CN107012147A - A kind of arid and/or high salt evoked promoter SlWRKY8P and its application from tomato - Google Patents
A kind of arid and/or high salt evoked promoter SlWRKY8P and its application from tomato Download PDFInfo
- Publication number
- CN107012147A CN107012147A CN201710287378.8A CN201710287378A CN107012147A CN 107012147 A CN107012147 A CN 107012147A CN 201710287378 A CN201710287378 A CN 201710287378A CN 107012147 A CN107012147 A CN 107012147A
- Authority
- CN
- China
- Prior art keywords
- tomato
- promoter
- nucleotide sequence
- slwrky8p
- s1wrky8p
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000007688 Lycopersicon esculentum Nutrition 0.000 title claims abstract description 70
- 150000003839 salts Chemical class 0.000 title claims abstract description 15
- 240000003768 Solanum lycopersicum Species 0.000 title abstract description 66
- 230000000763 evoking effect Effects 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 58
- 230000014509 gene expression Effects 0.000 claims abstract description 28
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 26
- 239000002773 nucleotide Substances 0.000 claims abstract description 25
- 230000009261 transgenic effect Effects 0.000 claims abstract description 20
- 230000001939 inductive effect Effects 0.000 claims abstract description 17
- 239000013598 vector Substances 0.000 claims description 28
- 230000035882 stress Effects 0.000 claims description 24
- 241000588724 Escherichia coli Species 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 12
- 230000003321 amplification Effects 0.000 claims description 7
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 6
- 102000004190 Enzymes Human genes 0.000 claims description 5
- 108090000790 Enzymes Proteins 0.000 claims description 5
- 244000005700 microbiome Species 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 241000219194 Arabidopsis Species 0.000 claims description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 3
- 235000007164 Oryza sativa Nutrition 0.000 claims description 3
- 235000009566 rice Nutrition 0.000 claims description 3
- 241000227653 Lycopersicon Species 0.000 claims 4
- 244000061176 Nicotiana tabacum Species 0.000 claims 1
- 240000007594 Oryza sativa Species 0.000 claims 1
- 230000024346 drought recovery Effects 0.000 claims 1
- 230000015784 hyperosmotic salinity response Effects 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 abstract description 37
- 108020004414 DNA Proteins 0.000 abstract description 29
- 239000013604 expression vector Substances 0.000 abstract description 9
- 102000053602 DNA Human genes 0.000 abstract description 8
- 238000010353 genetic engineering Methods 0.000 abstract description 4
- 230000001737 promoting effect Effects 0.000 abstract description 4
- 108010060309 Glucuronidase Proteins 0.000 description 23
- 239000000243 solution Substances 0.000 description 23
- 102000053187 Glucuronidase Human genes 0.000 description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 14
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 13
- 229930195725 Mannitol Natural products 0.000 description 13
- 239000012634 fragment Substances 0.000 description 13
- 239000000594 mannitol Substances 0.000 description 13
- 235000010355 mannitol Nutrition 0.000 description 13
- 239000002609 medium Substances 0.000 description 13
- 230000001580 bacterial effect Effects 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- 238000010186 staining Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- OOYGSFOGFJDDHP-KMCOLRRFSA-N kanamycin A sulfate Chemical compound OS(O)(=O)=O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N OOYGSFOGFJDDHP-KMCOLRRFSA-N 0.000 description 8
- 229960002064 kanamycin sulfate Drugs 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000012163 sequencing technique Methods 0.000 description 8
- 238000001179 sorption measurement Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- 241000589158 Agrobacterium Species 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 238000004042 decolorization Methods 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 108091062157 Cis-regulatory element Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 108700005075 Regulator Genes Proteins 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 239000013599 cloning vector Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012149 elution buffer Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 108091032955 Bacterial small RNA Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 239000012148 binding buffer Substances 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000001744 histochemical effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- JXCKZXHCJOVIAV-UHFFFAOYSA-N 6-[(5-bromo-4-chloro-1h-indol-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid;cyclohexanamine Chemical compound [NH3+]C1CCCCC1.O1C(C([O-])=O)C(O)C(O)C(O)C1OC1=CNC2=CC=C(Br)C(Cl)=C12 JXCKZXHCJOVIAV-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- FAIXYKHYOGVFKA-UHFFFAOYSA-N Kinetin Natural products N=1C=NC=2N=CNC=2C=1N(C)C1=CC=CO1 FAIXYKHYOGVFKA-UHFFFAOYSA-N 0.000 description 2
- 241000208125 Nicotiana Species 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 108700001094 Plant Genes Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- QANMHLXAZMSUEX-UHFFFAOYSA-N kinetin Chemical compound N=1C=NC=2N=CNC=2C=1NCC1=CC=CO1 QANMHLXAZMSUEX-UHFFFAOYSA-N 0.000 description 2
- 229960001669 kinetin Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- -1 potassium ferricyanide Chemical compound 0.000 description 2
- 239000000276 potassium ferrocyanide Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 1
- PDOGCHRAEBICEX-UHFFFAOYSA-N 2-(2,4-dichlorophenoxy)acetic acid Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl.OC(=O)COC1=CC=C(Cl)C=C1Cl PDOGCHRAEBICEX-UHFFFAOYSA-N 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- JIGDSASYSWXNAU-UHFFFAOYSA-N N1C(=CC2=CC=CC=C12)CC(=O)O.N1C(=CC2=CC=CC=C12)CC(=O)O Chemical compound N1C(=CC2=CC=CC=C12)CC(=O)O.N1C(=CC2=CC=CC=C12)CC(=O)O JIGDSASYSWXNAU-UHFFFAOYSA-N 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000004790 biotic stress Effects 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 239000012881 co-culture medium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000008641 drought stress Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 230000001632 homeopathic effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- IQUFIVQRGAZYMZ-UHFFFAOYSA-N n-benzyl-7h-purin-6-amine Chemical compound N=1C=NC=2N=CNC=2C=1NCC1=CC=CC=C1.N=1C=NC=2N=CNC=2C=1NCC1=CC=CC=C1 IQUFIVQRGAZYMZ-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种来源于番茄的干旱和/或高盐诱导启动子SlWRKY8P及其应用,属于生物技术和植物基因工程领域,所述启动子SlWRKY8P的核苷酸序列为(a)或(b)或(c)所示;其中(a)具有SEQ ID NO:1所示的核苷酸序列;(b)为与SEQ ID NO:1所示核苷酸序列具有75%以上一致性,且具有启动子功能的DNA分子;(c)为在高严谨条件下与(a)或(b)所述的核苷酸序列杂交且具有启动子功能的DNA分子。本发明的SlWRKY8P可作为构建植物表达载体的元件,将其连接在目的基因之前,使目的基因的表达受干旱和/或高盐诱导。因此,本发明提供的启动子SlWRKY8P通过启动目的基因在干旱和/或高盐胁迫下的高表达,对提高转基因植物对干旱和/或高盐的耐受性具有重要意义。
The invention discloses a tomato-derived drought and/or high-salt inducible promoter S1WRKY8P and its application, belonging to the fields of biotechnology and plant genetic engineering. The nucleotide sequence of the promoter S1WRKY8P is (a) or (b) ) or (c); wherein (a) has the nucleotide sequence shown in SEQ ID NO:1; (b) has more than 75% identity with the nucleotide sequence shown in SEQ ID NO:1, and A DNA molecule with a promoter function; (c) is a DNA molecule that hybridizes to the nucleotide sequence described in (a) or (b) under high stringency conditions and has a promoter function. The SlWRKY8P of the present invention can be used as an element for constructing a plant expression vector, which is connected before the target gene, so that the expression of the target gene is induced by drought and/or high salt. Therefore, the promoter S1WRKY8P provided by the present invention is of great significance for improving the tolerance of transgenic plants to drought and/or high salt by promoting the high expression of the target gene under drought and/or high salt stress.
Description
技术领域technical field
本发明涉及生物技术和植物基因工程领域,具体涉及一种来源于番茄的干旱和/或高盐诱导启动子SlWRKY8P及其应用,该启动子能够驱动目的基因在干旱和/或高盐胁迫条件下在植物中表达。The present invention relates to the fields of biotechnology and plant genetic engineering, in particular to a tomato-derived drought and/or high-salt inducible promoter SlWRKY8P and applications thereof, which can drive target genes under drought and/or high-salt stress conditions expressed in plants.
背景技术Background technique
我国是世界三大番茄种植区域之一,出口占世界贸易量30%,而我国的番茄种植地主要分布在新疆、内蒙古和甘肃(马贞,2013)。近年来由于该类地区生态环境日益恶化和极端天气频发,如干旱、高温、土地盐碱化和沙漠化等逆境胁迫,严重影响了番茄的种植与生产,进而给番茄生产造成了重大损失(李景富,2011)。因此,培育和推广抗逆品种是保证番茄稳产高产的有效途。利用植物自身的抗逆基因,通过常规育种和分子标记辅助育种方法可以培育抗逆新品种,然而,抗性基因在种属间的利用具有一定的局限性,比如说水稻的抗逆基因就不能在番茄中应用。转基因工程技术的出现克服上述局限,为作物抗逆育种开辟一条新途径。my country is one of the three major tomato growing regions in the world, and exports account for 30% of the world's trade volume, while my country's tomato planting areas are mainly distributed in Xinjiang, Inner Mongolia and Gansu (Ma Zhen, 2013). In recent years, due to the deteriorating ecological environment and frequent occurrence of extreme weather in such areas, such as adversity stress such as drought, high temperature, land salinization and desertification, the planting and production of tomatoes have been seriously affected, which in turn has caused major losses to tomato production (Li Jingfu , 2011). Therefore, cultivating and promoting stress-resistant varieties is an effective way to ensure stable and high yield of tomato. Using the stress-resistant genes of plants themselves, new stress-resistant varieties can be bred through conventional breeding and molecular marker-assisted breeding methods. However, the use of resistance genes between species has certain limitations. For example, the stress-resistant genes of rice cannot Applied in tomato. The emergence of transgenic engineering technology overcomes the above-mentioned limitations and opens up a new way for crop stress-resistant breeding.
