensors 1460 are arranged at both ends of each electromagnetic coil. The current sensor 1460 is used to feed back the sensed actual current value passing through each electromagnetic coil to the current control unit 130, so that the current control unit 130 can pass the calculated current value according to the received actual current value passing through each electromagnetic coil and the calculated current value. The current value of each electromagnetic coil is compared to perform current compensation calculation.
本发明实施例中,电磁式运动平台140还包括:支撑部件,其中,支撑部件的一端与上平台1410连接,支撑部件的另一端与下平台1420连接。参见图2,支撑部件至少包括:多个导向杆1470a、法兰盘1470b和万向节1470c。其中,多个导向杆1470a的一端固定在下平台1420上,在电磁式运动平台处于非工作状态时,多个导向杆1470a的另一端与上平台1410留有间隙,法兰盘1470b开设有与导向杆1470a数量相同的通孔,其中,每一个导向杆均穿过一个通孔,万向节1470c的一端与法兰盘1470b连接,例如,可为螺栓连接,万向节1470c的另一端与上平台1410连接,例如,可为螺栓连接。在电磁式运动平台处于非工作状态时,法兰盘1470b放置在下平台1420上,当各个电磁线圈产生的磁场使得各个永磁铁提供上升驱动力时,上平台1410向上运动,进而上平台1410通过万向节1470c拉动法兰盘1470b沿着导向杆1470a向上滑动。本发明实施例中,导向杆的数量可为三根,并且该三根导向均匀地固定在下平台1420上,其中,导向杆的数量并不限于三根,还可为其他任意数量的导向杆。In the embodiment of the present invention, the electromagnetic motion platform 140 further includes: a support component, wherein one end of the support component is connected to the upper platform 1410 , and the other end of the support component is connected to the lower platform 1420 . Referring to FIG. 2 , the support component at least includes: a plurality of guide rods 1470a, a flange 1470b and a universal joint 1470c. Among them, one end of a plurality of guide rods 1470a is fixed on the lower platform 1420. When the electromagnetic moving platform is in a non-working state, there is a gap between the other ends of the plurality of guide rods 1470a and the upper platform 1410. Rods 1470a have the same number of through holes, wherein each guide rod passes through a through hole, and one end of the universal joint 1470c is connected with the flange 1470b, for example, can be bolted, and the other end of the universal joint 1470c is connected with the upper flange 1470b. The platform 1410 connection may, for example, be a bolted connection. When the electromagnetic moving platform is in a non-working state, the flange 1470b is placed on the lower platform 1420, and when the magnetic field generated by each electromagnetic coil makes each permanent magnet provide an upward driving force, the upper platform 1410 moves upward, and then the upper platform 1410 passes through 10,000 Pulling flange 1470b to knuckle 1470c slides upward along guide rod 1470a. In the embodiment of the present invention, the number of guide rods may be three, and the three guide rods are evenly fixed on the lower platform 1420, wherein the number of guide rods is not limited to three, and may be any other number of guide rods.
本发明实施例中,参见图3,电流控制单元130至少包括:控制单元1310和电流驱动放大单元1320。控制单元1310用于对通入各个电磁线圈的电流进行调制,来控制各个电磁线圈产生的磁场强度大小和变化率,其中,控制单元1310的调制模式有多种,如脉冲宽度调制、脉冲频率调制以及电流幅值调制,优选为脉冲频率调制。电流驱动放大单元1320用于对控制单元1310输出的电流信号进行功率放大处理。In the embodiment of the present invention, referring to FIG. 3 , the current control unit 130 at least includes: a control unit 1310 and a current drive amplification unit 1320 . The control unit 1310 is used to modulate the current passed into each electromagnetic coil to control the magnitude and rate of change of the magnetic field intensity generated by each electromagnetic coil, wherein the control unit 1310 has multiple modulation modes, such as pulse width modulation, pulse frequency modulation and current amplitude modulation, preferably pulse frequency modulation. The current driving amplifying unit 1320 is used to amplify the power of the current signal output by the control unit 1310 .
