CN106992234A - Led device - Google Patents
Led device Download PDFInfo
- Publication number
- CN106992234A CN106992234A CN201610040528.0A CN201610040528A CN106992234A CN 106992234 A CN106992234 A CN 106992234A CN 201610040528 A CN201610040528 A CN 201610040528A CN 106992234 A CN106992234 A CN 106992234A
- Authority
- CN
- China
- Prior art keywords
- layer
- type semiconductor
- electrode
- semiconductor layer
- led device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 135
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims description 53
- 239000002184 metal Substances 0.000 claims description 53
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 7
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 7
- 229910052681 coesite Inorganic materials 0.000 claims description 7
- 229910052593 corundum Inorganic materials 0.000 claims description 7
- 229910052906 cristobalite Inorganic materials 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 235000012239 silicon dioxide Nutrition 0.000 claims description 7
- 229910052950 sphalerite Inorganic materials 0.000 claims description 7
- 229910052682 stishovite Inorganic materials 0.000 claims description 7
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims description 7
- 229910052905 tridymite Inorganic materials 0.000 claims description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 7
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 239000010410 layer Substances 0.000 description 294
- 238000000034 method Methods 0.000 description 35
- 239000000463 material Substances 0.000 description 30
- 238000010586 diagram Methods 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000002356 single layer Substances 0.000 description 9
- 239000010931 gold Substances 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 4
- 229910017083 AlN Inorganic materials 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 3
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 229910003465 moissanite Inorganic materials 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/814—Bodies having reflecting means, e.g. semiconductor Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8314—Electrodes characterised by their shape extending at least partially onto an outer side surface of the bodies
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体技术领域,尤其涉及一种LED器件。The invention relates to the technical field of semiconductors, in particular to an LED device.
背景技术Background technique
发光二极管(Light-Emitting Diode,简称LED)是一种能将电能转化为光能的半导体电子元件。随着技术的不断进步,由于LED具有低功耗、低热、启动无延时、高亮度等特点,因此被广泛应用于显示器、电视机采光装饰和照明等领域。A light-emitting diode (Light-Emitting Diode, referred to as LED) is a semiconductor electronic component that can convert electrical energy into light energy. With the continuous advancement of technology, due to the characteristics of low power consumption, low heat, no delay in starting, and high brightness, LEDs are widely used in the fields of display, TV lighting decoration and lighting.
但是,目前的LED器件,尤其倒装LED器件的结构通常较复杂,相应的制造工艺也会比较繁琐,导致生产良率不高。However, the structures of current LED devices, especially flip-chip LED devices, are generally complicated, and the corresponding manufacturing process is relatively cumbersome, resulting in a low production yield.
发明内容Contents of the invention
本发明提供一种LED器件,用于解决现有的LED器件的结构和工艺流程过于复杂和繁琐的问题。The invention provides an LED device, which is used to solve the problem that the structure and technological process of the existing LED device are too complex and cumbersome.
本发明提供一种LED器件,包括:衬底、外延层、透明导电层、绝缘反射层以及第一电极和第二电极;其中,所述外延层包括位于所述衬底上的第一型半导体层和位于所述第一型半导体层部分区域表面上的第二型半导体层;所述第一电极位于所述第一型半导体层的部分区域表面上,所述第二电极位于所述第二型半导体层的部分区域表面上;所述绝缘反射层覆盖所述外延层的表面;所述透明导电层位于所述第二型半导体层和所述绝缘反射层之间。The present invention provides an LED device, comprising: a substrate, an epitaxial layer, a transparent conductive layer, an insulating reflective layer, and a first electrode and a second electrode; wherein, the epitaxial layer includes a first type semiconductor on the substrate layer and the second type semiconductor layer located on the partial area surface of the first type semiconductor layer; the first electrode is located on the partial area surface of the first type semiconductor layer, and the second electrode is located on the second on the surface of a partial region of the type semiconductor layer; the insulating reflective layer covers the surface of the epitaxial layer; the transparent conductive layer is located between the second type semiconductor layer and the insulating reflective layer.
本发明提供的LED器件中,第一型半导体层和第二型半导体层表面呈阶梯结构,第一型半导体层和第二型半导体层的表面分别设置有第一电极和第二电极,绝缘反射层覆盖露出的外延层表面,透明导电层设置在第二型半导体层和绝缘反射层之间,有效简化了LED器件的结构和制备流程,提高生产良率。In the LED device provided by the present invention, the surfaces of the first-type semiconductor layer and the second-type semiconductor layer have a stepped structure, and the surfaces of the first-type semiconductor layer and the second-type semiconductor layer are respectively provided with a first electrode and a second electrode. The epitaxial layer covers the exposed surface of the epitaxial layer, and the transparent conductive layer is arranged between the second-type semiconductor layer and the insulating reflection layer, which effectively simplifies the structure and preparation process of the LED device, and improves the production yield.
附图说明Description of drawings
图1为本发明实施例一提供的LED器件的剖面结构示意图;FIG. 1 is a schematic cross-sectional structure diagram of an LED device provided by Embodiment 1 of the present invention;
图2A为本发明实施例二提供的LED器件的剖面结构示意图;2A is a schematic cross-sectional structure diagram of an LED device provided by Embodiment 2 of the present invention;
图2B为本发明实施例二中透明导电层的俯视结构示意图;2B is a schematic top view of the transparent conductive layer in Embodiment 2 of the present invention;
图3A为本发明实施例三提供的LED器件的剖面结构示意图;3A is a schematic cross-sectional structure diagram of an LED device provided by Embodiment 3 of the present invention;
图3B为本发明实施例三中透明导电层的俯视结构示意图;3B is a schematic top view of the transparent conductive layer in Embodiment 3 of the present invention;
图4A为本发明实施例四提供的LED器件的剖面结构示意图;FIG. 4A is a schematic cross-sectional structure diagram of an LED device provided by Embodiment 4 of the present invention;
图4B为图4A的俯视结构示意图;FIG. 4B is a schematic top view of the structure of FIG. 4A;
图5A为本发明实施例五提供的一种LED器件的俯视结构示意图;FIG. 5A is a schematic top view structure diagram of an LED device provided by Embodiment 5 of the present invention;
图5B为本发明实施例五提供的另一种LED器件的俯视结构示意图;FIG. 5B is a schematic top view of another LED device provided by Embodiment 5 of the present invention;
图5C为本发明实施例五提供的又一种LED器件的俯视结构示意图。FIG. 5C is a schematic top view of another LED device provided by Embodiment 5 of the present invention.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。为了方便说明,放大或者缩小了不同层和区域的尺寸,所以图中所示大小和比例并不一定代表实际尺寸,也不反映尺寸的比例关系。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. For convenience of description, the sizes of different layers and regions are enlarged or reduced, so the sizes and ratios shown in the drawings do not necessarily represent actual sizes, nor do they reflect the proportional relationship of sizes.