植物基因调控主要是在转录水平上进行的,受多种顺式作用元件和反式作用因子的相互协调。植物基因启动子是重要的顺式作用元件。它是位于结构基因5’端上游区域调控基因转录的一段DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合,确保转录精确而有效地起始,是转录调控的中心,根据基因的表达情况,可将启动子分为两类:组成型启动子和特异性启动子。组成型启动子能在所有细胞、任何时候进行转录;特异性启动子又可分为组织特异性启动子和诱导型启动子,诱导型启动子平时不启动转录或转录活性很低,但在某些特定的逆境信号刺激下,转录活性能够显著地提高。在转基因植物中,组成型启动子持续过量地表达转化的外源基因会阻碍植物的生长并且减少其产量(Kasuga et al,1999;Karaba et al,2007),因为外源基因的过量表达往往会竞争植物在正常生长条件下需要的能量并且阻碍蛋白质或者RNA的合成(Rai et al.,2009)。因此,培育抗逆作物新品种最好使用逆境诱导的植物启动子,使外源基因只在胁迫的情况下才大量表达,这样不仅会获得目的产物、达到预定目标,而且也不会产生副作用。Plant gene regulation is mainly carried out at the transcriptional level, which is coordinated by a variety of cis-acting elements and trans-acting factors. Plant gene promoters are important cis-acting elements. It is a DNA sequence located in the upstream region of the 5' end of the structural gene to regulate gene transcription. It can activate RNA polymerase to accurately combine with template DNA to ensure accurate and efficient transcription initiation. It is the center of transcription regulation. According to the gene Promoters can be divided into two categories: constitutive promoters and specific promoters. Constitutive promoters can be transcribed in all cells at any time; specific promoters can be divided into tissue-specific promoters and inducible promoters. Inducible promoters usually do not initiate transcription or have very low transcriptional activity, but in a certain Under the stimulation of some specific stress signals, the transcriptional activity can be significantly increased. In transgenic plants, persistent overexpression of transformed foreign genes by constitutive promoters can stunt plant growth and reduce yield (Kasuga et al, 1999; Karaba et al, 2007), because overexpression of foreign genes tends to Competes for energy needed by plants under normal growth conditions and hinders protein or RNA synthesis (Rai et al., 2009). Therefore, it is best to use stress-induced plant promoters to cultivate new varieties of stress-resistant crops, so that foreign genes can be expressed in large quantities only under stress.
目前能应用于番茄转基因抗逆研究的诱导型启动子仍然很少,对于新的相关逆境诱导启动子的发现、克隆、顺势作用元件分析仍然是今后研究的重点,将功能明确且高效的逆境诱导启动子成功应用到转基因植物中调控抗逆基因的表达是植物抗逆基因工程的研究方向。目前研究表明,WRKY家族中逆境相关基因往往对多种逆境胁迫响应,这大部分是由于该类基因启动子上含有多种逆境胁迫相关的顺式作用元件(Eulgem et al.,2007)。我们在番茄中的研究发现,番茄中存在81个SlWRKY基因,并通过基因芯片和实时荧光定量PCR分析鉴定出了其中的27个SlWRKY基因分别受到6种不同的生物逆境(病原菌)和非生物逆境(干旱、高盐)的诱导表达(Huang et al.,2012)。因此通过对上述逆境相关的WRKY家族基因启动子的研究可以得到多种与胁迫相关的关键DNA片段和顺式作用元件,对构建有效的逆境诱导型启动子有重要意义。At present, there are still few inducible promoters that can be applied to the research of tomato transgenic stress resistance. The discovery, cloning, and analysis of homeopathic elements of new related stress-inducible promoters are still the focus of future research. The successful application of promoters in transgenic plants to regulate the expression of stress-resistant genes is the research direction of plant stress-resistant genetic engineering. Current studies have shown that stress-related genes in the WRKY family often respond to a variety of stresses, mostly because the promoters of these genes contain a variety of stress-related cis-acting elements (Eulgem et al., 2007). Our research in tomato found that there are 81 SlWRKY genes in tomato, and through gene chip and real-time fluorescent quantitative PCR analysis, we identified 27 SlWRKY genes were affected by 6 different biotic stresses (pathogenic bacteria) and abiotic stresses respectively (drought, high salinity) induced expression (Huang et al., 2012). Therefore, through the study of the above stress-related WRKY family gene promoters, a variety of stress-related key DNA fragments and cis-acting elements can be obtained, which is of great significance for the construction of effective stress-inducible promoters.
为此,本发明人经过长期研究,发现了一个来源于番茄的干旱和/或高盐诱导的启动子SlWRKY8P,在植物基因工程改造中具有良好的应用前景。Therefore, after long-term research, the present inventors have discovered a drought and/or high-salt-induced promoter SlWRKY8P derived from tomato, which has a good application prospect in plant genetic engineering.
参考文献references
1.马贞.新疆番茄产业发展问题研究.吉林大学,20131. Ma Zhen. Research on Xinjiang Tomato Industry Development. Jilin University, 2013
2.李景富.中国番茄育种学.中国农业出版社,20112. Li Jingfu. Tomato Breeding in China. China Agricultural Press, 2011
3.Kasuga M,Liu Q,Miura S,et al.Improving plant drought,salt,andfreezing tolerance by gene transfer of a single stress-inducibletranscription factor.[J].Nature Biotechnology,1999,17(3):287.3. Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. [J]. Nature Biotechnology, 1999,17(3):287.
4.Karaba A,Dixit S,Greco R,et al.Improvement of water use efficiencyin rice by expression of HARDY,an Arabidopsis drought and salt tolerancegene.[J].Proceedings of the National Academy of Sciences of the United Statesof America,2007,104(39):15270.4. Karaba A, Dixit S, Greco R, et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007 , 104(39):15270.
5.Rai M,He C,Wu R.Comparative functional analysis of three abioticstress-inducible promoters in transgenic rice[J].Transgenic Research,2009,18(5):787-799.5. Rai M, He C, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice[J].Transgenic Research,2009,18(5):787-799.
6.Eulgem T,Somssich I E.Networks of WRKY transcription factors indefense signaling.Current Opinion in Plant Biology,2007,10(4):366-3716. Eulgem T, Somssich I E. Networks of WRKY transcription factors indefense signaling. Current Opinion in Plant Biology, 2007, 10(4): 366-371
7.Huang S,Gao Y,Liu J,et al.Genome-wide analysis of WRKYtranscription factors in Solanum lycopersicum.Molecular Genetics andGenomics,2012,287(6):495-5137. Huang S, Gao Y, Liu J, et al. Genome-wide analysis of WRKYtranscription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 2012, 287(6): 495-513
发明内容Contents of the invention
本发明的发明目的在于:提供一种番茄干旱和/或高盐诱导的启动子SlWRKY8P及其应用。本发明的SlWRKY8P对通过启动目的基因在干旱和/或高盐胁迫下的高表达,来提高转基因植物对干旱和/或高盐的耐受性,具有重要意义。The object of the present invention is to provide a tomato drought and/or high-salt-induced promoter S1WRKY8P and its application. The SlWRKY8P of the present invention is of great significance to improving the tolerance of transgenic plants to drought and/or high salt by promoting the high expression of the target gene under drought and/or high salt stress.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种诱导启动子SlWRKY8P,其核苷酸序列包括如下(a)或(b)或(c)的序列:A kind of inducible promoter S1WRKY8P, its nucleotide sequence comprises following (a) or (b) or (c) sequence:
(a)具有SEQ ID NO:1所示的核苷酸序列;或(a) has the nucleotide sequence shown in SEQ ID NO: 1; or
(b)与a)限定的核苷酸序列具有75%以上一致性,且具有启动子功能的DNA分子;或(b) A DNA molecule having more than 75% identity with the nucleotide sequence defined in a) and having a promoter function; or
(c)在高严谨条件下与(a)或(b)限定的核苷酸序列杂交且具有启动子功能的DNA分子。(c) A DNA molecule that hybridizes to the nucleotide sequence defined in (a) or (b) under high stringency conditions and has a promoter function.
一种包含所述DNA分子的表达盒。An expression cassette comprising said DNA molecule.
一种包含所述表达盒的重组载体,所述重组载体优选为pBI121K-SlWRKY8P。所述重组载体为双元载体、共合载体。A recombinant vector comprising the expression cassette, the recombinant vector is preferably pBI121K-SlWRKY8P. The recombination vector is a binary vector or a joint vector.
一种包含所述重组载体的重组微生物。A recombinant microorganism comprising the recombinant vector.
一种包含所述重组载体的转基因细胞系,所述重组微生物优选为大肠杆菌或根癌农杆菌EHA105。A transgenic cell line comprising the recombinant vector, the recombinant microorganism is preferably Escherichia coli or Agrobacterium tumefaciens EHA105.
一种引物对,所述引物对用于扩增上述诱导启动子,所述引物对为:A primer pair, the primer pair is used to amplify the above-mentioned inducible promoter, and the primer pair is:
正向引物:5’-GGTACCAAATTCATTTAGCGTTGCAT-3’;Forward primer: 5'-GGTACCAAATTCATTTAGCGTTGCAT-3';
反向引物:5’-GGATCCCTCCACAGCCATATTATAGTAAC-3’。Reverse primer: 5'-GGATCCCTCACACAGCCATATTATAGTAAC-3'.
一种所述诱导启动子SlWRKY8P在植物中表达的应用。An application of the inducible promoter S1WRKY8P expressed in plants.
一种所述诱导启动子SlWRKY8P在干旱和/或高盐诱导下启动目的基因在植物中表达的应用。An application of the inducible promoter S1WRKY8P to promote the expression of a target gene in plants under drought and/or high salt induction.
所述植物为双子叶植物。The plant is a dicotyledonous plant.
所述双子叶植物为番茄、拟南芥或烟草;所述目的基因优选为耐旱、耐盐抗逆基因。The dicotyledonous plant is tomato, Arabidopsis or tobacco; the target gene is preferably a drought-tolerant, salt-tolerant and stress-resistant gene.
