CN106992182B - Memory device, method for manufacturing the same, and electronic equipment including the same - Google Patents
Memory device, method for manufacturing the same, and electronic equipment including the same Download PDFInfo
- Publication number
- CN106992182B CN106992182B CN201710273427.2A CN201710273427A CN106992182B CN 106992182 B CN106992182 B CN 106992182B CN 201710273427 A CN201710273427 A CN 201710273427A CN 106992182 B CN106992182 B CN 106992182B
- Authority
- CN
- China
- Prior art keywords
- doping
- region
- layer
- memory device
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
公开了一种存储器件及其制造方法及包括该存储器件的电子设备。根据实施例,存储器件可以包括在衬底上形成的从衬底向上延伸的多个柱状有源区;以及在衬底上从下向上依次排列、彼此隔开且分别围绕各柱状有源区的多层栅电极层,其中各栅电极层介由存储栅介质叠层面对各柱状有源区,其中,柱状有源区中包括与各栅电极层相对的第一掺杂区和位于各第一掺杂区相对两侧的第二掺杂区,其中,第一掺杂区中的掺杂特性不同于第二掺杂区中的掺杂特性。
A storage device, a method for manufacturing the same, and an electronic device including the storage device are disclosed. According to an embodiment, a memory device may include a plurality of columnar active regions formed on a substrate and extending upward from the substrate; and a plurality of columnar active regions arranged in sequence from bottom to top on the substrate, spaced apart from each other, and respectively surrounding the columnar active regions. Multi-layer gate electrode layers, wherein each gate electrode layer faces each columnar active region through a storage gate dielectric stack, wherein the columnar active region includes a first doped region opposite to each gate electrode layer and a first doped region located in each first A second doped region on opposite sides of the doped region, wherein the doping characteristic in the first doped region is different from the doping characteristic in the second doped region.
Description
技术领域technical field
本公开涉及半导体领域,具体地,涉及基于竖直型器件的存储器件及其制造方法以及包括这种存储器件的电子设备。The present disclosure relates to the field of semiconductors, and in particular, to a vertical device-based memory device, a method of manufacturing the same, and an electronic device including such a memory device.
背景技术Background technique
在水平型器件如金属氧化物半导体场效应晶体管(MOSFET)中,源极、栅极和漏极沿大致平行于衬底表面的方向布置。由于这种布置,水平型器件不易进一步缩小。与此不同,在竖直型器件中,源极、栅极和漏极沿大致垂直于衬底表面的方向布置。因此,相对于水平型器件,竖直型器件更容易缩小。In a horizontal type device such as a metal oxide semiconductor field effect transistor (MOSFET), the source, gate and drain are arranged in a direction substantially parallel to the surface of the substrate. Due to this arrangement, the horizontal type device cannot easily be further reduced. In contrast, in a vertical device, the source, gate, and drain are arranged in a direction generally perpendicular to the substrate surface. Therefore, vertical type devices are easier to shrink than horizontal type devices.
在基于竖直型器件的存储器件中,存在堆叠的存储单元,从而这些存储单元各自的电阻串联在一起。于是,总电阻增大,且存储器件性能变差。由于在常规竖直型存储器件中有源区(包括沟道区和源/漏区)通常一体形成,所以沟道区和源/漏区中的掺杂剂类型和浓度基本上是一样的。因此,难以通过增加源/漏区的掺杂浓度来降低总电阻,因为这同样会使得沟道区中的掺杂浓度增加,从而导致源漏之间的漏电流增大。In a vertical device based memory device, there are stacked memory cells such that the respective resistances of the memory cells are connected in series. Thus, the total resistance increases, and the performance of the memory device deteriorates. Since the active regions (including the channel regions and the source/drain regions) are generally formed integrally in conventional vertical memory devices, the types and concentrations of dopants in the channel regions and the source/drain regions are substantially the same. Therefore, it is difficult to reduce the total resistance by increasing the doping concentration of the source/drain regions, because this will also increase the doping concentration in the channel region, thereby increasing the leakage current between the source and drain.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本公开的目的至少部分地在于提供一种基于竖直型器件的存储器件及其制造方法以及包括这种存储器件的电子设备,其中能够针对沟道区和源/漏区分别调节掺杂类型/浓度。In view of this, an object of the present disclosure is, at least in part, to provide a vertical-type device-based memory device, a method of fabricating the same, and an electronic device including such a memory device, wherein the channel region and the source/drain region can be adjusted separately Doping type/concentration.