图1为本发明实施例一提供的LED器件的剖面结构示意图,如图1所示,所述器件包括:衬底11、外延层12、透明导电层13、绝缘反射层14以及第一电极15和第二电极16;其中,FIG. 1 is a schematic cross-sectional structure diagram of an LED device provided by Embodiment 1 of the present invention. As shown in FIG. and the second electrode 16; wherein,
外延层12包括位于衬底11上的第一型半导体层121和位于第一型半导体层121部分区域表面上的第二型半导体层122;The epitaxial layer 12 includes a first-type semiconductor layer 121 on the substrate 11 and a second-type semiconductor layer 122 on the surface of a part of the first-type semiconductor layer 121;
第一电极15位于N型半导体层121的部分区域表面上,第二电极16位于P型半导体层122的部分区域表面上;绝缘反射层14覆盖外延层12的表面;透明导电层13位于第二型半导体层122和绝缘反射层14之间。The first electrode 15 is located on the partial area surface of the N-type semiconductor layer 121, and the second electrode 16 is located on the partial area surface of the P-type semiconductor layer 122; the insulating reflective layer 14 covers the surface of the epitaxial layer 12; the transparent conductive layer 13 is located on the second between the type semiconductor layer 122 and the insulating reflective layer 14 .
其中,衬底11具体可以为透明衬底,以实现LED器件的发光效果,可选的,衬底11可以包括但不限于蓝宝石、SiC、GaN、AlN中的任一种。外延层12可以为半导体元素,例如单晶硅、多晶硅或非晶结构的硅,也可以为混合的半导体结构,例如碳化硅、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓或硅锗(SiGe)、合金半导体或其组合。此外,外延层12可以为包含一种以上元素的半导体,这些元素可以为选自Ga,In,N,Al,Ge,As,P,Se的组合。本实施例在此不对其进行限制。Wherein, the substrate 11 may specifically be a transparent substrate to realize the luminous effect of the LED device. Optionally, the substrate 11 may include but not limited to any one of sapphire, SiC, GaN, and AlN. The epitaxial layer 12 can be a semiconductor element, such as monocrystalline silicon, polycrystalline silicon or silicon with an amorphous structure, or a mixed semiconductor structure, such as silicon carbide, indium antimonide, lead telluride, indium arsenide, indium phosphide, arsenic Gallium or gallium antimonide or silicon germanium (SiGe), alloy semiconductors or combinations thereof. In addition, the epitaxial layer 12 may be a semiconductor containing more than one element, and these elements may be a combination selected from Ga, In, N, Al, Ge, As, P, and Se. This embodiment does not limit it here.
具体的,第一型半导体层121与第二型半导体层122的导电类型不同。例如,第一型半导体层121是N型半导体层,第二型半导体层122是P型半导体层。Specifically, the conductivity types of the first-type semiconductor layer 121 and the second-type semiconductor layer 122 are different. For example, the first-type semiconductor layer 121 is an N-type semiconductor layer, and the second-type semiconductor layer 122 is a P-type semiconductor layer.
以第一型半导体层121是N型半导体层,第二型半导体层122是P型半导体层举例,外延层12自下而上依次包括N型半导体层121和覆盖部分N型半导体层121表面的P型半导体层122,即N型半导体层和P型半导体层的表面呈阶梯结构,制备这种阶梯结构的方法可以有多种,例如,可以先在衬底上依次叠加形成N型半导体层和P型半导体层,而后对P型半导体层的部分区域进行刻蚀,直至露出N型半导体层的表面,形成阶梯结构。可以理解,制备外延层12的工艺方法有多种,在此不再一一详细阐述。Taking the first-type semiconductor layer 121 as an N-type semiconductor layer and the second-type semiconductor layer 122 as a P-type semiconductor layer as an example, the epitaxial layer 12 sequentially includes the N-type semiconductor layer 121 and the surface covering part of the N-type semiconductor layer 121 from bottom to top. The P-type semiconductor layer 122, that is, the surfaces of the N-type semiconductor layer and the P-type semiconductor layer have a stepped structure. There are many ways to prepare this stepped structure. For example, the N-type semiconductor layer and the P-type semiconductor layer can be successively formed on the substrate. The P-type semiconductor layer, and then etching a part of the P-type semiconductor layer until the surface of the N-type semiconductor layer is exposed to form a ladder structure. It can be understood that there are many techniques for preparing the epitaxial layer 12 , which will not be described in detail here.
进一步的,绝缘反射层14能够保护LED器件结构,并且能够通过将LED发出的光反射至衬底,进一步提高LED器件的发光效率。可选的,绝缘反射层的结构可以为单层结构,也可以为多层结构。Furthermore, the insulating reflective layer 14 can protect the structure of the LED device, and can further improve the luminous efficiency of the LED device by reflecting the light emitted by the LED to the substrate. Optionally, the structure of the insulating reflective layer may be a single-layer structure or a multi-layer structure.
可选的,绝缘反射层14可以为多层结构,例如分布式布拉格反射镜(distributed bragg reflectors,简称DBR)或全角反射镜(Omni-DirectionalReflector,简称ODR)。Optionally, the insulating reflection layer 14 may be a multi-layer structure, such as a distributed Bragg reflector (distributed bragg reflector, DBR for short) or an omni-directional reflector (Omni-Directional Reflector, ODR for short).
其中,DBR由两种不同折射率的材料交替排列组成,每层材料的光学厚度为中心反射波长的1/4,因此是一种四分之一波长多层系统。布拉格反射镜的反射率很高,可达99%以上,因此可以有效提升LED器件的亮度,并且,结构为DBR的绝缘反射层能够避免金属反射层存在的光吸收问题,还可以通过改变材料的折射率或厚度来调整能隙位置。进一步的,DBR可以由TiO2、SiO2、Al2O3、Ta2O5、Si3N4、ZnS、CaF2中的任意两种材料制备形成,具体的,制备DBR的方法可以采用通常的DBR制备方法,在此不再详细阐述。Among them, the DBR is composed of two materials with different refractive indices arranged alternately, and the optical thickness of each layer of material is 1/4 of the central reflection wavelength, so it is a quarter-wavelength multilayer system. The reflectivity of the Bragg reflector is very high, up to 99%, so it can effectively improve the brightness of the LED device, and the insulating reflective layer with a structure of DBR can avoid the light absorption problem of the metal reflective layer, and can also be changed by changing the material Refractive index or thickness to adjust the energy gap position. Further, the DBR can be prepared from any two materials of TiO2, SiO2, Al2O3, Ta2O5, Si3N4, ZnS, and CaF2. Specifically, the method for preparing the DBR can be a common DBR preparation method, which will not be described in detail here.
其中,ODR可以由至少一金属层与至少一绝缘层组成,且金属层覆盖绝缘层,位于绝缘层上方,以避免与半导体直接接触。进一步的,金属层可以由Au、Ag、Al、Cu、Pd、Rh、Cr、Ti中的任意材料制备形成,绝缘层可以由TiO2、SiO2、Al2O3、Ta2O5、Si3N4、ZnS、CaF2中的任意材料制备形成。具体的,制备ODR的方法可以采用通常的ODR制备方法,在此不再详细阐述。Wherein, the ODR may be composed of at least one metal layer and at least one insulating layer, and the metal layer covers the insulating layer and is located above the insulating layer to avoid direct contact with the semiconductor. Further, the metal layer can be made of any material in Au, Ag, Al, Cu, Pd, Rh, Cr, Ti, and the insulating layer can be made of any material in TiO2, SiO2, Al2O3, Ta2O5, Si3N4, ZnS, CaF2 Prepare to form. Specifically, the method for preparing the ODR may adopt a common ODR preparation method, which will not be described in detail here.