本发明还公开了一种提取、扩增番茄诱导启动子SlWRKY8P的PCR方法,包括以下步骤:The present invention also discloses a PCR method for extracting and amplifying the tomato inducible promoter S1WRKY8P, comprising the following steps:
1)提取番茄AC+的基因组DNA;1) extracting the genomic DNA of tomato AC + ;
2)以番茄AC+的基因组DNA为模板,使用引物,利用高保真酶PrimeSTAR HS,扩增SlWRKY8P启动子;2) using the genomic DNA of tomato AC + as a template, using primers, and using the high-fidelity enzyme PrimeSTAR HS to amplify the SlWRKY8P promoter;
其中,扩增总体积50μL,其中正向引物1μL,反向引物1μL,DNA模板1μL,PrimeSTARHS 25μL,ddH2O 22μL。扩增程序为:98℃10秒,55℃5秒,72℃5秒,30个循环;Among them, the total volume of amplification is 50 μL, including 1 μL of forward primer, 1 μL of reverse primer, 1 μL of DNA template, 25 μL of PrimeSTARHS, and 22 μL of ddH 2 O. The amplification program is: 98°C for 10 seconds, 55°C for 5 seconds, 72°C for 5 seconds, 30 cycles;
所述引物为:The primers are:
正向引物:5’-GGTACCAAATTCATTTAGCGTTGCAT-3’;Forward primer: 5'-GGTACCAAATTCATTTAGCGTTGCAT-3';
反向引物:5’-GGATCCCTCCACAGCCATATTATAGTAAC-3’。Reverse primer: 5'-GGATCCCTCACACAGCCATATTATAGTAAC-3'.
为实现上述目的,本发明提供了一种番茄干旱和/或高盐诱导的启动子SlWRKY8P及其应用,本发明中的启动子,名称为SlWRKY8P,来源于番茄,是如下a)、b)或c)的DNA分子:a)核苷酸序列是序列表SEQ ID No.1的DNA分子;b)与a)限定的核苷酸序列具有75%或75%以上一致性,且具有启动子功能的DNA分子;c)在高严谨条件下与a)或b)限定的核苷酸序列杂交,且具有启动子功能的DNA分子。其中,SEQ ID No.1由1097个核苷酸组成,具体序列如序列表SEQ ID No.1所示。To achieve the above object, the present invention provides a tomato drought and/or high-salt-induced promoter S1WRKY8P and its application. The promoter in the present invention, named S1WRKY8P, is derived from tomato and is as follows a), b) or c) DNA molecule: a) the nucleotide sequence is the DNA molecule of SEQ ID No.1 in the sequence table; b) has 75% or more identity with the nucleotide sequence defined in a) and has a promoter function c) a DNA molecule that hybridizes to the nucleotide sequence defined in a) or b) under high stringency conditions and has a promoter function. Among them, SEQ ID No.1 consists of 1097 nucleotides, and the specific sequence is shown in SEQ ID No.1 in the sequence table.
所述高严谨条件是在2×SSC(柠檬酸钠),0.1%SDS(十二烷基硫酸钠)的溶液中,在68℃下杂交并洗膜2次,每次5min;然后用0.5×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次15min。The high stringency conditions are 2 × SSC (sodium citrate), 0.1% SDS (sodium dodecyl sulfate) solution, hybridization at 68 ° C and washing membrane 2 times, each 5min; then use 0.5 × In SSC and 0.1% SDS solution, hybridize at 68°C and wash the membrane twice, 15min each time.
本领域普通技术人员可以很容易地采用已知的方法,例如定向进化和点突变的方法,对本发明的启动子核苷酸序列进行突变。那些经过人工修饰的,具有与本发明分离得到的启动子核苷酸序列75%或者更高同一性的核苷酸,只要保持了表达靶基因的启动子活性,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。这里使用的术语“同一性”指与天然核酸序列的序列相似性。“同一性”包括与本发明的启动子核苷酸序列具有75%或更高,或85%或更高,或90%或更高,或95%或更高同一性的核苷酸序列。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。Those skilled in the art can easily use known methods, such as directed evolution and point mutation methods, to mutate the promoter nucleotide sequence of the present invention. Those artificially modified nucleotides with 75% or higher identity with the isolated promoter nucleotide sequence of the present invention, as long as the promoter activity for expressing the target gene is maintained, are all derived from the nuclear Nucleotide sequence and is equivalent to the sequence of the present invention. The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. "Identity" includes nucleotide sequences that are 75% or higher, or 85% or higher, or 90% or higher, or 95% or higher identical to the promoter nucleotide sequence of the present invention. Identity can be assessed visually or with computer software. Using computer software, identity between two or more sequences can be expressed as a percentage (%), which can be used to evaluate the identity between related sequences.
同时,基于本发明的诱导启动子,含有SlWRKY8P的表达盒、重组载体、重组微生物或转基因细胞系也属于本发明的保护范围。Meanwhile, based on the inducible promoter of the present invention, expression cassettes, recombinant vectors, recombinant microorganisms or transgenic cell lines containing S1WRKY8P also belong to the protection scope of the present invention.
在所述表达盒中,启动子SlWRKY8P的下游连接结构基因、或调节基因、或结构基因或调节基因的反义基因、或者能够干扰内源基因表达的小RNA的编码DNA,用于驱动结构基因、或调节基因、或结构基因或调节基因的反义基因、或者天然小RNA或人工合成的小RNA的表达。In the expression cassette, the downstream of the promoter SlWRKY8P is connected with a structural gene, or a regulatory gene, or an antisense gene of a structural gene or a regulatory gene, or the coding DNA of a small RNA capable of interfering with endogenous gene expression, for driving the structural gene , or a regulatory gene, or a structural gene or an antisense gene of a regulatory gene, or the expression of natural small RNA or artificially synthesized small RNA.
所述表达盒可由所述启动子SlWRKY8P、所述启动子SlWRKY8P启动表达的目的基因以及转录终止序列组成;所述启动子以功能性方式与所述目的基因连接,且所述目的基因与所述转录终止序列连接。在本发明的一个实施例中,目的基因具体为β-葡萄糖苷酶(β-glucuronidase,GUS)基因。The expression cassette may be composed of the promoter S1WRKY8P, the gene of interest to be expressed by the promoter S1WRKY8P, and a transcription termination sequence; the promoter is functionally connected to the gene of interest, and the gene of interest is connected to the gene of interest Transcription termination sequence ligation. In one embodiment of the present invention, the target gene is specifically a β-glucuronidase (GUS) gene.
所述重组载体可为含有上述表达盒的重组载体,包括但不限于质粒和病毒。所述重组载体也可为重组植物表达载体。所述重组植物表达载体含有上述表达盒并且能够将所述的表达盒转送进入植物宿主细胞、组织或器官及其后代并且能够或者至少方便所述的表达盒整合宿主的基因组中,它包括但不限于双元载体、共合载体。所述宿主细胞、组织或器官及其后代是指所有植物细胞或植物组织或植物器官或由这些细胞、组织或器官通过组织分化或无性胚再生并且发育成熟的整体植株(包括种子)。在本发明的一个实施例中,所述重组载体具体为将pBI121K(pBI121K是由pBI121载体改造而来,参考刘继恺等,2017)的35S启动子替换为所述启动子得到的重组载体。所述目的基因具体为β-葡萄糖苷酶基因(β-glucuronidase,GUS)。The recombinant vector can be a recombinant vector containing the above expression cassettes, including but not limited to plasmids and viruses. The recombinant vector can also be a recombinant plant expression vector. The recombinant plant expression vector contains the above-mentioned expression cassette and can transfer the expression cassette into the plant host cell, tissue or organ and its progeny and can or at least facilitate the integration of the expression cassette into the genome of the host, which includes but not Limited to binary vectors, co-conjugate vectors. The host cells, tissues or organs and their progeny refer to all plant cells or plant tissues or plant organs or whole plants (including seeds) that are matured through tissue differentiation or asexual embryo regeneration from these cells, tissues or organs. In one embodiment of the present invention, the recombinant vector is specifically a recombinant vector obtained by replacing the 35S promoter of pBI121K (pBI121K is transformed from pBI121 vector, refer to Liu Jikai et al., 2017) with the promoter. The target gene is specifically a β-glucuronidase gene (β-glucuronidase, GUS).
所述重组表达载体可以通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、显微注射、电导、农杆菌介导或基因枪等常规生物学方法转化植物器官或组织或细胞,得到转基因植物细胞或组织或器官及由此分化、再生的完整植株及其无性系或其后代。在本发明的实施例中,具体使用的是农杆菌介导法。The recombinant expression vector can transform plant organs or tissues or cells by conventional biological methods such as Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, conductance, Agrobacterium-mediated or gene gun, to obtain the transgene Plant cells or tissues or organs and the complete plants differentiated and regenerated therefrom and their clones or their progeny. In the embodiments of the present invention, the Agrobacterium-mediated method is specifically used.
上述SlWRKY8P在植物中启动目的基因表达的应用,也属于本发明的保护范围。The application of the above-mentioned SlWRKY8P to promote the expression of the target gene in plants also belongs to the protection scope of the present invention.
上述应用中,所述植物为双子叶植物,例如番茄、拟南芥、水稻和/或烟草。In the above application, the plant is a dicotyledonous plant, such as tomato, Arabidopsis, rice and/or tobacco.
扩增SlWRKY8P的引物对也属于本发明的保护范围。The primer pair for amplifying S1WRKY8P also belongs to the protection scope of the present invention.
申请人对本发明进行了实际验证。实验结果证明,本申请的干旱和/或高盐诱导的启动子SlWRKY8P在300mM甘露醇(Mannitol)处理24小时的环境下启动的目的基因的表达量分别约为正常生长情况下的2.6倍,SlWRKY8P在200mM NaCl处理24小时的环境下启动的目的基因的表达量约为正常生长情况下的2.7倍。实验结果表明,本发明的SlWRKY8P为干旱和/或高盐诱导的启动子,具有较好的效果。The applicant has actually verified the present invention. The experimental results prove that the expression of the target gene initiated by the drought and/or high-salt-induced promoter SlWRKY8P of the present application under the environment of 300mM mannitol (Mannitol) for 24 hours is about 2.6 times respectively under normal growth conditions, and SlWRKY8P The expression level of the target gene activated under the environment of 200mM NaCl treatment for 24 hours is about 2.7 times that of normal growth. Experimental results show that the SlWRKY8P of the present invention is a drought and/or high-salt-induced promoter and has a good effect.