根据本公开的一个方面,提供了一种存储器件,包括:在衬底上形成的从衬底向上延伸的多个柱状有源区;以及在衬底上从下向上依次排列、彼此隔开且分别围绕各柱状有源区的多层栅电极层,其中各栅电极层介由存储栅介质叠层面对各柱状有源区,其中,柱状有源区中包括与各栅电极层相对的第一掺杂区和位于各第一掺杂区相对两侧的第二掺杂区,其中,第一掺杂区中的掺杂特性不同于第二掺杂区中的掺杂特性。According to one aspect of the present disclosure, there is provided a memory device including: a plurality of columnar active regions formed on a substrate and extending upward from the substrate; and sequentially arranged on the substrate from bottom to top, spaced apart from each other and Multi-layer gate electrode layers respectively surrounding each columnar active region, wherein each gate electrode layer faces each columnar active region through a stack of storage gate dielectrics, wherein the columnar active region includes a first gate electrode layer opposite to each gate electrode layer. Doping regions and second doping regions on opposite sides of each of the first doping regions, wherein doping properties in the first doping regions are different from doping properties in the second doping regions.
根据本公开的另一方面,提供了一种制造存储器件的方法,包括:在衬底上设置掺杂剂源层和栅电极层的交替堆叠,其中,掺杂剂源层包括一定类型的掺杂剂;在所述堆叠中形成若干孔;向孔中填充半导体材料,并进行热处理,以从掺杂剂源层中向半导体材料中驱入掺杂剂;以及在栅电极层与半导体材料之间形成存储栅介质叠层。According to another aspect of the present disclosure, there is provided a method of fabricating a memory device comprising: disposing an alternating stack of dopant source layers and gate electrode layers on a substrate, wherein the dopant source layer includes a type of dopant dopant; forming holes in the stack; filling the holes with semiconductor material, and thermally treating the holes to drive dopants from the dopant source layer into the semiconductor material; and between the gate electrode layer and the semiconductor material A storage gate dielectric stack is formed therebetween.
根据本公开的另一方面,提供了一种电子设备,包括上述存储器件。According to another aspect of the present disclosure, there is provided an electronic device including the above memory device.
根据本公开的实施例,有源区的不同区域(例如,沟道区和源/漏区)可以不同地进行掺杂,并因此可以具有不同的掺杂特性。例如,可以使用电介质的固相掺杂剂源作为扩散源来对源/漏区进行进一步掺杂,以提升其中的掺杂浓度,从而降低源/漏区的电阻,并因此降低叠置的存储单元的总串联电阻。于是,叠置的存储单元数目可以增大,并因此可以增加集成密度。According to embodiments of the present disclosure, different regions of the active region (eg, channel regions and source/drain regions) may be doped differently, and thus may have different doping characteristics. For example, the source/drain regions can be further doped using a dielectric solid-phase dopant source as a diffusion source to increase the doping concentration therein, thereby lowering the resistance of the source/drain regions and thus lowering the stacked memory The total series resistance of the cell. Thus, the number of stacked memory cells can be increased, and thus the integration density can be increased.
附图说明Description of drawings
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will become more apparent from the following description of embodiments of the present disclosure with reference to the accompanying drawings, in which:
图1-10示出了根据本公开实施例的制造存储器件的流程的示意图;1-10 are schematic diagrams illustrating a flow of manufacturing a memory device according to an embodiment of the present disclosure;
图11和12示出了根据本公开另一实施例的制造存储器件的流程中部分阶段的流程图;11 and 12 are flowcharts illustrating some stages of a process for manufacturing a memory device according to another embodiment of the present disclosure;
图13和14示出了根据本公开又一实施例的制造存储器件的流程中部分阶段的流程图。13 and 14 illustrate flowcharts of some stages in a process for fabricating a memory device according to yet another embodiment of the present disclosure.