再可选的,绝缘反射层14可以为单层结构,进一步的,绝缘反射层可以包含矽胶与氧化钛的混合物。单层结构的绝缘反射层可以有效简化器件结构,节省工艺。Optionally, the insulating reflective layer 14 may have a single-layer structure, and further, the insulating reflective layer may include a mixture of silica gel and titanium oxide. The insulating reflective layer with a single-layer structure can effectively simplify the structure of the device and save the process.
其中,形成于第二型半导体层和所述绝缘反射层之间的透明导电层(Transparent Conductive Layer,简称TCL),具备高导电率和较好的透光特性,机械硬度高,化学稳定性好,并且能够达到扩散电流,降低接触电阻的效果。进一步的,透明导电层可以包括但不限于NiAu、ITO、ZnO中的任一种。Among them, the transparent conductive layer (Transparent Conductive Layer, referred to as TCL) formed between the second-type semiconductor layer and the insulating reflective layer has high electrical conductivity and good light transmission characteristics, high mechanical hardness, and good chemical stability. , and can achieve the effect of spreading current and reducing contact resistance. Further, the transparent conductive layer may include but not limited to any one of NiAu, ITO, and ZnO.
具体的,第一电极形成于第一型半导体层表面,与第一型半导体层电连接,第二电极形成于第二型半导体层表面,与第二型半导体层电连接,且第一电极和第二电极分离设置,覆盖外延层表面的绝缘反射层将第一电极和第二电极隔离开。进一步的,第一电极和第二电极的材料可以为Ti、Cr、金、银、铝、铂或钼等,具体材料的选择可根据实际情况而定。优选的,第一电极和第二电极可以通过蒸镀、溅镀、印刷工艺或电镀工艺在同一工艺环节中共同形成,以简化工艺流程。实际应用中,第一电极和第二电极可以为与第一方向平行的条形电极。Specifically, the first electrode is formed on the surface of the first type semiconductor layer and is electrically connected to the first type semiconductor layer, the second electrode is formed on the surface of the second type semiconductor layer and is electrically connected to the second type semiconductor layer, and the first electrode and The second electrodes are separated, and the insulating reflective layer covering the surface of the epitaxial layer separates the first electrodes from the second electrodes. Further, the materials of the first electrode and the second electrode may be Ti, Cr, gold, silver, aluminum, platinum or molybdenum, etc., and the selection of specific materials may be determined according to actual conditions. Preferably, the first electrode and the second electrode can be formed together in the same process link by evaporation, sputtering, printing process or electroplating process, so as to simplify the process flow. In practical application, the first electrode and the second electrode may be strip electrodes parallel to the first direction.
本实施例提供的LED器件,第一型半导体层和第二型半导体层表面呈阶梯结构,第一型半导体层和第二型半导体层的表面分别设置有第一电极和第二电极,绝缘反射层覆盖露出的外延层表面,透明导电层设置在第二型半导体层和绝缘反射层之间,有效简化了LED器件的结构和制备流程,提高生产良率。In the LED device provided in this embodiment, the surfaces of the first-type semiconductor layer and the second-type semiconductor layer have a stepped structure, and the surfaces of the first-type semiconductor layer and the second-type semiconductor layer are respectively provided with a first electrode and a second electrode, and the insulating reflection The epitaxial layer covers the exposed surface of the epitaxial layer, and the transparent conductive layer is arranged between the second-type semiconductor layer and the insulating reflection layer, which effectively simplifies the structure and preparation process of the LED device, and improves the production yield.
图2A为本发明实施例二提供的LED器件的剖面结构示意图,如图2A所示,所述器件包括:FIG. 2A is a schematic cross-sectional structure diagram of an LED device provided by Embodiment 2 of the present invention. As shown in FIG. 2A, the device includes:
衬底21、外延层22、透明导电层23、绝缘反射层24以及第一电极25和第二电极26;其中,A substrate 21, an epitaxial layer 22, a transparent conductive layer 23, an insulating reflective layer 24, and a first electrode 25 and a second electrode 26; wherein,
外延层22包括位于衬底21上的N型半导体层221和位于N型半导体层221部分区域表面上的P型半导体层222;The epitaxial layer 22 includes an N-type semiconductor layer 221 on the substrate 21 and a P-type semiconductor layer 222 on the surface of a part of the N-type semiconductor layer 221;
第一电极25位于N型半导体层221的部分区域表面上,第二电极26位于P型半导体层222的部分区域表面上;绝缘反射层24覆盖外延层22的表面;透明导电层23位于P型半导体层222和绝缘反射层24之间,透明导电层23包括多个分离设置的透明导电单元231。The first electrode 25 is located on the partial area surface of the N-type semiconductor layer 221, and the second electrode 26 is located on the partial area surface of the P-type semiconductor layer 222; the insulating reflective layer 24 covers the surface of the epitaxial layer 22; the transparent conductive layer 23 is located on the P-type semiconductor layer 222. Between the semiconductor layer 222 and the insulating reflective layer 24 , the transparent conductive layer 23 includes a plurality of transparent conductive units 231 arranged separately.
其中,衬底21具体可以为透明衬底,以实现LED器件的发光效果,可选的,衬底21可以包括但不限于蓝宝石、SiC、GaN、AlN中的任一种。外延层22可以为半导体元素,例如单晶硅、多晶硅或非晶结构的硅,也可以为混合的半导体结构,例如碳化硅、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓或硅锗(SiGe)、合金半导体或其组合。此外,外延层12可以为包含一种以上元素的半导体,这些元素可以为选自Ga,In,N,Al,Ge,As,P,Se的组合。本实施例在此不对其进行限制。Wherein, the substrate 21 may specifically be a transparent substrate to realize the luminous effect of the LED device. Optionally, the substrate 21 may include but not limited to any one of sapphire, SiC, GaN, and AlN. The epitaxial layer 22 can be a semiconductor element, such as single crystal silicon, polycrystalline silicon or silicon with an amorphous structure, or a mixed semiconductor structure, such as silicon carbide, indium antimonide, lead telluride, indium arsenide, indium phosphide, arsenic Gallium or gallium antimonide or silicon germanium (SiGe), alloy semiconductors or combinations thereof. In addition, the epitaxial layer 12 may be a semiconductor containing more than one element, and these elements may be a combination selected from Ga, In, N, Al, Ge, As, P, and Se. This embodiment does not limit it here.
具体的,外延层22自下而上依次包括N型半导体层221和覆盖部分N型半导体层221表面的P型半导体层222,即N型半导体层和P型半导体层的表面呈阶梯结构,制备这种阶梯结构的方法可以有多种,例如,可以先在衬底上依次叠加形成N型半导体层和P型半导体层,而后对P型半导体层的部分区域进行刻蚀,直至露出N型半导体层的表面,形成阶梯结构。可以理解,制备外延层22的工艺方法有多种,在此不再一一详细阐述。Specifically, the epitaxial layer 22 sequentially includes an N-type semiconductor layer 221 and a P-type semiconductor layer 222 covering part of the surface of the N-type semiconductor layer 221 from bottom to top, that is, the surfaces of the N-type semiconductor layer and the P-type semiconductor layer have a stepped structure. There are many methods for this stepped structure. For example, an N-type semiconductor layer and a P-type semiconductor layer can be sequentially stacked on the substrate to form an N-type semiconductor layer, and then a part of the P-type semiconductor layer is etched until the N-type semiconductor layer is exposed. The surface of the layer forms a ladder structure. It can be understood that there are many techniques for preparing the epitaxial layer 22 , which will not be described in detail here.