综上,本发明的SlWRKY8P可作为构建植物表达载体的元件,将其连接在目的基因之前,使目的基因的表达受干旱和/或高盐诱导。因此,本发明的SlWRKY8P对通过启动目的基因在干旱和/或高盐胁迫下的高表达,来提高转基因植物对干旱和/或高盐的耐受性,具有重要意义。In summary, the SlWRKY8P of the present invention can be used as an element for constructing a plant expression vector, and it is connected in front of the target gene, so that the expression of the target gene is induced by drought and/or high salt. Therefore, the SlWRKY8P of the present invention is of great significance to improving the tolerance of transgenic plants to drought and/or high salt by promoting the high expression of the target gene under drought and/or high salt stress.
附图说明Description of drawings
图1为SlWRKY8P启动子的PCR扩增电泳图,其中M为DL2000DNA Marker;泳道1为SlWRKY8P启动子的PCR扩增条带。Fig. 1 is the electrophoresis diagram of PCR amplification of SlWRKY8P promoter, wherein M is DL2000DNA Marker; lane 1 is the PCR amplification band of SlWRKY8P promoter.
图2为将SlWRKY8P启动子构建于pBI121K载体质粒中的示意图,其中图A为pBI121K示意图;图B为pBI121K-SlWRKY8P示意图,其中示出了利用SlWRKY8P启动子驱动位于其下游的GUS基因表达。Figure 2 is a schematic diagram of constructing the SlWRKY8P promoter in the pBI121K vector plasmid, wherein Figure A is a schematic diagram of pBI121K; Figure B is a schematic diagram of pBI121K-SlWRKY8P, which shows the use of the SlWRKY8P promoter to drive the expression of the GUS gene located downstream of it.
图3为转pBI121K-SlWRKY8P的番茄幼苗分别在300mM Mannitol和200mM NaCl处理24小时环境下幼苗中GUS的染色情况,其中图A为正常培养24小时的GUS染色情况;图B为300mM Mannitol处理24小时的GUS染色情况;图C为200mM NaCl处理24小时的GUS染色情况。Figure 3 shows the staining of GUS in the seedlings of tomato seedlings transfected with pBI121K-SlWRKY8P treated with 300mM Mannitol and 200mM NaCl for 24 hours respectively, where Figure A shows the GUS staining of normal culture for 24 hours; Figure B shows the staining of 300mM Mannitol for 24 hours Figure C is the GUS staining situation of 200mM NaCl treatment for 24 hours.
图4为转pBI121K-SlWRKY8P的番茄幼苗分别在300mM Mannitol和200mM NaCl处理24小时环境下幼苗中GUS活性的定量统计分析。Fig. 4 is a quantitative statistical analysis of GUS activity in tomato seedlings transfected with pBI121K-SlWRKY8P treated with 300mM Mannitol and 200mM NaCl for 24 hours respectively.
具体实施方式detailed description
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。All features disclosed in this specification, or steps in all methods or processes disclosed, may be combined in any manner, except for mutually exclusive features and/or steps.
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。Any feature disclosed in this specification, unless specifically stated, can be replaced by other alternative features that are equivalent or have similar purposes. That is, unless expressly stated otherwise, each feature is one example only of a series of equivalent or similar features.
以下参照具体的实施例来说明本发明。本领域技术人员能够理解,这些实施例仅用于说明本发现,其不以任何方式限制本发明的范围。The present invention will be described below with reference to specific examples. Those skilled in the art can understand that these examples are only used to illustrate the discovery of the present invention, and they do not limit the scope of the present invention in any way.
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The experimental methods in the following examples are conventional methods unless otherwise specified. The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
实施例1Example 1
(一)干旱和/或高盐诱导启动子SlWRKY8P的获得(1) Acquisition of drought and/or high salt-induced promoter SlWRKY8P
1、植物材料1. Plant material
番茄野生型种子为AC+,由四川大学刘永胜教授实验室惠赠。Tomato wild-type seeds are AC + , donated by the laboratory of Professor Liu Yongsheng of Sichuan University.
2、载体2. Carrier
克隆载体pEASY-Blunt Cloning Kit购自北京全式金公司。The cloning vector pEASY-Blunt Cloning Kit was purchased from Beijing Quanshijin Company.
3、试剂与药品3. Reagents and medicines
高保真酶PrimeSTAR HS购自TAKARA公司,琼脂糖凝胶回收试剂盒购自Omega Bio-Tek公司。引物由生工生物工程(上海)股份有限公司合成,测序由华大基因科技股份有限公司完成。The high-fidelity enzyme PrimeSTAR HS was purchased from TAKARA Company, and the agarose gel recovery kit was purchased from Omega Bio-Tek Company. The primers were synthesized by Sangon Bioengineering (Shanghai) Co., Ltd., and the sequencing was completed by Huada Gene Technology Co., Ltd.
缓冲液、试剂、细菌培养基配方参见《分子克隆实验指南》(第三版,作者:著[美]J.莎姆布鲁克、黄培堂译,出版社:科学出版社,ISBN:7030103386)。Buffers, reagents, and bacterial culture medium formulations can be found in "Molecular Cloning Experiment Guide" (third edition, author: [US] J. Sambrook, translated by Huang Peitang, publisher: Science Press, ISBN: 7030103386).
4、番茄SlWRKY8P启动子的克隆4. Cloning of tomato SlWRKY8P promoter
根据SGN(http://solgenomics.wur.nl/)提供的番茄全基因组序列,依据番茄SlWRKY8基因的上游序列设计扩增引物,正向引物中含有KpnI识别序列,反向引物中含有BamHI识别序列:According to the whole genome sequence of tomato provided by SGN (http://solgenomics.wur.nl/), the amplification primers were designed according to the upstream sequence of tomato SlWRKY8 gene, the forward primer contained the KpnI recognition sequence, and the reverse primer contained the BamHI recognition sequence :
正向:5’-GGTACCAAATTCATTTAGCGTTGCAT-3’;Forward: 5'-GGTACCAAATTCATTTAGCGTTGCAT-3';
反向:5’-GGATCCCTCCACAGCCATATTATAGTAAC-3’。Reverse: 5'-GGATCCCTCACACAGCCATATTATAGTAAC-3'.
用上述引物以番茄AC+的基因组DNA为模板,利用高保真酶PrimeSTAR HS,扩增SlWRKY8P启动子。扩增总体积50μL,其中正向引物1μL,反向引物1μL,DNA模板1μL,PrimeSTAR HS 25μL,ddH2O 22μL。扩增程序为:98℃10秒,55℃5秒,72℃5秒,30个循环。琼脂糖凝胶电泳后胶回收与目的启动子大小相近的片段。连接克隆载体pEASY-Blunt。将连接产物转化大肠杆菌,37℃恒温培养16-18小时。挑取大肠杆菌单克隆,接种含有氨苄青霉素的LB液体培养基中,置于37℃,150转/每分钟的摇床中扩大培养16-18小时。将扩大培养的大肠杆菌送华大基因科技股份有限公司进行测序分析,测序正确的克隆用以构建表达载体。The above primers were used to amplify the SlWRKY8P promoter using the high-fidelity enzyme PrimeSTAR HS using the genomic DNA of tomato AC + as a template. The total volume of amplification is 50 μL, including 1 μL of forward primer, 1 μL of reverse primer, 1 μL of DNA template, 25 μL of PrimeSTAR HS, and 22 μL of ddH 2 O. The amplification program was: 98°C for 10 seconds, 55°C for 5 seconds, 72°C for 5 seconds, 30 cycles. After agarose gel electrophoresis, a fragment similar in size to the target promoter was recovered from the gel. Ligated cloning vector pEASY-Blunt. The ligation product was transformed into Escherichia coli and incubated at 37°C for 16-18 hours. A single colony of Escherichia coli was picked, inoculated into LB liquid medium containing ampicillin, and placed in a shaker at 37° C. at 150 rpm for 16-18 hours for expansion. The expanded Escherichia coli was sent to Huada Gene Technology Co., Ltd. for sequencing analysis, and the clones with correct sequencing were used to construct expression vectors.
5、胶回收5. Glue recycling
所用Binding Buffer(XP2)、SPW Buffer和Elution Buffer全部来自于OmegaBio-Tek公司的琼脂糖凝胶回收试剂盒。The Binding Buffer (XP2), SPW Buffer and Elution Buffer used are all from the agarose gel recovery kit of OmegaBio-Tek Company.
(1)在紫外灯下切下含有目的DNA的琼脂糖凝胶,置于1.5mL的离心管中。(1) Cut out the agarose gel containing the target DNA under ultraviolet light and place it in a 1.5mL centrifuge tube.
(2)在离心管中加入与切下的凝胶块等体积的Binding Buffer(XP2)。混合均匀后于55-60℃中放置约7分钟,期间不断晃动(每2-3分钟一次),直至凝胶块完全融化。(2) Add the same volume of Binding Buffer (XP2) as the cut gel piece into the centrifuge tube. After mixing evenly, place it at 55-60°C for about 7 minutes, and shake it constantly (every 2-3 minutes) until the gel block is completely melted.
(3)将DNA吸附管置于2mL离心管中(试剂盒内提供),将上一步完全融化的凝胶液加入到DNA吸附管中,8000-10000×g室温离心1分钟,弃滤液。(3) Place the DNA adsorption tube in a 2mL centrifuge tube (provided in the kit), add the completely melted gel solution in the previous step into the DNA adsorption tube, centrifuge at 8000-10000×g for 1 minute at room temperature, and discard the filtrate.
(4)将DNA吸附管重新置回2mL离心管中,加入300μL的Binding Buffer(XP2),10000×g室温离心1分钟,弃滤液。(4) Put the DNA adsorption tube back into the 2mL centrifuge tube, add 300 μL of Binding Buffer (XP2), centrifuge at 10000×g for 1 minute at room temperature, and discard the filtrate.
(5)将DNA吸附管重新置回2mL离心管中,加入700μL的SPW Buffer,静置2-3分钟,10000×g室温离心1分钟,弃滤液。(5) Put the DNA adsorption tube back into the 2mL centrifuge tube, add 700 μL of SPW Buffer, let it stand for 2-3 minutes, centrifuge at 10000×g for 1 minute at room temperature, and discard the filtrate.