贯穿附图,相同或相似的附图标记表示相同或相似的部件。Throughout the drawings, the same or similar reference numbers refer to the same or similar parts.
具体实施方式Detailed ways
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not to scale, some details have been exaggerated for clarity, and some details may have been omitted. The shapes of the various regions and layers shown in the figures, as well as their relative sizes and positional relationships are only exemplary, and in practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art should Regions/layers with different shapes, sizes, relative positions can be additionally designed as desired.
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。In the context of this disclosure, when a layer/element is referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element. In addition, if a layer/element is "on" another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under" the other layer/element.
根据本公开实施例的存储器件基于竖直型器件,因此可以包括在衬底上形成的从衬底向上(例如,大致垂直于衬底表面)延伸的多个柱状有源区。柱状有源区可以是实心的,也可以是空心的(其中可以填充电介质)。基于这些竖直延伸的柱状有源区,通过绕它们外周形成栅堆叠,可以形成竖直器件。栅堆叠可以是存储栅堆叠,以便实现存储功能。例如,栅堆叠可以包括在柱状有源区的至少一部分外壁上形成的存储栅介质叠层以及介由存储栅介质叠层面对柱状有源区的栅电极层。栅电极层沿与柱状有源区的延伸方向相交的方向(例如,大致平行于衬底表面)延伸,从而与柱状有源区相交,并因此可以在柱状有源区中限定沟道区(并相应地限定了源/漏区,即有源区中位于沟道区相对两侧的部分)。源/漏区之间可以通过沟道区形成导电通道。Memory devices according to embodiments of the present disclosure are based on vertical devices, and thus may include a plurality of columnar active regions formed on a substrate extending upward (eg, substantially perpendicular to the substrate surface) from the substrate. The columnar active regions can be solid or hollow (where a dielectric can be filled). Based on these vertically extending columnar active regions, vertical devices can be formed by forming gate stacks around their peripheries. The gate stack may be a memory gate stack in order to implement a memory function. For example, the gate stack may include a storage gate dielectric stack formed on at least a portion of an outer wall of the columnar active region, and a gate electrode layer facing the columnar active region via the storage gate dielectric stack. The gate electrode layer extends in a direction intersecting the extending direction of the columnar active region (eg, substantially parallel to the substrate surface), thereby intersecting the columnar active region, and thus may define a channel region (and thus can define a channel region in the columnar active region). Source/drain regions are defined accordingly, ie the portions of the active region on opposite sides of the channel region). A conductive channel may be formed between the source/drain regions through the channel region.
可以设置从下向上依次排列、彼此隔开且分别围绕各柱状有源区的多层栅电极层,从而在各柱状有源区中相应地限定多个沟道区(并因此限定多个存储单元,每个存储单元包括相应的沟道区以及该沟道区相对两侧的源/漏区)。上下相邻的存储单元各自的源/漏区可以连接在一起(例如,在物理上一体)。在此,存储单元可以是闪存(flash)单元。Multiple gate electrode layers arranged in sequence from bottom to top, spaced apart from each other and surrounding each columnar active region, respectively, can be provided, thereby correspondingly defining a plurality of channel regions (and thus a plurality of memory cells) in each columnar active region. , each memory cell includes a corresponding channel region and source/drain regions on opposite sides of the channel region). The respective source/drain regions of upper and lower adjacent memory cells may be connected together (eg, physically integrated). Here, the storage unit may be a flash memory (flash) unit.
柱状有源区可以排列为阵列(例如,通常是按行和列排列的二维阵列)。另外,由于它们如上所述在衬底上竖直延伸且通过多层的栅电极层分别限定出多层存储单元,从而该存储器件可以是三维(3D)阵列。在该3D阵列中,各柱状有源区限定了存储单元的串。The columnar active regions may be arranged in an array (eg, typically a two-dimensional array arranged in rows and columns). In addition, the memory device may be a three-dimensional (3D) array since they extend vertically on the substrate as described above and define multiple layers of memory cells through the multiple layers of gate electrode layers, respectively. In this 3D array, each columnar active region defines a string of memory cells.