进一步的,绝缘反射层24能够保护LED器件结构,并且能够通过将LED发出的光反射至衬底,进一步提高LED器件的发光效率。可选的,绝缘反射层的结构可以为单层结构,也可以为多层结构。Furthermore, the insulating reflective layer 24 can protect the structure of the LED device, and can further improve the luminous efficiency of the LED device by reflecting the light emitted by the LED to the substrate. Optionally, the structure of the insulating reflective layer may be a single-layer structure or a multi-layer structure.
可选的,绝缘反射层可以为多层结构,例如分布式布拉格反射镜(distributed bragg reflectors,简称DBR)或全角反射镜(Omni-DirectionalReflector,简称ODR)。Optionally, the insulating reflection layer may be a multilayer structure, such as a distributed Bragg reflector (distributed bragg reflector, DBR for short) or an omni-directional reflector (Omni-Directional Reflector, ODR for short).
其中,DBR由两种不同折射率的材料交替排列组成,每层材料的光学厚度为中心反射波长的1/4,因此是一种四分之一波长多层系统。布拉格反射镜的反射率很高,可达99%以上,因此可以有效提升LED器件的亮度,并且,结构为DBR的绝缘反射层能够避免金属反射层存在的光吸收问题,还可以通过改变材料的折射率或厚度来调整能隙位置。进一步的,DBR可以由TiO2、SiO2、Al2O3、Ta2O5、Si3N4、ZnS、CaF2中的任意两种材料制备形成,具体的,制备DBR的方法可以采用通常的DBR制备方法,在此不再详细阐述。Among them, the DBR is composed of two materials with different refractive indices arranged alternately, and the optical thickness of each layer of material is 1/4 of the central reflection wavelength, so it is a quarter-wavelength multilayer system. The reflectivity of the Bragg reflector is very high, up to 99%, so it can effectively improve the brightness of the LED device, and the insulating reflective layer with a structure of DBR can avoid the light absorption problem of the metal reflective layer, and can also be changed by changing the material Refractive index or thickness to adjust the energy gap position. Further, the DBR can be prepared from any two materials of TiO2, SiO2, Al2O3, Ta2O5, Si3N4, ZnS, and CaF2. Specifically, the method for preparing the DBR can be a common DBR preparation method, which will not be described in detail here.
其中,ODR可以由至少一金属层与至少一绝缘层组成,且金属层覆盖绝缘层,位于绝缘层上方,以避免与半导体直接接触。进一步的,金属层材料可以由Au、Ag、Al、Cu、Pd、Rh、Cr、Ti中的任意材料制备形成,绝缘层可以由TiO2、SiO2、Al2O3、Ta2O5、Si3N4、ZnS、CaF2中的任意材料制备形成。具体的,制备ODR的方法可以采用通常的ODR制备方法,在此不再详细阐述。Wherein, the ODR may be composed of at least one metal layer and at least one insulating layer, and the metal layer covers the insulating layer and is located above the insulating layer to avoid direct contact with the semiconductor. Further, the metal layer material can be prepared from any material in Au, Ag, Al, Cu, Pd, Rh, Cr, Ti, and the insulating layer can be made of any material in TiO2, SiO2, Al2O3, Ta2O5, Si3N4, ZnS, CaF2 Material preparation forms. Specifically, the method for preparing the ODR may adopt a common ODR preparation method, which will not be described in detail here.
再可选的,绝缘反射层可以为单层结构,进一步的,绝缘反射层可以包含矽胶与氧化钛的混合物。单层结构的绝缘反射层可以有效简化器件结构,节省工艺。Optionally, the insulating reflective layer may have a single-layer structure, and further, the insulating reflective layer may include a mixture of silica gel and titanium oxide. The insulating reflective layer with a single-layer structure can effectively simplify the structure of the device and save the process.
具体的,第一电极形成于N型半导体层表面,与N型半导体层电连接,第二电极形成于P型半导体层表面,与P型半导体层电连接,且第一电极和第二电极分离设置,覆盖外延层表面的绝缘反射层将第一电极和第二电极隔离开。进一步的,第一电极和第二电极的材料可以为金、银、铝、铂或钼等,具体材料的选择可根据实际情况而定。优选的,第一电极和第二电极可以通过蒸镀、溅镀、印刷工艺或电镀工艺在同一工艺环节中共同形成,以简化工艺流程。Specifically, the first electrode is formed on the surface of the N-type semiconductor layer and is electrically connected to the N-type semiconductor layer; the second electrode is formed on the surface of the P-type semiconductor layer and is electrically connected to the P-type semiconductor layer, and the first electrode and the second electrode are separated It is provided that the insulating reflective layer covering the surface of the epitaxial layer isolates the first electrode from the second electrode. Further, the material of the first electrode and the second electrode may be gold, silver, aluminum, platinum or molybdenum, etc., and the selection of specific materials may be determined according to actual conditions. Preferably, the first electrode and the second electrode can be formed together in the same process link by evaporation, sputtering, printing process or electroplating process, so as to simplify the process flow.
其中,形成于P型半导体层和所述绝缘反射层之间的透明导电层(Transparent Conductive Layer,简称TCL),具备高导电率和较好的透光特性,机械硬度高,化学稳定性好,并且能够达到扩散电流,降低接触电阻的效果。进一步的,透明导电层可以包括但不限于NiAu、ITO、ZnO中的任一种。Wherein, the transparent conductive layer (Transparent Conductive Layer, referred to as TCL) formed between the P-type semiconductor layer and the insulating reflective layer has high electrical conductivity and good light transmission characteristics, high mechanical hardness, and good chemical stability. And it can achieve the effect of spreading current and reducing contact resistance. Further, the transparent conductive layer may include but not limited to any one of NiAu, ITO, and ZnO.
优选的,为了减小透明导电层对LED器件的发光影响,使得更多的光能够通过绝缘反射层反射至衬底,透明导电层23可以包括多个分离设置的透明导电单元231,使更多的光通过各透明导电单元231之间的间隙直接照射在绝缘反射层上发生反射,抵达衬底,从而在实现了扩散电流,降低接触电阻的基础上,还能够进一步提高LED器件的发光效率。Preferably, in order to reduce the influence of the transparent conductive layer on the light emission of the LED device, so that more light can be reflected to the substrate through the insulating reflective layer, the transparent conductive layer 23 may include a plurality of transparent conductive units 231 arranged separately, so that more The light is directly irradiated on the insulating reflective layer through the gaps between the transparent conductive units 231 to reflect and reach the substrate, so that the luminous efficiency of the LED device can be further improved on the basis of realizing diffusion current and reducing contact resistance.