参见图2,本发明实施例中,电磁式运动平台包括有三个永磁铁和三个电磁线圈,其中,三个永磁铁均匀固定在上平台上,三个电磁线圈均匀固定在下平台上,每一个永磁铁均与一个电磁线圈相对设置。当向三个电磁线圈通入电流时,电磁线圈会对永磁铁产生推力或吸力。当任一电磁线圈产生的推力等于上平台在该点的重力分量时,上平台保持平衡,当任一电磁线圈产生的推力大于上平台在该点的重力分量时,该平台在该点具有向上的加速度,当任一电磁线圈的推力小于上平台在该点的重力分量是,该平台在该点具有向下的加速度。当三个电磁线圈都被通以合适的电流大小时,则上平台会实现向上或向下运动。由于电磁线圈和永磁铁的组合缺少约束连接,因此在上平台的运动过程中,万向节限制上平台的自由度,使上平台的旋转运动中心轴只能位于万向节的轴心。Referring to Fig. 2, in the embodiment of the present invention, the electromagnetic moving platform includes three permanent magnets and three electromagnetic coils, wherein, the three permanent magnets are evenly fixed on the upper platform, and the three electromagnetic coils are evenly fixed on the lower platform, each The permanent magnets are all arranged opposite to an electromagnetic coil. When current is applied to the three electromagnetic coils, the electromagnetic coils will generate pushing or attracting force to the permanent magnets. When the thrust generated by any electromagnetic coil is equal to the gravity component of the upper platform at this point, the upper platform remains balanced; when the thrust generated by any electromagnetic coil is greater than the gravity component of the upper platform at this point, the platform has an upward force at this point. When the thrust of any electromagnetic coil is less than the gravity component of the upper platform at this point, the platform has a downward acceleration at this point. When the three electromagnetic coils are supplied with appropriate current, the upper platform will move upward or downward. Since the combination of the electromagnetic coil and the permanent magnet lacks a constrained connection, the universal joint restricts the degree of freedom of the upper platform during the movement of the upper platform, so that the central axis of the upper platform's rotational movement can only be located at the axis of the universal joint.
基于同一发明构思,本发明还提供了一种电磁式运动平台的控制方法,其中,电磁式运动平台至少包括:设置在上平台上的多个永磁铁和设置在下平台上的多个电磁线圈。图4示出了根据本发明一个实施例的电磁式运动平台的控制方法的处理流程图。参见图4,该方法至少包括以下步骤S402至步骤S410。Based on the same inventive concept, the present invention also provides a control method of an electromagnetic moving platform, wherein the electromagnetic moving platform at least includes: a plurality of permanent magnets arranged on the upper platform and a plurality of electromagnetic coils arranged on the lower platform. Fig. 4 shows a processing flowchart of a control method of an electromagnetic motion platform according to an embodiment of the present invention. Referring to Fig. 4, the method at least includes the following steps S402 to S410.
步骤S402,获取各个永磁铁的运动数据;Step S402, acquiring motion data of each permanent magnet;
步骤S404,根据各个永磁铁的运动数据计算得到通入各个电磁线圈的电流的电流值;Step S404, calculating the current value of the current passing through each electromagnetic coil according to the motion data of each permanent magnet;
步骤S406,根据通入各个电磁线圈的电流的电流值控制通入各个电磁线圈的电流;Step S406, controlling the current passed into each electromagnetic coil according to the current value of the current passed into each electromagnetic coil;
步骤S408,当各个电磁线圈通入控制电流后,各个永磁铁运动至对应的位置,获取各个永磁铁的运动位置数据;Step S408, when each electromagnetic coil is supplied with a control current, each permanent magnet moves to a corresponding position, and the movement position data of each permanent magnet is obtained;
步骤S410,根据获取到的各个永磁铁的运动位置数据,对计算得到的通入各个电磁线圈的电流进行调整。Step S410 , according to the acquired movement position data of each permanent magnet, adjust the calculated current passing through each electromagnetic coil.
本发明实施例中,上述步骤S402具体为:接收电磁式运动平台外接设备的运动指令,并根据运动指令得到电磁式运动平台的运动数据;根据电磁式运动平台的运动数据反解得到各个永磁铁的运动数据。具体地,电磁式运动平台外接设备为一游戏手柄,用户根据游戏内容,操纵游戏手柄控制电磁式运动平台的运动,用户操纵游戏手柄发出一运动指令,根据该运动指令得到电磁式运动平台的运动数据,例如,电磁式运动平台的加速度数据和角速度数据,接着,对电磁式运动平台的运动数据进行处理,即对电磁式运动平台的运动数据进行反解运算,得到各个永磁铁的运动数据,例如,各个永磁铁的位移、转动角度及角速度数据。本发明实施例涉及的电磁式运动平台的外接设备并不限于游戏手柄,还可为手环、遥控器。In the embodiment of the present invention, the above-mentioned step S402 is specifically: receiving the movement instruction of the external equipment of the electromagnetic movement platform, and obtaining the movement data of the electromagnetic movement platform according to the movement instruction; obtaining each permanent magnet according to the movement data of the electromagnetic movement platform exercise data. Specifically, the external device of the electromagnetic motion platform is a game handle. The user manipulates the game handle to control the movement of the electromagnetic motion platform according to the game content. Data, for example, the acceleration data and angular velocity data of the electromagnetic motion platform, and then, the motion data of the electromagnetic motion platform is processed, that is, the motion data of the electromagnetic motion platform is reversely calculated to obtain the motion data of each permanent magnet, For example, the displacement, rotation angle and angular velocity data of each permanent magnet. The external device of the electromagnetic motion platform involved in the embodiment of the present invention is not limited to a game controller, but may also be a bracelet or a remote controller.