在本文中,所谓“存储栅介质叠层”是指存储栅堆叠中处于栅电极层和有源区(或者说沟道区)之间的部分。该叠层整体上呈现电介质特性,即,使得栅电极层与沟道区并不直接电连接,从而称作“介质”叠层,但是这并不排除该叠层中可能包含一层或多层导电层。存储栅介质叠层可以包括电荷捕获层、浮栅层或者铁电材料等,以便实现存储功能。例如,存储栅介质叠层可以包括依次叠置的第一栅介质层、浮栅层或电荷捕获层和第二栅介质层,或者可以包括第一金属层、铁电材料层、第二金属层和栅介质层。本领域存在各种能够实现存储功能的存储栅堆叠配置,在此不再赘述。Herein, the so-called "storage gate dielectric stack" refers to the portion of the storage gate stack between the gate electrode layer and the active region (or the channel region). The stack as a whole exhibits dielectric properties, ie, such that the gate electrode layer is not directly electrically connected to the channel region, thus being called a "dielectric" stack, but this does not preclude the possibility that one or more layers may be included in the stack conductive layer. The storage gate dielectric stack may include a charge trapping layer, a floating gate layer, or a ferroelectric material, etc., in order to realize a storage function. For example, the storage gate dielectric stack may include a first gate dielectric layer, a floating gate layer or charge trapping layer, and a second gate dielectric layer stacked in sequence, or may include a first metal layer, a ferroelectric material layer, a second metal layer and gate dielectric layer. There are various memory gate stack configurations capable of realizing the memory function in the art, and details are not described herein again.
柱状有源区中可以包括与各栅电极层相对的第一掺杂区和位于各第一掺杂区相对两侧的第二掺杂区。例如,第一掺杂区可以对应于沟道区,第二掺杂区可以对应于源/漏区。根据本公开的实施例,第一掺杂区中的掺杂特性可以不同于第二掺杂区中的掺杂特性。在此,所谓“掺杂特性”不同,是指在掺杂浓度和掺杂类型中至少一方面存在差异。例如,可以存在以下至少一种情况:(1)第一掺杂区中的掺杂浓度不同于第二掺杂区中的掺杂浓度;(2)第一掺杂区中的掺杂类型不同于第二掺杂区中的掺杂类型;(3)第一掺杂区中的掺杂浓度不同于第二掺杂区中的掺杂浓度,且第一掺杂区中的掺杂类型不同于第二掺杂区中的掺杂类型。The columnar active region may include a first doping region opposite to each gate electrode layer and a second doping region located on opposite sides of each first doping region. For example, the first doped region may correspond to the channel region, and the second doped region may correspond to the source/drain region. According to embodiments of the present disclosure, doping characteristics in the first doped region may be different from doping characteristics in the second doped region. Here, the "doping characteristics" are different means that there is a difference in at least one of the doping concentration and the doping type. For example, there may be at least one of the following: (1) the doping concentration in the first doped region is different from the doping concentration in the second doped region; (2) the doping type in the first doped region is different The doping type in the second doping region; (3) the doping concentration in the first doping region is different from the doping concentration in the second doping region, and the doping type in the first doping region is different Doping type in the second doped region.
根据本公开的实施例,可以增大第二掺杂区中的掺杂浓度(同时,可以保持第一掺杂区中的掺杂浓度相对较小,以避免漏电流增大)。于是,可以降低彼此叠置的存储单元的总串联电阻。According to embodiments of the present disclosure, the doping concentration in the second doping region may be increased (while the doping concentration in the first doping region may be kept relatively small to avoid leakage current increase). Thus, the total series resistance of the memory cells stacked on each other can be reduced.