本实施例中的透明导电层23包括多个分离设置的透明导电单元231,透明导电单元231之间是互相独立的,没有发生直接接触,而是通过第二电极间接连接导通。举例来说,图2B为本发明实施例二中透明导电层的俯视结构示意图,如图2B所示,透明导电层23包括多个分离设置的透明导电单元231,透明导电单元231之间不直接接触。需要说明的是,图中所示只是一种举例的实施方式,而并未对透明导电层23的具体参数进行限制。例如,透明导电单元231的排布方式、形状等都可以根据器件的尺寸和结构设定。The transparent conductive layer 23 in this embodiment includes a plurality of separate transparent conductive units 231 , and the transparent conductive units 231 are independent of each other, without direct contact, but indirectly connected and conducted through the second electrode. For example, FIG. 2B is a schematic top view of the transparent conductive layer in Embodiment 2 of the present invention. As shown in FIG. 2B , the transparent conductive layer 23 includes a plurality of separate transparent conductive units 231, and the transparent conductive units 231 are not directly connected to each other. touch. It should be noted that what is shown in the figure is only an exemplary embodiment, and does not limit the specific parameters of the transparent conductive layer 23 . For example, the arrangement and shape of the transparent conductive units 231 can be set according to the size and structure of the device.
本实施例提供的LED器件,N型半导体层和P型半导体层表面呈阶梯结构,N型半导体层和P型半导体层的表面分别设置有第一电极和第二电极,绝缘反射层覆盖露出的外延层表面,P型半导体层和绝缘反射层之间设置有透明导电层,有效简化了LED器件的结构和制备流程,提高生产良率。并且透明导电层包括多个分离设置的透明导电单元,使更多的光直接照射在绝缘反射层上发生反射,抵达衬底,从而在实现了扩散电流,降低接触电阻的基础上,进一步提高LED器件的发光效率。In the LED device provided in this embodiment, the surfaces of the N-type semiconductor layer and the P-type semiconductor layer have a stepped structure, the surfaces of the N-type semiconductor layer and the P-type semiconductor layer are respectively provided with a first electrode and a second electrode, and the insulating reflective layer covers the exposed On the surface of the epitaxial layer, a transparent conductive layer is arranged between the P-type semiconductor layer and the insulating reflection layer, which effectively simplifies the structure and manufacturing process of the LED device, and improves the production yield. And the transparent conductive layer includes a plurality of transparent conductive units separately arranged, so that more light is directly irradiated on the insulating reflective layer to reflect and reach the substrate, so as to realize the diffusion current and reduce the contact resistance, and further improve the LED performance. Luminous efficiency of the device.
图3A为本发明实施例三提供的LED器件的剖面结构示意图,如图3A所示,所述器件包括:Fig. 3A is a schematic cross-sectional structure diagram of an LED device provided by Embodiment 3 of the present invention. As shown in Fig. 3A, the device includes:
衬底31、外延层32、透明导电层33、绝缘反射层34以及第一电极35和第二电极36;其中,A substrate 31, an epitaxial layer 32, a transparent conductive layer 33, an insulating reflective layer 34, and a first electrode 35 and a second electrode 36; wherein,
外延层32包括位于衬底31上的N型半导体层321和位于N型半导体层321部分区域表面上的P型半导体层322;The epitaxial layer 32 includes an N-type semiconductor layer 321 on the substrate 31 and a P-type semiconductor layer 322 on the surface of a part of the N-type semiconductor layer 321;
第一电极35位于N型半导体层321的部分区域表面上,第二电极36位于P型半导体层322的部分区域表面上;绝缘反射层34覆盖外延层32的表面;透明导电层33位于P型半导体层322和绝缘反射层34之间,透明导电层33开设有开孔331,开孔率不大于90%。The first electrode 35 is located on the partial area surface of the N-type semiconductor layer 321, and the second electrode 36 is located on the partial area surface of the P-type semiconductor layer 322; the insulating reflective layer 34 covers the surface of the epitaxial layer 32; the transparent conductive layer 33 is located on the P-type semiconductor layer. Between the semiconductor layer 322 and the insulating reflective layer 34, the transparent conductive layer 33 is provided with openings 331, and the opening ratio is not greater than 90%.
其中,所述开孔率可以通过以下公式计算获得:开孔率=(1-透明导电层的面积/P型半导体层的面积)×100%。这里提到的透明导电层的面积指的是透明导电层的实际面积,即不包括开孔的透明导电层的面积。Wherein, the porosity ratio can be calculated by the following formula: porosity ratio=(1-area of the transparent conductive layer/area of the P-type semiconductor layer)×100%. The area of the transparent conductive layer mentioned here refers to the actual area of the transparent conductive layer, that is, the area of the transparent conductive layer excluding openings.
其中,衬底具体可以为透明衬底,以实现LED器件的发光效果,可选的,衬底可以包括但不限于蓝宝石、SiC、GaN、AlN中的任一种。外延层可以为半导体元素,例如单晶硅、多晶硅或非晶结构的硅,也可以为混合的半导体结构,例如碳化硅、锑化铟、碲化铅、砷化铟、磷化铟、砷化镓或锑化镓或硅锗(SiGe)、合金半导体或其组合。此外,外延层12可以为包含一种以上元素的半导体,这些元素可以为选自Ga,In,N,Al,Ge,As,P,Se的组合。本实施例在此不对其进行限制。Wherein, the substrate may specifically be a transparent substrate, so as to realize the light emitting effect of the LED device. Optionally, the substrate may include but not limited to any one of sapphire, SiC, GaN, and AlN. The epitaxial layer can be a semiconductor element, such as monocrystalline silicon, polycrystalline silicon or silicon with an amorphous structure, or a mixed semiconductor structure, such as silicon carbide, indium antimonide, lead telluride, indium arsenide, indium phosphide, arsenide Gallium or gallium antimonide or silicon germanium (SiGe), alloy semiconductors or combinations thereof. In addition, the epitaxial layer 12 may be a semiconductor containing more than one element, and these elements may be a combination selected from Ga, In, N, Al, Ge, As, P, and Se. This embodiment does not limit it here.
具体的,外延层自下而上依次包括N型半导体层和覆盖部分N型半导体层表面的P型半导体层,即N型半导体层和P型半导体层的表面呈阶梯结构,制备这种阶梯结构的方法可以有多种,例如,可以先在衬底上依次叠加形成N型半导体层和P型半导体层,而后对P型半导体层的部分区域进行刻蚀,直至露出N型半导体层的表面,形成阶梯结构。可以理解,制备外延层22的工艺方法有多种,在此不再一一详细阐述。Specifically, the epitaxial layer includes an N-type semiconductor layer and a P-type semiconductor layer covering part of the surface of the N-type semiconductor layer from bottom to top, that is, the surfaces of the N-type semiconductor layer and the P-type semiconductor layer have a ladder structure, and the ladder structure is prepared. There are many ways to do this. For example, an N-type semiconductor layer and a P-type semiconductor layer can be sequentially formed on the substrate, and then a part of the P-type semiconductor layer is etched until the surface of the N-type semiconductor layer is exposed. form a ladder structure. It can be understood that there are many techniques for preparing the epitaxial layer 22 , which will not be described in detail here.
进一步的,绝缘反射层能够保护LED器件结构,并且能够通过将LED发出的光反射至衬底,进一步提高LED器件的发光效率。可选的,绝缘反射层的结构可以为单层结构,也可以为多层结构。Furthermore, the insulating reflective layer can protect the structure of the LED device, and can further improve the luminous efficiency of the LED device by reflecting the light emitted by the LED to the substrate. Optionally, the structure of the insulating reflective layer may be a single-layer structure or a multi-layer structure.