(6)将DNA吸附管重新置回2mL离心管中,10000×g室温离心1分钟。(6) Put the DNA adsorption tube back into the 2mL centrifuge tube and centrifuge at 10000×g for 1 minute at room temperature.
(7)将DNA吸附管置于1.5mL离心管中,在吸附管的膜中央加入30-50μL的ElutionBuffer,室温静置1分钟。10000×g室温离心1分钟洗脱DNA片段。经测序,所得胶回收片段的核苷酸序列如序列SEQ ID No.1所示。(7) Place the DNA adsorption tube in a 1.5mL centrifuge tube, add 30-50 μL of ElutionBuffer to the center of the membrane of the adsorption tube, and let stand at room temperature for 1 minute. Centrifuge at 10,000×g for 1 minute at room temperature to elute DNA fragments. After sequencing, the nucleotide sequence of the obtained fragment recovered from the gel is shown in the sequence SEQ ID No.1.
6、与克隆载体的连接6. Connection with cloning vector
在200μL离心管中依次加入:胶回收DNA片段4μL,pEASY-Blunt Cloning Vector 1μL,轻轻混合,室温反应10分钟。反应结束后,将离心管置于冰上,用于大肠杆菌转化。Add sequentially to a 200 μL centrifuge tube: 4 μL of gel-recovered DNA fragments, 1 μL of pEASY-Blunt Cloning Vector, mix gently, and react at room temperature for 10 minutes. After the reaction, place the centrifuge tube on ice for E. coli transformation.
7、大肠杆菌转化7. Transformation of Escherichia coli
(1)加连接产物于50μL Trans1-T1感受态细胞中(pEASY-Blunt Cloning试剂盒提供),轻弹混匀,冰浴20-30分钟。(1) Add the ligation product to 50 μL of Trans1-T1 competent cells (provided by pEASY-Blunt Cloning kit), flick to mix well, and ice-bath for 20-30 minutes.
(2)42℃热激30秒,立即置于冰上2分钟。(2) Heat shock at 42°C for 30 seconds, and immediately place on ice for 2 minutes.
(3)加250μL平衡至室温的SOC/LB,200转每分钟,37℃孵育1小时。(3) Add 250 μL of SOC/LB equilibrated to room temperature, and incubate at 37°C for 1 hour at 200 rpm.
将菌液于4000转每分钟离心1分钟,弃掉部分上清,保留100-150μL,轻弹悬浮菌体,取全部菌液涂板,37℃培养过夜。Centrifuge the bacterial solution at 4000 rpm for 1 minute, discard part of the supernatant, keep 100-150 μL, flick the suspended bacterial cells, take all the bacterial solution to spread on the plate, and incubate overnight at 37°C.
(二)重组表达载体pBI121K-SlWRKY8P的构建(2) Construction of recombinant expression vector pBI121K-SlWRKY8P
1、菌株及载体1. Strains and vectors
大肠杆菌DH5ɑ、根癌农杆菌EHA105、表达载体pBI121K均由西南科技大学生命科学与工程学院生物技术系保存。Escherichia coli DH5ɑ, Agrobacterium tumefaciens EHA105, and expression vector pBI121K were all preserved by the Department of Biotechnology, School of Life Science and Engineering, Southwest University of Science and Technology.
2、试剂与药品2. Reagents and medicines
限制性内切酶购自Thermo公司,Taq酶购自Tiangen公司,T4DNA连接酶购自Promega公司,琼脂糖凝胶回收试剂盒及小批量质粒提取试剂盒购自Omega Bio-Tek公司。测序由华大基因科技股份有限公司完成。Restriction enzymes were purchased from Thermo Company, Taq enzyme was purchased from Tiangen Company, T4 DNA ligase was purchased from Promega Company, agarose gel recovery kit and small batch plasmid extraction kit were purchased from Omega Bio-Tek Company. Sequencing was performed by Huada Gene Technology Co., Ltd.
缓冲液、试剂、细菌培养基配方、大肠杆菌感受态制备参见《分子克隆实验指南》(第三版,作者:著[美]J.莎姆布鲁克、黄培堂译,出版社:科学出版社,ISBN:7030103386)。Buffers, reagents, bacterial culture medium formulations, Escherichia coli competent preparation refer to "Molecular Cloning Experiment Guide" (third edition, author: [US] J. Sambrook, translated by Huang Peitang, publisher: Science Press, ISBN :7030103386).
3、质粒提取3. Plasmid extraction
将测序正确的含有启动子的pEASY-Blunt-SlWRKY8P克隆以及pBI121K大肠杆菌扩大培养,提取质粒。所用溶液I、溶液II、溶液III、Buffer HB、Wash Buffer和ElutionBuffer全部来自于Omega Bio-Tek公司的小批量质粒提取试剂盒。The correctly sequenced pEASY-Blunt-SlWRKY8P clone containing the promoter and pBI121K Escherichia coli were expanded and cultured to extract the plasmid. The solution I, solution II, solution III, Buffer HB, Wash Buffer and ElutionBuffer used are all from the small batch plasmid extraction kit of Omega Bio-Tek Company.
(1)在10-20mL试管中,将携带有所需质粒的大肠杆菌接种到5mL含有氨苄青霉素的LB液体培养基,37℃震荡培养12-16小时。(1) In a 10-20mL test tube, inoculate Escherichia coli carrying the desired plasmid into 5mL LB liquid medium containing ampicillin, and culture with shaking at 37°C for 12-16 hours.
(2)取1.5-5mL菌液室温10000×g离心1分钟。(2) Take 1.5-5mL bacterial liquid and centrifuge at 10000×g for 1 minute at room temperature.
(3)去上清,加250μL溶液I,涡旋震荡器震荡至菌体完全悬浮。(3) Remove the supernatant, add 250 μL solution I, and vortex until the cells are completely suspended.
(4)加入250μL溶液II,温和颠倒离心管4-6次,获得澄清的裂解液,室温孵育2分钟。(4) Add 250 μL of solution II, gently invert the centrifuge tube 4-6 times to obtain a clear lysate, and incubate at room temperature for 2 minutes.
(5)加入350μL溶液III,温和颠倒数次混合,至出现白色絮状沉淀。(5) Add 350 μL of Solution III, and gently invert several times to mix until a white flocculent precipitate appears.
(6)室温13000×g离心10分钟。(6) Centrifuge at 13000×g for 10 minutes at room temperature.
(7)小心吸取上清,移至洁净的装配好容积2mL离心管的吸收柱中。室温10000×g离心1分钟。(7) Aspirate the supernatant carefully, and transfer it to a clean absorption column equipped with a 2mL centrifuge tube. Centrifuge at 10,000 x g for 1 min at room temperature.
(8)弃滤液,加500μL Buffer HB,10000×g离心1分钟。(8) Discard the filtrate, add 500 μL Buffer HB, and centrifuge at 10,000×g for 1 minute.
(9)弃滤液,用700μL Wash Buffer清洗吸收柱,10000×g离心1分钟。(9) Discard the filtrate, wash the absorption column with 700 μL Wash Buffer, and centrifuge at 10000×g for 1 minute.
(10)重复第(9)步。(10) Repeat step (9).
(11)将吸收柱重新置回2mL离心管中,13000×g离心2分钟。(11) Put the absorption column back into the 2mL centrifuge tube and centrifuge at 13000×g for 2 minutes.
将吸收柱放入干净的1.5mL离心管,在吸附柱的膜中央加30-50μL ElutionBuffer,13000×g离心1分钟。Put the absorption column into a clean 1.5mL centrifuge tube, add 30-50μL ElutionBuffer to the center of the membrane of the adsorption column, and centrifuge at 13000×g for 1 minute.
4、SlWRKY8P片段和pBI121K载体的酶切和胶回收4. Enzyme digestion and gel recovery of SlWRKY8P fragment and pBI121K vector
对提取的pEASY-Blunt-SlWRKY8P和pBI121K质粒同时用KpnI和BamHI进行双酶切,反应体系如下表1所示,反应条件为37℃酶切2小时。The extracted pEASY-Blunt-SlWRKY8P and pBI121K plasmids were simultaneously digested with KpnI and BamHI. The reaction system is shown in Table 1 below, and the reaction conditions were 37°C for 2 hours.
将酶切后的产物经琼脂糖凝胶电泳后,分别回收SlWRKY8P启动子片段和pBI121K载体片段。After the digested product was subjected to agarose gel electrophoresis, the SlWRKY8P promoter fragment and the pBI121K vector fragment were respectively recovered.
表1反应体系Table 1 reaction system
5、SlWRKY8P片段和pBI121K载体的连接5. Connection of SlWRKY8P fragment and pBI121K vector
用T4 DNA连接酶连接SlWRKY8P启动子片段和pBI121K载体片段,反应体系为:10×T4 ligase buffer 1μL,SlWRKY8P启动子片段5μL,pBI121K载体片段3μL,T4ligase 1μL。反应条件为:4℃冰箱过夜连接16-18小时。Use T4 DNA ligase to connect the SlWRKY8P promoter fragment and the pBI121K vector fragment. The reaction system is: 10×T4 ligase buffer 1 μL, SlWRKY8P promoter fragment 5 μL, pBI121K vector fragment 3 μL, T4ligase 1 μL. The reaction conditions are: 4°C refrigerator overnight connection for 16-18 hours.
6、大肠杆菌转化6. Transformation of Escherichia coli
将连接产物转化大肠杆菌。The ligation product was transformed into E. coli.
(1)从超低温冰箱中取出大肠杆菌感受态细胞,置于冰上解冻。(1) Take out the Escherichia coli competent cells from the ultra-low temperature refrigerator, and place them on ice to thaw.
(2)将连接产物加入到解冻后的感受态细胞中,小心混匀,冰浴30min。(2) The ligation product was added to the thawed competent cells, mixed carefully, and kept on ice for 30 minutes.
(3)将含有感受态细胞的离心管置于42℃中,热击90秒。(3) Place the centrifuge tube containing the competent cells at 42°C and heat shock for 90 seconds.
(4)快速将热击后的离心管转移至冰浴中,冷却2-3分钟。(4) Quickly transfer the heat-shocked centrifuge tube to an ice bath and cool for 2-3 minutes.