根据本公开的实施例,柱状有源区中的半导体材料可以是同质的(例如,常见的硅材料),并可以通过不同地掺杂来在柱状有源区中实现所需的掺杂分布。例如,第二掺杂区中相对高的掺杂浓度可以通过从设置于各栅电极层之间的掺杂剂源层(并因此对准于源/漏区所在的位置)向柱状有源区中驱入掺杂剂来实现。According to embodiments of the present disclosure, the semiconductor material in the columnar active region can be homogeneous (eg, a common silicon material) and can be doped differently to achieve a desired doping profile in the columnar active region . For example, a relatively high doping concentration in the second doped region can be achieved by moving from a dopant source layer disposed between the gate electrode layers (and thus aligned with where the source/drain regions are located) to the columnar active region This is achieved by driving in dopants.
这种存储器件例如可以如下制造。具体地,可以在衬底上设置掺杂剂源层和栅电极层的交替堆叠。该堆叠的最下方可以是掺杂剂源层,最上方也可以是掺杂剂源层。掺杂剂源层可以是电介质层,其中包含一定类型、一定浓度的掺杂剂。例如,可以通过在形成例如淀积掺杂剂源层时对其进行原位掺杂,来在其中引入掺杂剂。在各掺杂剂源层和各栅电极层,还可以形成扩散阻挡层,以抑制掺杂剂源层中掺杂剂的不期望的扩散。Such a memory device can be manufactured, for example, as follows. In particular, alternating stacks of dopant source layers and gate electrode layers may be provided on the substrate. The lowermost of the stack may be a dopant source layer, and the uppermost may also be a dopant source layer. The dopant source layer may be a dielectric layer that contains a certain type and concentration of dopants. For example, dopants may be introduced therein by doping the dopant source layer in situ as it is formed, eg, deposited. At each dopant source layer and each gate electrode layer, a diffusion barrier layer may also be formed to suppress undesired diffusion of dopants in the dopant source layer.
然后,可以在堆叠中形成若干孔。随后,将在这些孔中形成有源区(与孔的形状相对应,因此可以是“柱状”,包括但不限于圆柱状)。这些孔可以沿着堆叠的叠置方向(竖直方向)延伸,并可以贯穿堆叠。在以下处理中,这些孔是加工通道。Then, several holes can be formed in the stack. Subsequently, active regions will be formed in these holes (corresponding to the shape of the holes and thus may be "pillars", including but not limited to cylinders). These holes may extend along the stacking direction (vertical direction) of the stack and may penetrate the stack. In the following processing, these holes are machined channels.
可以在孔的侧壁上至少与栅电极层相对应之处,形成存储栅介质叠层。如此形成的存储栅介质叠层与栅电极层一起,构成了存储栅堆叠。然后,可以在孔中填充(掺杂)半导体材料,以形成(柱状)有源区。半导体材料可以完全填满孔从而形成实心的柱状有源区,或者仅沿孔的内壁形成从而形成空心的柱状有源区(内侧可以进一步填充电介质层)。有源区与各存储栅堆叠相配合,形成了存储单元。A memory gate dielectric stack may be formed on sidewalls of the hole at least corresponding to the gate electrode layer. The storage gate dielectric stack thus formed together with the gate electrode layer constitutes a storage gate stack. The holes can then be filled (doped) with semiconductor material to form (columnar) active regions. The semiconductor material can completely fill the hole to form a solid columnar active region, or only along the inner wall of the hole to form a hollow columnar active region (which can be further filled with a dielectric layer). The active region cooperates with each storage gate stack to form a storage cell.
随后,可以进行热处理,以从掺杂剂源层中向半导体材料中驱入掺杂剂。由于来自掺杂剂源层中的掺杂剂,柱状有源区中与掺杂剂源层相对应的部分(源/漏区)中的掺杂浓度将增大,并因此可以降低源/漏区的电阻。Subsequently, thermal processing may be performed to drive dopants from the dopant source layer into the semiconductor material. Due to the dopant from the dopant source layer, the doping concentration in the portion (source/drain region) of the columnar active region corresponding to the dopant source layer will increase, and thus the source/drain can be reduced resistance of the area.