可选的,绝缘反射层可以为多层结构,例如分布式布拉格反射镜(distributed bragg reflectors,简称DBR)或全角反射镜(Omni-DirectionalReflector,简称ODR)。Optionally, the insulating reflection layer may be a multilayer structure, such as a distributed Bragg reflector (distributed bragg reflector, DBR for short) or an omni-directional reflector (Omni-Directional Reflector, ODR for short).
其中,DBR由两种不同折射率的材料交替排列组成,每层材料的光学厚度为中心反射波长的1/4,因此是一种四分之一波长多层系统。布拉格反射镜的反射率很高,可达99%以上,因此可以有效提升LED器件的亮度,并且,结构为DBR的绝缘反射层能够避免金属反射层存在的光吸收问题,还可以通过改变材料的折射率或厚度来调整能隙位置。进一步的,DBR可以由TiO2、SiO2、Al2O3、Ta2O5、Si3N4、ZnS、CaF2中的任意两种材料制备形成,具体的,制备DBR的方法可以采用通常的DBR制备方法,在此不再详细阐述。Among them, the DBR is composed of two materials with different refractive indices arranged alternately, and the optical thickness of each layer of material is 1/4 of the central reflection wavelength, so it is a quarter-wavelength multilayer system. The reflectivity of the Bragg reflector is very high, up to 99%, so it can effectively improve the brightness of the LED device, and the insulating reflective layer with a structure of DBR can avoid the light absorption problem of the metal reflective layer, and can also be changed by changing the material Refractive index or thickness to adjust the energy gap position. Further, the DBR can be prepared from any two materials of TiO2, SiO2, Al2O3, Ta2O5, Si3N4, ZnS, and CaF2. Specifically, the method for preparing the DBR can be a common DBR preparation method, which will not be described in detail here.
其中,ODR可以由至少一金属层与至少一绝缘层组成,且金属层覆盖绝缘层,位于绝缘层上方,以避免与半导体直接接触。进一步的,金属层材料可以由Au、Ag、Al、Cu、Pd、Rh、Cr、Ti中的任意材料制备形成,绝缘层可以由TiO2、SiO2、Al2O3、Ta2O5、Si3N4、ZnS、CaF2中的任意材料制备形成。具体的,制备ODR的方法可以采用通常的ODR制备方法,在此不再详细阐述。Wherein, the ODR may be composed of at least one metal layer and at least one insulating layer, and the metal layer covers the insulating layer and is located above the insulating layer to avoid direct contact with the semiconductor. Further, the metal layer material can be prepared from any material in Au, Ag, Al, Cu, Pd, Rh, Cr, Ti, and the insulating layer can be made of any material in TiO2, SiO2, Al2O3, Ta2O5, Si3N4, ZnS, CaF2 Material preparation forms. Specifically, the method for preparing the ODR may adopt a common ODR preparation method, which will not be described in detail here.
再可选的,绝缘反射层可以为单层结构,进一步的,绝缘反射层可以包含矽胶与氧化钛的混合物。单层结构的绝缘反射层可以有效简化器件结构,节省工艺。Optionally, the insulating reflective layer may have a single-layer structure, and further, the insulating reflective layer may include a mixture of silica gel and titanium oxide. The insulating reflective layer with a single-layer structure can effectively simplify the structure of the device and save the process.
具体的,第一电极形成于N型半导体层表面,与N型半导体层电连接,第二电极形成于P型半导体层表面,与P型半导体层电连接,且第一电极和第二电极分离设置,覆盖外延层表面的绝缘反射层将第一电极和第二电极隔离开。进一步的,第一电极和第二电极的材料可以为Ti、Cr、金、银、铝、铂或钼等,具体材料的选择可根据实际情况而定。优选的,第一电极和第二电极可以通过蒸镀、溅镀、印刷工艺或电镀工艺在同一工艺环节中共同形成,以简化工艺流程。实际应用中,第一电极和第二电极可以为与第一方向平行的条形电极。Specifically, the first electrode is formed on the surface of the N-type semiconductor layer and is electrically connected to the N-type semiconductor layer; the second electrode is formed on the surface of the P-type semiconductor layer and is electrically connected to the P-type semiconductor layer, and the first electrode and the second electrode are separated It is provided that the insulating reflective layer covering the surface of the epitaxial layer isolates the first electrode from the second electrode. Further, the materials of the first electrode and the second electrode may be Ti, Cr, gold, silver, aluminum, platinum or molybdenum, etc., and the selection of specific materials may be determined according to actual conditions. Preferably, the first electrode and the second electrode can be formed together in the same process link by evaporation, sputtering, printing process or electroplating process, so as to simplify the process flow. In practical application, the first electrode and the second electrode may be strip electrodes parallel to the first direction.
其中,形成于P型半导体层和所述绝缘反射层之间的透明导电层(Transparent Conductive Layer,简称TCL),具备高导电率和较好的透光特性,机械硬度高,化学稳定性好,并且能够达到扩散电流,降低接触电阻的效果。进一步的,透明导电层可以包括但不限于NiAu、ITO、ZnO中的任一种。Wherein, the transparent conductive layer (Transparent Conductive Layer, referred to as TCL) formed between the P-type semiconductor layer and the insulating reflective layer has high electrical conductivity and good light transmission characteristics, high mechanical hardness, and good chemical stability. And it can achieve the effect of spreading current and reducing contact resistance. Further, the transparent conductive layer may include but not limited to any one of NiAu, ITO, and ZnO.
本实施例中,为了减小透明导电层对LED器件的发光影响,使得更多的光能够通过绝缘反射层反射至衬底,透明导电层开设有开孔,以使更多的光通过开孔直接照射在绝缘反射层上发生反射,抵达衬底,从而在实现了扩散电流,降低接触电阻的基础上,还能够进一步提高LED器件的发光效率。具体的,透明导电层的开孔率不大于90%,以保证扩散电流,降低接触电阻的效果。优选的,开孔331可以均匀分布,使得LED器件发出的光更加均匀,优化发光效果。In this embodiment, in order to reduce the influence of the transparent conductive layer on the light emission of the LED device, so that more light can be reflected to the substrate through the insulating reflective layer, the transparent conductive layer is provided with openings, so that more light can pass through the openings Direct irradiation is reflected on the insulating reflective layer and reaches the substrate, so that the luminous efficiency of the LED device can be further improved on the basis of realizing the diffusion current and reducing the contact resistance. Specifically, the open porosity of the transparent conductive layer is not greater than 90%, so as to ensure diffusion current and reduce contact resistance. Preferably, the openings 331 can be uniformly distributed, so that the light emitted by the LED device is more uniform, and the luminous effect is optimized.
本实施例中的透明导电层33为开设有开孔331的连续导电膜。举例来说,图3B为本发明实施例三中透明导电层的俯视结构示意图,如图3B所示,透明导电层33为连续导电膜,其上开设有开孔331。需要说明的是,图中所示只是一种举例的实施方式,而并未对开孔331的具体参数进行限制。例如,开孔的排布方式、形状等都可以根据器件的尺寸和结构设定。The transparent conductive layer 33 in this embodiment is a continuous conductive film with openings 331 opened therein. For example, FIG. 3B is a schematic top view of the transparent conductive layer in the third embodiment of the present invention. As shown in FIG. 3B , the transparent conductive layer 33 is a continuous conductive film with openings 331 thereon. It should be noted that what is shown in the figure is only an exemplary embodiment, and does not limit the specific parameters of the opening 331 . For example, the arrangement and shape of the openings can be set according to the size and structure of the device.