(5)向冷却后的离心管中加入800μL的SOC,混匀后置于37℃摇床中120转每分钟振摇培养1小时。(5) Add 800 μL of SOC to the cooled centrifuge tube, mix well, and place in a shaker at 37°C at 120 rpm for 1 hour.
(6)将菌液于4000转每分钟离心1分钟,弃掉部分上清,保留100-150μL,轻弹悬浮菌体,取全部菌液涂板,37℃培养过夜。(6) Centrifuge the bacterial solution at 4000 rpm for 1 minute, discard part of the supernatant, keep 100-150 μL, flick the suspended bacterial cells, take all the bacterial solution to spread on the plate, and incubate overnight at 37°C.
(7)挑取大肠杆菌单克隆进行菌落PCR,将阳性克隆接种含有硫酸卡那霉素的LB液体培养基中,置于37℃,150转/每分钟的摇床中扩大培养16-18小时。将扩大培养的大肠杆菌送华大基因科技股份有限公司进行测序分析,测序正确的克隆提取质粒后,用以转化根癌农杆菌EHA105。(7) Pick a single clone of Escherichia coli for colony PCR, inoculate the positive clone into LB liquid medium containing kanamycin sulfate, place it at 37°C, and expand it in a shaker at 150 rpm for 16-18 hours . The expanded Escherichia coli was sent to Huada Gene Technology Co., Ltd. for sequencing analysis. The clones with correct sequencing were extracted with plasmids and used to transform Agrobacterium tumefaciens EHA105.
7、重组表达载体转化根癌农杆菌EHA1057. Transformation of recombinant expression vector into Agrobacterium tumefaciens EHA105
(1)从超低温冰箱中取出根癌农杆菌感受态细胞,置于冰上解冻。(1) Take out the competent cells of Agrobacterium tumefaciens from the ultra-low temperature refrigerator, and place them on ice to thaw.
(2)将测序正确的重组表达质粒10μL加入到解冻后的感受态细胞中,小心混匀,冰浴30min。(2) Add 10 μL of the recombinant expression plasmid with correct sequencing to the thawed competent cells, mix carefully, and place in ice bath for 30 minutes.
(3)将含有感受态细胞的离心管置于液氮中,速冻1分钟。(3) Place the centrifuge tube containing the competent cells in liquid nitrogen and freeze for 1 minute.
(4)快速将速冻后的离心管转移至37℃水浴锅中,放置2-3分钟。(4) Quickly transfer the quick-frozen centrifuge tube to a 37°C water bath and let it stand for 2-3 minutes.
(5)向离心管中加入800μL的SOC,混匀后置于28℃摇床中120转每分钟振摇培养4小时。(5) Add 800 μL of SOC to the centrifuge tube, mix well, place in a shaker at 28° C. at 120 rpm and shake for 4 hours.
(6)将菌液于4000转每分钟离心1分钟,弃掉部分上清,保留100-150μL,轻弹悬浮菌体,取全部菌液涂板,28℃培养2天。(6) Centrifuge the bacterial solution at 4000 rpm for 1 minute, discard part of the supernatant, keep 100-150 μL, flick the suspended bacterial cells, take all the bacterial solution to spread on the plate, and incubate at 28°C for 2 days.
(7)挑取农杆菌单克隆进行菌落PCR。(7) A single clone of Agrobacterium was picked for colony PCR.
(8)挑取阳性克隆摇菌,并用甘油保存菌液备用。(8) Pick the positive clones and shake the bacteria, and store the bacteria liquid with glycerol for future use.
实施例2利用启动子SlWRKY8P驱动报告基因在番茄中表达Embodiment 2 utilizes promoter SlWRKY8P to drive reporter gene to express in tomato
1、农杆菌介导的番茄遗传转化1. Genetic transformation of tomato mediated by Agrobacterium
将含有pBI121K-SlWRKY8P质粒的重组农杆菌转化番茄,具体方法如下。The recombinant Agrobacterium containing the pBI121K-SlWRKY8P plasmid was transformed into tomato, and the specific method was as follows.
(1)将番茄种子灭菌后播种于含有1/2MS固体培养基的培养瓶中,暗培养4d左右,露白后转置于光照下,培养条件为:25℃,16小时光照,23℃,8小时黑暗,光照强度为80μmolm-2s-1,并在其第一片真叶长出前取下子叶,置于预培养基上培养2d。(1) After sterilizing the tomato seeds, sow them in a culture bottle containing 1/2 MS solid medium, culture them in the dark for about 4 days, and turn them under the light after they turn white. The culture conditions are: 25°C, 16 hours of light, 23°C, After 8 hours of darkness, the light intensity was 80 μmolm -2 s -1 , and the cotyledon was removed before the first true leaf grew, and cultured on the pre-medium for 2 days.
(2)将含有pBI121K-SlWRKY8P质粒的重组农杆菌接种于5mL含有50μg/mL利福平和50μg/mL硫酸卡那霉素的LB培养基中,28℃摇床培养12小时,得到5mL pBI121K-SlWRKY8P种子液。接种1mL pBI121K-SlWRKY8P种子液至50ml含有50μg/mL利福平和50μg/mL硫酸卡那霉素的LB培养基中,28℃摇床培养至OD600为0.8左右,得到pBI121K-SlWRKY8P培养液。将pBI121K-SlWRKY8P培养液于室温4000转每分钟,离心4分钟,弃上清收集菌体,用约10mL诱导培养液重悬菌体,备用。(2) Inoculate the recombinant Agrobacterium containing the pBI121K-SlWRKY8P plasmid in 5 mL of LB medium containing 50 μg/mL rifampicin and 50 μg/mL kanamycin sulfate, and culture it on a shaker at 28 ° C for 12 hours to obtain 5 mL of pBI121K-S1WRKY8P seed liquid. Inoculate 1 mL of pBI121K-SlWRKY8P seed solution into 50 ml of LB medium containing 50 μg/mL rifampicin and 50 μg/mL kanamycin sulfate, and culture in a shaker at 28°C until the OD600 is about 0.8 to obtain pBI121K-SlWRKY8P culture solution. Centrifuge the pBI121K-SlWRKY8P culture solution at room temperature at 4000 rpm for 4 minutes, discard the supernatant to collect the bacteria, resuspend the bacteria with about 10 mL of induction culture medium, and set aside.
(3)在灭菌的培养皿中加入40mL的诱导培养液,用移液器吸取800μL重悬菌体加入到含有诱导培养液的培养皿中,混匀。将预培养2天后的番茄子叶浸入诱导培养液和菌体的混合物中10分钟,期间可用无菌镊子尖部对子叶进行垂直打孔。(3) Add 40 mL of induction culture solution into a sterilized culture dish, pipette 800 μL of resuspended bacteria into the culture dish containing induction culture solution, and mix well. The tomato cotyledons after pre-cultivation for 2 days were immersed in the mixture of induction culture medium and bacteria for 10 minutes, during which time the cotyledons could be punched vertically with the tip of sterile tweezers.
将子叶捞出置于无菌滤纸上吸干液体,随后将子叶置于共培养基上,于22±1℃、黑暗条件下培养2天后,转移到分化培养基上;然后,置于光照培养箱中,培养条件为:25℃,16小时光照,23℃,8小时黑暗,光照强度为80μmol m-2s-1。每2周更换一次培养基。当愈伤组织长出2.0cm左右的新芽时,切取嫩芽转移至生根培养基上生根,培育约4周后获得完整的硫酸卡那霉素抗性植株。待根系发达后转移至盆中,在温室内24±1℃、16小时光照,8小时黑暗条件下培养至番茄果实成熟,并收获成熟的番茄种子(即T1代转基因种子)。各培养基成分见表2。Take out the cotyledons and place them on sterile filter paper to blot the liquid, then place the cotyledons on the co-culture medium, culture them at 22±1°C in the dark for 2 days, then transfer them to the differentiation medium; then, culture them in the light In the box, the culture conditions are: 25°C, 16 hours of light, 23°C, 8 hours of darkness, and the light intensity is 80 μmol m -2 s -1 . Medium was changed every 2 weeks. When the callus grows about 2.0 cm new shoots, cut the shoots and transfer them to the rooting medium to take root, and after cultivating for about 4 weeks, complete kanamycin sulfate-resistant plants are obtained. After the root system develops, transfer it to a pot, and cultivate it in a greenhouse at 24±1°C, 16 hours of light, and 8 hours of darkness until the tomato fruit matures, and the mature tomato seeds (ie, T1 generation transgenic seeds) are harvested. The components of each medium are listed in Table 2.
表2番茄组织所用培养基Table 2 Media used for tomato tissue
注:6-BA:6-苄氨基嘌呤(6-Benzylaminopurine),IAA:吲哚乙酸(IndoleaceticAcid),KT:激动素(Kinetin),2,4-D:2,4-二氯苯氧基乙酸(2,4-DichlorophenoxyaceticAcid)。Note: 6-BA: 6-Benzylaminopurine (6-Benzylaminopurine), IAA: Indoleacetic Acid (Indoleacetic Acid), KT: Kinetin (Kinetin), 2,4-D: 2,4-dichlorophenoxyacetic acid (2,4-Dichlorophenoxyacetic Acid).
(5)将T1代转基因番茄种子进行灭菌处理得到无菌T1代番茄种子。将无菌T1代番茄种子播种于含50μg/mL硫酸卡那霉素的1/2MS固体选择培养上,置于光照培养箱中,培养条件为:25℃,16小时光照,23℃,8小时黑暗,光照强度为80μmol m-2s-1。经筛选培养,得到含有硫酸卡那霉素抗性基因的转基因番茄幼苗。将含有硫酸卡那霉素抗性基因的转基因番茄幼苗转移至盆中,在温室内24±1℃、16小时光照,8小时黑暗条件下培养至番茄果实成熟,并收获成熟的番茄种子(即T2代转基因种子)。(5) Sterilize the T1 generation transgenic tomato seeds to obtain sterile T1 generation tomato seeds. Sow sterile T1 generation tomato seeds on 1/2MS solid selective culture containing 50 μg/mL kanamycin sulfate, and place them in a light incubator. The culture conditions are: 25°C, 16 hours of light, 23°C, 8 hours In the dark, the light intensity is 80 μmol m -2 s -1 . After selection and cultivation, transgenic tomato seedlings containing the kanamycin sulfate resistance gene are obtained. The transgenic tomato seedlings containing the kanamycin sulfate resistance gene were transferred to pots, cultivated in the greenhouse at 24±1°C, 16 hours of light, and 8 hours of darkness until the tomato fruit matured, and harvested mature tomato seeds (i.e. T2 transgenic seeds).