本发明实施例中,当各个电磁线圈通入控制电流后,该方法还包括:测量通入各个电磁线圈的电流的实际电流值;根据通入各个电磁线圈的电流的实际电流值对通入各个电磁线圈的控制电流的电流值进行调整。具体地,根据接收到的通入各个电磁线圈的实际电流值与计算得到的通入各个电磁线圈的电流值进行比对,以进行电流补偿运算。In the embodiment of the present invention, after the control current is passed into each electromagnetic coil, the method further includes: measuring the actual current value of the current passed into each electromagnetic coil; The current value of the control current of the electromagnetic coil is adjusted. Specifically, the current compensation operation is performed by comparing the received actual current value passing through each electromagnetic coil with the calculated current value passing through each electromagnetic coil.
本发明可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。The present invention can be a system, method and/or computer program product. A computer program product may include a computer readable storage medium having computer readable program instructions thereon for causing a processor to implement various aspects of the present invention.
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。A computer readable storage medium may be a tangible device that can retain and store instructions for use by an instruction execution device. A computer readable storage medium may be, for example, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of computer-readable storage media include: portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or flash memory), static random access memory (SRAM), compact disc read only memory (CD-ROM), digital versatile disc (DVD), memory stick, floppy disk, mechanically encoded device, such as a printer with instructions stored thereon A hole card or a raised structure in a groove, and any suitable combination of the above. As used herein, computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (e.g., pulses of light through fiber optic cables), or transmitted electrical signals.
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。Computer-readable program instructions described herein may be downloaded from a computer-readable storage medium to a respective computing/processing device, or downloaded to an external computer or external storage device over a network, such as the Internet, a local area network, a wide area network, and/or a wireless network. The network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers. A network adapter card or a network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage in a computer-readable storage medium in each computing/processing device .
用于执行本发明操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。Computer program instructions for performing operations of the present invention may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or Source or object code written in any combination, including object-oriented programming languages—such as Smalltalk, C++, etc., and conventional procedural programming languages—such as the “C” language or similar programming languages. Computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server implement. In cases involving a remote computer, the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as via the Internet using an Internet service provider). connect). In some embodiments, an electronic circuit, such as a programmable logic circuit, field programmable gate array (FPGA), or programmable logic array (PLA), can be customized by utilizing state information of computer-readable program instructions, which can Various aspects of the invention are implemented by executing computer readable program instructions.
这里参照根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本发明的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It should be understood that each block of the flowcharts and/or block diagrams, and combinations of blocks in the flowcharts and/or block diagrams, can be implemented by computer-readable program instructions.
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。These computer-readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine such that when executed by the processor of the computer or other programmable data processing apparatus , producing an apparatus for realizing the functions/actions specified in one or more blocks in the flowchart and/or block diagram. These computer-readable program instructions can also be stored in a computer-readable storage medium, and these instructions cause computers, programmable data processing devices and/or other devices to work in a specific way, so that the computer-readable medium storing instructions includes An article of manufacture comprising instructions for implementing various aspects of the functions/acts specified in one or more blocks in flowcharts and/or block diagrams.
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。It is also possible to load computer-readable program instructions into a computer, other programmable data processing device, or other equipment, so that a series of operational steps are performed on the computer, other programmable data processing device, or other equipment to produce a computer-implemented process , so that instructions executed on computers, other programmable data processing devices, or other devices implement the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.
附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in a flowchart or block diagram may represent a module, a portion of a program segment, or an instruction that includes one or more Executable instructions. In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions. It is well known to those skilled in the art that implementation by means of hardware, implementation by means of software, and implementation by a combination of software and hardware are all equivalent.