本实施例提供的LED器件,N型半导体层和P型半导体层表面呈阶梯结构,N型半导体层和P型半导体层的表面分别设置有第一电极和第二电极,绝缘反射层覆盖露出的外延层表面,P型半导体层和绝缘反射层之间设置有透明导电层,有效简化了LED器件的结构和制备流程,提高生产良率。并且透明导电层开设有开孔,使更多的光直接照射在绝缘反射层上发生反射,抵达衬底,从而在实现了扩散电流,降低接触电阻的基础上,进一步提高LED器件的发光效率。In the LED device provided in this embodiment, the surfaces of the N-type semiconductor layer and the P-type semiconductor layer have a stepped structure, the surfaces of the N-type semiconductor layer and the P-type semiconductor layer are respectively provided with a first electrode and a second electrode, and the insulating reflective layer covers the exposed On the surface of the epitaxial layer, a transparent conductive layer is arranged between the P-type semiconductor layer and the insulating reflection layer, which effectively simplifies the structure and manufacturing process of the LED device, and improves the production yield. And the transparent conductive layer has openings, so that more light can be directly irradiated on the insulating reflective layer to reflect and reach the substrate, so as to realize the diffusion current and reduce the contact resistance, and further improve the luminous efficiency of the LED device.
可选的,为了提高电极与外界电连接的可靠性,可以增大电极的电接触面积,相应的,图4A为本发明实施例四提供的LED器件的剖面结构示意图,如图4A所示,在具有衬底、外延层、透明导电层以及第一电极和第二电极的实施例一至实施例三中任一实施例所述的LED器件基础上,所述LED器件还包括:Optionally, in order to improve the reliability of the electrical connection between the electrode and the outside world, the electrical contact area of the electrode can be increased. Correspondingly, FIG. 4A is a schematic cross-sectional structure diagram of the LED device provided by Embodiment 4 of the present invention, as shown in FIG. 4A , On the basis of the LED device described in any one of Embodiments 1 to 3 having a substrate, an epitaxial layer, a transparent conductive layer, and a first electrode and a second electrode, the LED device further includes:
分离设置的第一金属层41和第二金属层42;The first metal layer 41 and the second metal layer 42 arranged separately;
第一金属层41覆盖第一电极和部分绝缘反射层;第二金属层42覆盖第二电极和部分绝缘反射层。The first metal layer 41 covers the first electrode and part of the insulating reflective layer; the second metal layer 42 covers the second electrode and part of the insulating reflective layer.
具体的,图4B为图4A的俯视结构示意图。其中,第一金属层41和第二金属层42可以为Ti、Cr、金、银、铝、铂或钼等,具体材料的选择可根据实际情况而定。优选的,第一金属层41、第二金属层42、第一电极和第二电极可以通过蒸镀、溅镀、印刷工艺或电镀工艺在同一工艺环节中共同形成,以简化工艺流程。Specifically, FIG. 4B is a schematic top view of the structure of FIG. 4A. Wherein, the first metal layer 41 and the second metal layer 42 can be Ti, Cr, gold, silver, aluminum, platinum or molybdenum, etc., and the selection of specific materials can be determined according to the actual situation. Preferably, the first metal layer 41 , the second metal layer 42 , the first electrode and the second electrode can be jointly formed in the same process by evaporation, sputtering, printing process or electroplating process, so as to simplify the process flow.
本实施例提供的LED器件,通过设置与第一电极连接的第一金属层和与第二电极连接的第二金属层,能够增大器件与外界的电接触面积,提高器件可靠性。The LED device provided by this embodiment can increase the electrical contact area between the device and the outside world and improve the reliability of the device by providing the first metal layer connected to the first electrode and the second metal layer connected to the second electrode.
图5A为本发明实施例五提供的一种LED器件的俯视结构示意图,如图5A所示,在具有衬底、外延层、透明导电层以及第一电极和第二电极的实施例一至实施例三中任一实施例所述的LED器件基础上,Fig. 5A is a schematic top view structure diagram of an LED device provided by Embodiment 5 of the present invention. On the basis of the LED device described in any one of the three embodiments,
第一电极朝第二电极延伸出至少一个第一金属条51;第二电极朝第一电极延伸出至少一个第二金属条52;第一金属条51和第二金属条52交替排布。At least one first metal strip 51 extends from the first electrode toward the second electrode; at least one second metal strip 52 extends from the second electrode toward the first electrode; the first metal strips 51 and the second metal strips 52 are alternately arranged.
实际应用中,所述LED器件可以采用倒装技术进行封装。In practical application, the LED device can be packaged by flip-chip technology.
具体的,第一金属条51和第二金属条52平行。为了节省占用面积,第一电极和第二电极,与第一金属条51和第二金属条52垂直。Specifically, the first metal strip 51 and the second metal strip 52 are parallel. In order to save occupied area, the first electrode and the second electrode are perpendicular to the first metal strip 51 and the second metal strip 52 .
其中,第一金属条51和第二金属条52可以为Ti、Cr、金、银、铝、铂或钼等,具体材料的选择可根据实际情况而定。优选的,第一金属条51、第二金属条52、第一电极和第二电极可以通过蒸镀、溅镀、印刷工艺或电镀工艺在同一工艺环节中共同形成,以简化工艺流程。第一金属条51和第二金属条52可以帮助电流扩散,从而提高LED器件的发光效率。Wherein, the first metal strip 51 and the second metal strip 52 can be Ti, Cr, gold, silver, aluminum, platinum or molybdenum, etc., and the selection of specific materials can be determined according to the actual situation. Preferably, the first metal strip 51 , the second metal strip 52 , the first electrode and the second electrode can be jointly formed in the same process by evaporation, sputtering, printing process or electroplating process, so as to simplify the process flow. The first metal strip 51 and the second metal strip 52 can help current spread, thereby improving the luminous efficiency of the LED device.
为了提高LED器件的稳定性和可靠性,如图5B所示,图5B为本发明实施例五提供的另一种LED器件的俯视结构示意图,在图5A所示实施方式的基础上,绝缘反射层覆盖第一金属条51和第二金属条52,并且覆盖第一电极和第二电极的部分区域。举例来说,绝缘反射层可以覆盖第一电极和第二电极除其两端以外的区域。In order to improve the stability and reliability of the LED device, as shown in Figure 5B, Figure 5B is a schematic top view of another LED device provided in Embodiment 5 of the present invention. On the basis of the implementation shown in Figure 5A, the insulating reflection The layer covers the first metal strip 51 and the second metal strip 52 and covers a partial area of the first electrode and the second electrode. For example, the insulating reflective layer may cover the first electrode and the second electrode except the two ends thereof.
上述实施方式中,在第一金属条和第二金属条,以及第一电极和第二电极的部分表面覆盖绝缘反射层,能够对电极起到保护作用,提高器件的可靠性和稳定性。In the above embodiments, the first metal strip and the second metal strip, and part of the first electrode and the second electrode are covered with an insulating reflective layer, which can protect the electrodes and improve the reliability and stability of the device.