2、干旱和高盐诱导SlWRKY8P2. Drought and high salinity induce SlWRKY8P
将T2代转基因番茄种子进行灭菌处理,得到无菌T2代番茄种子。将无菌T2代番茄种子播种在含有50μg/mL硫酸卡那霉素的1/2MS固体选择培养。随后,将两周大的无菌转基因番茄幼苗6株置于含有300mM Mannitol的1/2MS液体培养基中、将两周大的无菌转基因番茄幼苗6株置于含有200mM NaCl的1/2MS液体培养基中、将两周大的无菌转基因番茄幼苗6株置于1/2MS液体培养基中,并分别于25℃、16小时光照、23℃、8小时黑暗、平均光照强度为80μmol m-2s-1条件下培养24小时,分别得到300mM Mannitol处理的番茄幼苗(即干旱胁迫24小时番茄幼苗)、200mM NaCl处理的番茄幼苗(即盐胁迫24小时的番茄幼苗)和正常培养24小时的番茄幼苗(作为对照),然后将上述所得的材料进行GUS组织化学染色。The T2 generation transgenic tomato seeds are sterilized to obtain sterile T2 generation tomato seeds. Sow sterile T2 generation tomato seeds on 1/2 MS solid selection culture containing 50 μg/mL kanamycin sulfate. Subsequently, six two-week-old sterile transgenic tomato seedlings were placed in 1/2MS liquid medium containing 300mM Mannitol, six two-week-old sterile transgenic tomato seedlings were placed in 1/2MS liquid medium containing 200mM NaCl In the culture medium, six two-week-old sterile transgenic tomato seedlings were placed in 1/2MS liquid medium, and were respectively incubated at 25°C, 16 hours of light, 23°C, 8 hours of darkness, with an average light intensity of 80 μmol m - The tomato seedlings treated with 300mM Mannitol (that is, the tomato seedlings under drought stress for 24 hours), the tomato seedlings treated with 200mM NaCl (that is, the tomato seedlings under salt stress for 24 hours) and the tomato seedlings treated with normal culture for 24 hours were respectively obtained under the condition of 2 s -1 . Tomato seedlings (as a control) were then subjected to GUS histochemical staining of the material obtained above.
3、GUS组织化学染色3. GUS histochemical staining
GUS能与显色底物X-gluc反应,呈现蓝色,因而可以通过组织化学染色定性的研究GUS的表达水平和表达模式。GUS can react with the chromogenic substrate X-gluc to appear blue, so the expression level and expression pattern of GUS can be qualitatively studied by histochemical staining.
(1)GUS染色底物的配制:50mL 0.5M磷酸缓冲液(pH7.0),50μL 100mM铁氰化钾K3Fe(CN)6(将3.2924g铁氰化钾溶于水,定容至100mL,4℃保存),50μL 100mM亚铁氰化钾K4[Fe(CN)6]·3H2O(将4.2239g亚铁氰化钾溶于水,定容至100mL,4℃保存),1mL 0.5M EDTA,250μL 1mg/mL X-gluc(用二甲基甲酰胺溶解,-20℃避光保存)。(1) Preparation of GUS staining substrate: 50mL 0.5M phosphate buffer (pH7.0), 50μL 100mM potassium ferricyanide K 3 Fe(CN) 6 (dissolve 3.2924g potassium ferricyanide in water, dilute to 100mL, stored at 4°C), 50μL 100mM potassium ferrocyanide K 4 [Fe(CN) 6 ]·3H 2 O (dissolve 4.2239g of potassium ferrocyanide in water, dilute to 100mL, store at 4°C), 1mL 0.5M EDTA, 250μL 1mg/mL X-gluc (dissolved in dimethylformamide and stored at -20°C in the dark).
(2)染色步骤(2) Dyeing step
染色:将待测样品浸到GUS染液中,37℃保温箱中放置24-36小时。Dyeing: Dip the sample to be tested into the GUS dye solution, and place it in a 37°C incubator for 24-36 hours.
脱色:将染色后的样品经系列浓度乙醇脱色,浓度分别为:50%,75%和90%,至完全脱色后又降低浓度,依次为:90%,70%和50%,最后将样品保存在50%的乙醇溶液中。Decolorization: Decolorize the dyed sample with series concentration of ethanol, the concentrations are: 50%, 75% and 90%, and then reduce the concentration after complete decolorization, in order: 90%, 70% and 50%, and finally save the sample in 50% ethanol solution.
(3)观察(3) Observation
用体视镜(Leica M205C)分别观察脱色后的正常培养24小时的番茄幼苗、脱色后的300mM Mannitol处理24小时的番茄幼苗和脱色后的200mM NaCl处理24小时的番茄幼苗并拍照,结果见图2。结果显示,正常培养24小时的番茄幼苗经GUS染色后,番茄幼苗的根、茎和叶片都呈现淡蓝色,而300mM Mannitol处理24小时的番茄幼苗的根、茎和叶片都呈现深蓝色,并且在200mM NaCl处理24小时的番茄幼苗的根、茎和叶片也都呈现深蓝色。GUS染色实验结果表明,相对正常培养的番茄,300mM Mannitol或200mM NaCl处理的番茄GUS表达量在根、茎和叶片中都显著增加。Use a stereoscope (Leica M205C) to observe the tomato seedlings normally cultivated for 24 hours after decolorization, the tomato seedlings treated with 300mM Mannitol for 24 hours after decolorization, and the tomato seedlings treated with 200mM NaCl for 24 hours after decolorization, and take pictures. The results are shown in the figure 2. The results showed that the roots, stems and leaves of the tomato seedlings that were normally cultured for 24 hours were stained with GUS, and the roots, stems and leaves of the tomato seedlings treated with 300mM Mannitol for 24 hours were all dark blue, and Roots, stems and leaves of tomato seedlings treated with 200 mM NaCl for 24 hours also showed dark blue color. The results of GUS staining experiments showed that compared with normal cultured tomatoes, the expression of GUS in tomatoes treated with 300mM Mannitol or 200mM NaCl was significantly increased in roots, stems and leaves.
4、GUS酶活的测定4. Determination of GUS enzyme activity
按照Cote等的方法(Cote C,Rutledge RG.An improved MUG fluorescent assayfor the determination of the GUS activity within transgenic tissue of woodyplants.Plant Cell Report,2003,21(6):619-624.)对正常培养24小时的番茄幼苗、300mMMannitol处理24小时的番茄幼苗和200mM NaCl处理24小时的番茄幼苗进行GUS活性荧光定量分析,实验结果如图3所示,实验结果显示:正常培养24小时的番茄的GUS活性值为1.16nmol 4-MU min-1mg-1蛋白,300mM Mannitol处理24小时的番茄的GUS活性值为2.96nmol 4-MU min-1mg-1蛋白,200mM NaCl处理24小时的番茄的GUS活性值为3.14nmol 4-MU min-1mg-1蛋白,Mannitol处理和NaCl处理24小时下GUS活性分别是正常培养的2.6倍和2.7倍,呈极显著差异。上述结果表明启动子SlWRKY8P受干旱和或高盐诱导。According to the method of Cote et al. (Cote C, Rutledge RG. An improved MUG fluorescent assay for the determination of the GUS activity within transgenic tissue of woodyplants. Plant Cell Report, 2003, 21 (6): 619-624.) normal culture for 24 hours The tomato seedlings treated with 300mM Mannitol for 24 hours and the tomato seedlings treated with 200mM NaCl for 24 hours were subjected to fluorescence quantitative analysis of GUS activity. 1.16nmol 4 - MU min -1 mg -1 protein, the GUS activity value of tomato treated with 300mM Mannitol for 24 hours 3.14nmol 4-MU min -1 mg -1 protein, the GUS activity of Mannitol treatment and NaCl treatment for 24 hours was 2.6 times and 2.7 times that of normal culture respectively, showing a very significant difference. The above results indicated that the promoter SlWRKY8P was induced by drought and/or high salt.
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。The present invention is not limited to the foregoing specific embodiments. The present invention extends to any new feature or any new combination disclosed in this specification, and any new method or process step or any new combination disclosed.