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。Having described various embodiments of the present invention, the foregoing description is exemplary, not exhaustive, and is not limited to the disclosed embodiments. Many modifications and alterations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein is chosen to best explain the principle of each embodiment, practical application or technical improvement in the market, or to enable other ordinary skilled in the art to understand each embodiment disclosed herein. The scope of the invention is defined by the appended claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710166952.4A CN107015573B (en) | 2017-03-20 | 2017-03-20 | Control method and system for electromagnetic motion platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710166952.4A CN107015573B (en) | 2017-03-20 | 2017-03-20 | Control method and system for electromagnetic motion platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107015573A true CN107015573A (en) | 2017-08-04 |
CN107015573B CN107015573B (en) | 2020-05-29 |
Family
ID=59440053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710166952.4A Active CN107015573B (en) | 2017-03-20 | 2017-03-20 | Control method and system for electromagnetic motion platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107015573B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110138309A (en) * | 2019-04-23 | 2019-08-16 | 宁波高悦精密机械有限公司 | A kind of control system of servo-drive electric cylinders |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0085745A2 (en) * | 1982-02-09 | 1983-08-17 | Kabushiki Kaisha Toshiba | Fine rotation mechanism |
JPH09261805A (en) * | 1996-03-19 | 1997-10-03 | Yaskawa Electric Corp | Magnetic levitating actuator |
JP2004516597A (en) * | 2000-12-20 | 2004-06-03 | シーゲイト テクノロジー エルエルシー | Self-aligning magnetic latch |
US6753131B1 (en) * | 1996-07-22 | 2004-06-22 | President And Fellows Of Harvard College | Transparent elastomeric, contact-mode photolithography mask, sensor, and wavefront engineering element |
EP0963572B1 (en) * | 1997-12-29 | 2004-09-29 | ASML Netherlands B.V. | Positioning device having three coil systems mutually enclosing angles of 120 degrees, and lithographic device comprising such a positioning device |
CN1655435A (en) * | 2005-02-06 | 2005-08-17 | 宁波天明电子股份有限公司 | Mobile magnetic levitation system |
CN101004864A (en) * | 2007-01-24 | 2007-07-25 | 李椒良 | Magnetic suspension balanced autokinetic effect platform for simulating driving motor vehicle |
CN101158815A (en) * | 2007-08-31 | 2008-04-09 | 上海微电子装备有限公司 | Air-float magnetic controlled precision movement platform |
JP2008211901A (en) * | 2007-02-26 | 2008-09-11 | Tokyo Univ Of Agriculture & Technology | Three-dimensional magnetic levitation device and three-dimensional levitation method of permanent magnet |
JP4623271B2 (en) * | 2004-08-27 | 2011-02-02 | 株式会社安川電機 | Electromagnetic actuator drive control device and electromagnetic actuator including the same |
CN202258005U (en) * | 2011-09-22 | 2012-05-30 | 西安航美工程技术开发有限公司 | Electromagnetic type motion platform |
CN103411624A (en) * | 2013-07-22 | 2013-11-27 | 复旦大学 | Calibration method and calibration system, based on micro-motion stage, for magnetic field source of magnetic tracking system |
CN204334384U (en) * | 2015-01-23 | 2015-05-13 | 上海新纪元机器人有限公司 | Magnetic levitation transfer device and magnetic levitation transfer system comprising the magnetic levitation transfer device |
JP2015142501A (en) * | 2014-01-30 | 2015-08-03 | 有限会社アーミック | Magnetic floating movement device |
CN204546084U (en) * | 2015-03-24 | 2015-08-12 | 沈阳工业大学 | Plane milling and boring machine magnetic suspension platform |
-
2017
- 2017-03-20 CN CN201710166952.4A patent/CN107015573B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0085745A2 (en) * | 1982-02-09 | 1983-08-17 | Kabushiki Kaisha Toshiba | Fine rotation mechanism |
JPH09261805A (en) * | 1996-03-19 | 1997-10-03 | Yaskawa Electric Corp | Magnetic levitating actuator |
US6753131B1 (en) * | 1996-07-22 | 2004-06-22 | President And Fellows Of Harvard College | Transparent elastomeric, contact-mode photolithography mask, sensor, and wavefront engineering element |
EP0963572B1 (en) * | 1997-12-29 | 2004-09-29 | ASML Netherlands B.V. | Positioning device having three coil systems mutually enclosing angles of 120 degrees, and lithographic device comprising such a positioning device |
JP2004516597A (en) * | 2000-12-20 | 2004-06-03 | シーゲイト テクノロジー エルエルシー | Self-aligning magnetic latch |
JP4623271B2 (en) * | 2004-08-27 | 2011-02-02 | 株式会社安川電機 | Electromagnetic actuator drive control device and electromagnetic actuator including the same |