如图5C所示,图5C为本发明实施例五提供的又一种LED器件的俯视结构示意图,在图5B所示实施方式的基础上,LED器件还包括:分离设置的第三金属层53和第四金属层54;As shown in FIG. 5C, FIG. 5C is a schematic top view structure diagram of another LED device provided by Embodiment 5 of the present invention. On the basis of the embodiment shown in FIG. 5B, the LED device further includes: a third metal layer 53 arranged separately and a fourth metal layer 54;
第三金属层53覆盖第一电极未被绝缘反射层覆盖的区域和部分绝缘反射层;第四金属层54覆盖第二电极未被绝缘反射层覆盖的区域和部分绝缘反射层。The third metal layer 53 covers the area of the first electrode not covered by the insulating reflective layer and part of the insulating reflective layer; the fourth metal layer 54 covers the area of the second electrode not covered by the insulating reflective layer and part of the insulating reflective layer.
上述实施方式中,通过设置与第一电极电连接的第一金属层,和与第二电极连接的第二金属层,增大LED器件与外界的电连接接触面积,提高器件的电连接特性和可靠性。In the above embodiment, by setting the first metal layer electrically connected to the first electrode, and the second metal layer connected to the second electrode, the electrical connection contact area between the LED device and the outside world is increased, and the electrical connection characteristics and characteristics of the device are improved. reliability.
本实施例提供的LED器件中,第一型半导体层和第二型半导体层表面呈阶梯结构,第一型半导体层和第二型半导体层的表面分别设置有第一电极和第二电极,绝缘反射层覆盖露出的外延层表面,透明导电层设置在第二型半导体层和绝缘反射层之间,并且,第一电极和第二电极延伸设置有交替排布的金属条,从而有效简化了LED器件的结构和制备流程,提高生产良率,并且有助于电流扩散,从而提高LED器件的发光效率。In the LED device provided in this embodiment, the surfaces of the first-type semiconductor layer and the second-type semiconductor layer have a stepped structure, and the surfaces of the first-type semiconductor layer and the second-type semiconductor layer are respectively provided with a first electrode and a second electrode, and are insulated. The reflective layer covers the exposed surface of the epitaxial layer, the transparent conductive layer is arranged between the second-type semiconductor layer and the insulating reflective layer, and the first electrode and the second electrode are extended with alternately arranged metal strips, thereby effectively simplifying the LED The structure and preparation process of the device can improve the production yield and help the current spread, thereby improving the luminous efficiency of the LED device.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610040528.0A CN106992234A (en) | 2016-01-21 | 2016-01-21 | Led device |
TW105108147A TWI620343B (en) | 2016-01-21 | 2016-03-16 | Light-emitting diode component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610040528.0A CN106992234A (en) | 2016-01-21 | 2016-01-21 | Led device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106992234A true CN106992234A (en) | 2017-07-28 |
Family
ID=59413957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610040528.0A Pending CN106992234A (en) | 2016-01-21 | 2016-01-21 | Led device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106992234A (en) |
TW (1) | TWI620343B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108808444A (en) * | 2018-06-19 | 2018-11-13 | 扬州乾照光电有限公司 | A kind of upside-down mounting VCSEL chips and production method |
CN114373842A (en) * | 2021-12-31 | 2022-04-19 | 厦门三安光电有限公司 | A flip-chip LED chip, lighting device and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103035787A (en) * | 2011-09-29 | 2013-04-10 | 上海蓝光科技有限公司 | High-luminance light-emitting diode (LED) chip and manufacture method thereof |
CN103378255A (en) * | 2012-04-27 | 2013-10-30 | 丰田合成株式会社 | Semiconductor light-emitting element |
CN103904176A (en) * | 2012-12-26 | 2014-07-02 | 丰田合成株式会社 | Semiconductor light emitting element |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI373153B (en) * | 2008-09-22 | 2012-09-21 | Ind Tech Res Inst | Light emitting diode, and package structure and manufacturing method therefor |
TWM394564U (en) * | 2010-07-02 | 2010-12-11 | Harvatek Corp | Wafer level LED package structure |
TWI496323B (en) * | 2012-04-09 | 2015-08-11 | Delta Electronics Inc | Light module |
TWI499092B (en) * | 2013-09-26 | 2015-09-01 | Tekcore Co Ltd | A kind of flip chip type light emitting diode structure |
-
2016
- 2016-01-21 CN CN201610040528.0A patent/CN106992234A/en active Pending
- 2016-03-16 TW TW105108147A patent/TWI620343B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103035787A (en) * | 2011-09-29 | 2013-04-10 | 上海蓝光科技有限公司 | High-luminance light-emitting diode (LED) chip and manufacture method thereof |
CN103378255A (en) * | 2012-04-27 | 2013-10-30 | 丰田合成株式会社 | Semiconductor light-emitting element |
CN103904176A (en) * | 2012-12-26 | 2014-07-02 | 丰田合成株式会社 | Semiconductor light emitting element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108808444A (en) * | 2018-06-19 | 2018-11-13 | 扬州乾照光电有限公司 | A kind of upside-down mounting VCSEL chips and production method |
CN114373842A (en) * | 2021-12-31 | 2022-04-19 | 厦门三安光电有限公司 | A flip-chip LED chip, lighting device and display device |
CN114373842B (en) * | 2021-12-31 | 2023-12-08 | 厦门三安光电有限公司 | Flip LED chip, lighting device and display device |
Also Published As
Publication number | Publication date |
---|---|
TWI620343B (en) | 2018-04-01 |
TW201727937A (en) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6914268B2 (en) | LED device, flip-chip LED package and light reflecting structure | |
CN108461598B (en) | Light emitting diode structure | |
TWI570955B (en) | Light-emitting device | |
CN113903839B (en) | Light-emitting diode | |
TW202121704A (en) | Light emitting diode chip | |
CN102800781B (en) | Semiconductor light emitting device and method of manufacturing the same | |
TWI625868B (en) | Photoelectric element and method of manufacturing same | |
US11296258B2 (en) | Light-emitting diode | |
CN106098893A (en) | A kind of inverted gallium nitride base light emitting diode of simple ODR structure and preparation method thereof | |
TWI557941B (en) | Photoelectric element and method of manufacturing same | |
CN106992234A (en) | Led device | |
CN209071375U (en) | Light emitting diode | |
CN108807633B (en) | light-emitting element | |
WO2021129405A1 (en) | Semiconductor light-emitting element | |
CN109873065A (en) | A kind of semiconductor light-emitting elements | |
CN116682839A (en) | High-voltage inverted light-emitting diode and preparation method thereof | |
CN112510131B (en) | Photoelectric element and method for manufacturing the same | |
TWI758603B (en) | Optoelectronic device and method for manufacturing the same | |
TWI662720B (en) | Optoelectronic device and method for manufacturing the same | |
TWI790911B (en) | Optoelectronic device | |
TWI842276B (en) | Optoelectronic device | |
TWI790912B (en) | Optoelectronic device | |
TWI883921B (en) | Optoelectronic device | |
TWI589025B (en) | Light-emitting device | |
TW202431665A (en) | Optoelectronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170728 |
|
RJ01 | Rejection of invention patent application after publication |