序列表sequence listing
<110> 西南科技大学<110> Southwest University of Science and Technology
<120> 一种来源于番茄的干旱和/或高盐诱导启动子SlWRKY8P及其应用<120> A Drought and/or High Salt Inducible Promoter SlWRKY8P from Tomato and Its Application
<130> 2017<130> 2017
<160> 3<160> 3
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 1446<211> 1446
<212> DNA<212>DNA
<213> aaattcattt agcgttgcat ggtttttatt caatttgaac gagtcgtaag cttaagtctt60<213> aaattcattt agcgttgcat ggtttttatt caatttgaac gagtcgtaag cttaagtctt60
<400> 1<400> 1
aaattcattt agcgttgcat ggtttttatt caatttgaac gagtcgtaag cttaagtctt 60aaattcattt agcgttgcat ggtttttatt caatttgaac gagtcgtaag cttaagtctt 60
ttgttttatt tttttctacc atttggaaga gagtttagtt ccaacttaca agaatgataa 120ttgttttatt tttttctacc atttggaaga gagtttagtt ccaacttaca agaatgataa 120
aattctccta gttgtttttc ttttctaatt taaacaactt ttttttttgt aataattaat 180aattctccta gttgtttttc ttttctaatt taaacaactt ttttttttgt aataattaat 180
ataagttagt caagcttaaa atatattgtc aacggaatta tgctggctaa aaccaattga 240ataagttagt caagcttaaa atatattgtc aacggaatta tgctggctaa aaccaattga 240
gggggtaaga ctagtaaaat actttataca ttctagaaga agatgaaccc aaccatcaaa 300gggggtaaga ctagtaaaat actttataca ttctagaaga agatgaaccc aaccatcaaa 300
gataaaaaat caaacttaaa taattaaagt ggccaaaatg gaattgaaac gaaattcctt 360gataaaaaat caaacttaaa taattaaagt ggccaaaatg gaattgaaac gaaattcctt 360
ttattcaaaa aagagatgag gacaaatgga attgaaacaa aattccaacc ctgctaagta 420ttattcaaaa aagagatgag gacaaatgga attgaaacaa aattccaacc ctgctaagta 420
aattaaatga tataatacaa agacaaaaag attcagaaaa gtcaactaaa atgggagggg 480aattaaatga tataatacaa agacaaaaag attcagaaaa gtcaactaaa atgggagggg 480
aaaaaatgaa gtagaagaag taatacgtaa ccgaaaacca ctaatttata tgcgttttac 540aaaaaatgaa gtagaagaag taatacgtaa ccgaaaacca ctaatttata tgcgttttac 540
atctaaatct tacttataac ttataattta gtgataagtt atgttttttt ttaaaaaaaa 600atctaaatct tacttataac ttataattta gtgataagtt atgttttttt ttaaaaaaaa 600
taaataagta aggacatatc aatgctatta caaagtaatg aaagatcttg aataattttt 660taaataagta aggacatatc aatgctatta caaagtaatg aaagatcttg aataattttt 660
tcctagatcc ataacaattg tatttttctt tgatgttcta gtatgtatgt taataataat 720tcctagatcc ataacaattg tatttttctt tgatgttcta gtatgtatgt taataataat 720
taaaaaaaaa atggttacta agaacaaatc ctccaaatca aacacaagca tctcgtgaat 780taaaaaaaaa atggttacta agaacaaatc ctccaaatca aacacaagca tctcgtgaat 780
cagacggcgt tgtcacactc ctttgacctg atcagttcaa atttccccaa aagagacccc 840cagacggcgt tgtcacactc ctttgacctg atcagttcaa atttccccaa aagagacccc 840
actcactctt atttccccaa agaaaaggtc aatgaaccat tactctcatg acccacccta 900actcactctt atttccccaa agaaaaggtc aatgaaccat tactctcatg accacccta 900
caccacaaca atctaaatca ttttcccctt ttattaaagc aacataatat tctcttcttt 960caccacaaca atctaaatca ttttccccctt ttattaaagc aacataatat tctcttcttt 960
cacaatcctc gagaaagaaa aaataaaagt tacttctcac tatacaataa tttaacaaaa 1020cacaatcctc gagaaagaaaaaataaaagt tacttctcac tatacaataa tttaacaaaa 1020
aaataaagtg acaatttaca agtaaaatta tttagtaatc ttgttttttt ataacttact 1080aaataaagtg acaatttaca agtaaaatta tttagtaatc ttgttttttt ataacttact 1080
cattggcaga atcggagtac tcatataaga atgatagagt atattggata gcatacaaaa 1140cattggcaga atcggagtac tcatataaga atgatagagt atattggata gcatacaaaa 1140
ttttactttt attttatgaa gatatatttt tatgggaagt aaaaataaaa gaagcgctag 1200ttttactttt attttatgaa gatatatttt tatgggaagt aaaaataaaa gaagcgctag 1200
tatatgtgtg cgatcgtatt cgcacctaat cttgacgagg cagaagttag attagagtga 1260tatatgtgtg cgatcgtatt cgcacctaat cttgacgagg cagaagttag attagagtga 1260
caggtaagtc acctactgtt tactttatca taactttctt cttctttttt atactaataa 1320caggtaagtc acctactgtt tactttatca taactttctt cttctttttt atactaataa 1320
ataccctcac caaagccatc actttgactc tttatcaaac tctctcattt acattaatgt 1380ataccctcac caaagccatc actttgactc tttatcaaac tctctcattt acattaatgt 1380
ttctattttc tgagatcagt atacttctca tttgtctaaa ttagttacta taatatggct 1440ttctattttc tgagatcagt atacttctca tttgtctaaa ttagttacta taatatggct 1440
gtggag 1446gtggag 1446
<210> 2<210> 2
<211> 26<211> 26
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 2<400> 2
ggtaccaaat tcatttagcg ttgcat 26ggtaccaaat tcatttagcg ttgcat 26
<210> 3<210> 3
<211> 29<211> 29
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 3<400> 3
ggatccctcc acagccatat tatagtaac 29ggatccctcc acagccatat tatagtaac 29
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710287378.8A CN107012147B (en) | 2017-04-27 | 2017-04-27 | Drought and/or high-salt induction promoter SlWRKY8P from tomato and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710287378.8A CN107012147B (en) | 2017-04-27 | 2017-04-27 | Drought and/or high-salt induction promoter SlWRKY8P from tomato and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107012147A true CN107012147A (en) | 2017-08-04 |
CN107012147B CN107012147B (en) | 2020-08-18 |
Family
ID=59447981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710287378.8A Expired - Fee Related CN107012147B (en) | 2017-04-27 | 2017-04-27 | Drought and/or high-salt induction promoter SlWRKY8P from tomato and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107012147B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112430261A (en) * | 2020-11-24 | 2021-03-02 | 上海交通大学 | WRKY32 regulation and control YFT1 expression to influence tomato fruit color and application thereof in tomato quality improvement |
CN113416732A (en) * | 2021-07-19 | 2021-09-21 | 中国科学院华南植物园 | Dendrobium officinale salt inducible promoter proDoMYB75 and application |
CN114891794A (en) * | 2022-06-16 | 2022-08-12 | 中山大学 | Promoter for regulating tomato epicarp expression and application thereof |
CN116144694A (en) * | 2022-09-28 | 2023-05-23 | 西南科技大学 | A method, application and prepared material for creating a material with high anthocyanin content |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1236010A (en) * | 1998-04-30 | 1999-11-24 | 住友化学工业株式会社 | Method for rendering plants tolerant to weed control compounds |
CN105543274A (en) * | 2016-01-19 | 2016-05-04 | 浙江省农业科学院 | Application of solanum lycopersicum SlWRKY81 gene |
-
2017
- 2017-04-27 CN CN201710287378.8A patent/CN107012147B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1236010A (en) * | 1998-04-30 | 1999-11-24 | 住友化学工业株式会社 | Method for rendering plants tolerant to weed control compounds |
CN105543274A (en) * | 2016-01-19 | 2016-05-04 | 浙江省农业科学院 | Application of solanum lycopersicum SlWRKY81 gene |
Non-Patent Citations (3)
Title |
---|
NCBI: "Solanum lycopersicum chromosome ch02,complete genome,HG975514.1", 《NCBI GENBANK》 * |
SHENGXIONG HUANG等: "Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum", 《MOL GENET GENOMICS》 * |
张红 等: "番茄WRKY基因家族的生物信息学分析", 《分子植物育种》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112430261A (en) * | 2020-11-24 | 2021-03-02 | 上海交通大学 | WRKY32 regulation and control YFT1 expression to influence tomato fruit color and application thereof in tomato quality improvement |
CN112430261B (en) * | 2020-11-24 | 2022-06-28 | 上海交通大学 | WRKY32 regulates YFT1 expression to affect tomato fruit color and its application in tomato quality improvement |
CN113416732A (en) * | 2021-07-19 | 2021-09-21 | 中国科学院华南植物园 | Dendrobium officinale salt inducible promoter proDoMYB75 and application |
CN114891794A (en) * | 2022-06-16 | 2022-08-12 | 中山大学 | Promoter for regulating tomato epicarp expression and application thereof |
CN114891794B (en) * | 2022-06-16 | 2023-07-21 | 中山大学 | A promoter regulating the expression of tomato exocarp and its application |
CN116144694A (en) * | 2022-09-28 | 2023-05-23 | 西南科技大学 | A method, application and prepared material for creating a material with high anthocyanin content |
Also Published As
Publication number | Publication date |
---|---|
CN107012147B (en) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107974454B (en) | Endogenous Promoter WY193 of Rubber Tree Powdery mildew and its use | |
CN102002101B (en) | Plant root development related protein ZmNR1 and coding gene thereof | |
CN107012147B (en) | Drought and/or high-salt induction promoter SlWRKY8P from tomato and application thereof | |
CN107099535B (en) | It is a kind of by low temperature, the promoter HLP4 of with high salt, arid or ABA induction | |
CN102094021B (en) | Corn callus specific promoter and cloning method and application thereof | |
CN104342441B (en) | Plant non-endosperm expression promoter SAFE S1 and acquiring method thereof | |
CN106967720B (en) | Cloning and application of stress-induced promoter SlWRKY31P | |
CN102010864B (en) | Maize Pollen Tissue-Specific Promoter and Its Expression Vector | |
CN115927311B (en) | Rose root-specific expression promoter proRcbHLH120 and its application | |
CN111995668B (en) | Corn WRKY transcription factor ZmWRKY112 and coding gene and application thereof | |
CN103789312A (en) | Corn endosperm tissue specificity promoter and application thereof | |
CN103695422B (en) | Paddy rice root tip specific expression promoter Pro-Os04g24469 and application thereof | |
CN110106200B (en) | Application of corn BBM1 gene in improving genetic transformation efficiency of plants | |
CN114478730A (en) | Wheat TaVQ14 protein and coding gene and application thereof | |
CN114480447A (en) | Application of kenaf thioredoxin-like protein gene HcTrx and its recombinant vector in VIGS silencing system | |
CN106399312B (en) | An inducible promoter NtPCS1P and its application | |
CN109913450B (en) | Promoter pSSP3 specifically expressed in rice stamen and application thereof | |
CN115927309B (en) | China rose root specific expression promoter proRcPRX10 and application thereof | |
CN104450736A (en) | Cucumber AG-like gene CsMADS24 overexpression carrier and application thereof | |
CN104762302B (en) | Cadmium strongly inducible promoter CdS2 and its application | |
CN119161440B (en) | Salt-alkali tolerance-related transcription factor LcbZIP46 and its encoding gene and application | |
CN117551655B (en) | Hybrid tulip tree low temperature resistant gene CBFs and application thereof | |
CN116769797B (en) | Application of methyl jasmonate and PpyMYC2 gene in germination | |
CN112501196B (en) | Application of tomato gene in flower stalk falling process based on expression regulation technology | |
CN106480038A (en) | A kind of specificity inducible promoter DNA sequence by Salt treatment and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200818 Termination date: 20210427 |
|
CF01 | Termination of patent right due to non-payment of annual fee |