CN1655435A (en) * | 2005-02-06 | 2005-08-17 | 宁波天明电子股份有限公司 | Mobile magnetic levitation system |
CN101004864A (en) * | 2007-01-24 | 2007-07-25 | 李椒良 | Magnetic suspension balanced autokinetic effect platform for simulating driving motor vehicle |
JP2008211901A (en) * | 2007-02-26 | 2008-09-11 | Tokyo Univ Of Agriculture & Technology | Three-dimensional magnetic levitation device and three-dimensional levitation method of permanent magnet |
CN101158815A (en) * | 2007-08-31 | 2008-04-09 | 上海微电子装备有限公司 | Air-float magnetic controlled precision movement platform |
CN202258005U (en) * | 2011-09-22 | 2012-05-30 | 西安航美工程技术开发有限公司 | Electromagnetic type motion platform |
CN103411624A (en) * | 2013-07-22 | 2013-11-27 | 复旦大学 | Calibration method and calibration system, based on micro-motion stage, for magnetic field source of magnetic tracking system |
JP2015142501A (en) * | 2014-01-30 | 2015-08-03 | 有限会社アーミック | Magnetic floating movement device |
CN204334384U (en) * | 2015-01-23 | 2015-05-13 | 上海新纪元机器人有限公司 | Magnetic levitation transfer device and magnetic levitation transfer system comprising the magnetic levitation transfer device |
CN204546084U (en) * | 2015-03-24 | 2015-08-12 | 沈阳工业大学 | Plane milling and boring machine magnetic suspension platform |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110138309A (en) * | 2019-04-23 | 2019-08-16 | 宁波高悦精密机械有限公司 | A kind of control system of servo-drive electric cylinders |
Also Published As
Publication number | Publication date |
---|---|
CN107015573B (en) | 2020-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6687621B2 (en) | 3D printer | |
Chen et al. | Adaptive robust precision motion control of linear motors with integrated compensation of nonlinearities and bearing flexible modes | |
Hu et al. | Adaptive robust nonlinear feedback control of chaos in PMSM system with modeling uncertainty | |
KR20160114613A (en) | Direct drive motor for robotic finger | |
Chang et al. | Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements | |
Hanson et al. | Self-sensing applications for electromagnetic actuators | |
CN105388914B (en) | Position control apparatus | |
Lund et al. | High-bandwidth active impedance control of the proprioceptive actuator design in dynamic compliant robotics | |
Yousefi et al. | Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor | |
Choi | Development of open-source motor controller framework for robotic applications | |
Katsura et al. | Absolute stabilization of multimass resonant system by phase-lead compensator based on disturbance observer | |
CN107015573A (en) | The control method and system of electromagnetic motion platform | |
Vassileva et al. | Sensorless torque control for a robot with harmonic drive reducers | |
Bachmayer et al. | Flatness-based control of a horizontally moving erected beam with a point mass | |
Chong et al. | Practical and robust control for precision motion: AR‐CM NCTF control of a linear motion mechanism with friction characteristics | |
CN116061176A (en) | Motion compensation method, motion compensation device, electronic equipment and storage medium | |
CN107506024B (en) | Control method, device and system for four-degree-of-freedom series-parallel motion platform | |
KR102558850B1 (en) | motor drive unit | |
KR20190047266A (en) | Performance evaluation apparatus and method for linear axis actuator | |
Ciliz et al. | Comparative experiments with a multiple model based adaptive controller for a SCARA type direct drive manipulator | |
US11404980B2 (en) | Control loading with slotted motor | |
Paudel et al. | Dynamic electromechanical eddy current force modeling | |
Zhao | Smart knob integrated by artificial intelligence–based green manufacturing model for sustainable environment | |
Mirlenko | Direct force control of AMB-rotor system | |
Chi et al. | An observer-based active vibration isolation system using the voice-coil actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201014 Address after: 261031 north of Yuqing street, east of Dongming Road, high tech Zone, Weifang City, Shandong Province (Room 502, Geer electronic office building) Patentee after: GoerTek Optical Technology Co.,Ltd. Address before: 266104 Laoshan Qingdao District North House Street investment service center room, Room 308, Shandong Patentee before: GOERTEK TECHNOLOGY Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221125 Address after: 266104 No. 500, Songling Road, Laoshan District, Qingdao, Shandong Patentee after: GOERTEK TECHNOLOGY Co.,Ltd. Address before: 261031 north of Yuqing street, east of Dongming Road, high tech Zone, Weifang City, Shandong Province (Room 502, Geer electronics office building) Patentee before: GoerTek Optical Technology Co.,Ltd. |
|
TR01 | Transfer of patent right |