除了通过从掺杂剂源层驱入掺杂剂来改变有源区中的掺杂分布之外,根据本公开的实施例,还可以单独地调节沟道区中的掺杂分布。例如,这可以通过单独地形成沟道区(的至少一部分)来实现。为此,可以对要形成沟道区的部位(即,栅电极层所在的位置)进行一些处理。例如,可以经由孔,对栅电极层进行选择性刻蚀,以使其凹入一定程度。这些凹入随后可以容纳沟道区。根据制造工艺,可以仅在这些凹入中填充用于沟道区的半导体材料(通常可以轻掺杂)。这种填充例如可以如下进行。具体地,可以经由孔向孔内填充半导体材料(例如,同时原位掺杂)。在填充时,半导体材料同样可以进入凹入内。然后,可以经由孔回蚀所填充的半导体材料。这样,半导体材料可以留于凹入内,而孔中的半导体材料则被基本上去除。然后,可以在孔中填充形成有源区其他部分的半导体材料(可以不同地掺杂,例如,可以是中等掺杂,以便调节阈值电压)。如此形成的有源区在接受从掺杂剂源层中驱入的掺杂剂之后,可以在源/漏区处形成重掺杂。In addition to changing the doping profile in the active region by driving in dopants from the dopant source layer, the doping profile in the channel region can also be individually adjusted according to embodiments of the present disclosure. For example, this can be achieved by separately forming (at least part of) the channel region. To this end, some processing may be performed on the site where the channel region is to be formed (ie, where the gate electrode layer is located). For example, the gate electrode layer may be selectively etched through the holes so as to be recessed to some extent. These recesses can then accommodate channel regions. Depending on the fabrication process, only these recesses can be filled with semiconductor material for the channel region (usually can be lightly doped). Such filling can be carried out, for example, as follows. In particular, the holes may be filled with semiconductor material via the holes (eg, simultaneously doped in situ). During filling, the semiconductor material can likewise enter the recess. The filled semiconductor material can then be etched back through the hole. In this way, the semiconductor material can remain within the recesses while the semiconductor material in the holes is substantially removed. The holes can then be filled with semiconductor material (which can be doped differently, eg, can be moderately doped, to adjust the threshold voltage) forming the rest of the active region. The active regions thus formed may be heavily doped at the source/drain regions after receiving dopants driven in from the dopant source layer.
与这种工艺相配合,还可以将存储栅介质叠层局限于沟道区处,而不是形成于孔的整个内壁上。例如,在凹入中填充半导体材料之后,可以以所填充的半导体材料为掩模,对存储栅介质叠层进行选择性刻蚀,使得存储栅介质叠层仅留于这些半导体材料之下(也即,仅留于沟道区处)。In conjunction with this process, the storage gate dielectric stack can also be limited to the channel region instead of being formed on the entire inner wall of the hole. For example, after the semiconductor material is filled in the recess, the storage gate dielectric stack can be selectively etched using the filled semiconductor material as a mask, so that the storage gate dielectric stack remains only under these semiconductor materials (also That is, only at the channel region).
本公开可以各种形式呈现,以下将描述其中一些示例。The present disclosure may be presented in various forms, some examples of which are described below.
图1-10示出了根据本公开实施例的制造存储器件的流程的示意图。1-10 show schematic diagrams of a flow of fabricating a memory device according to an embodiment of the present disclosure.
如图1所示,提供衬底1001。该衬底1001可以是各种形式的衬底,包括但不限于体半导体材料衬底如体Si衬底、绝缘体上半导体(SOI)衬底、化合物半导体衬底如SiGe衬底等。在以下的描述中,为方便说明,以体Si衬底为例进行描述。As shown in FIG. 1, a
在衬底1001中,例如通过离子注入,形成阱区1001w。该阱区1001w随后可以充当存储器件的公共地电势面,存储器件中最下层存储单元各自下层的源/漏区均可以连接到该公共地电势面。如果存储单元是n型器件,则阱区1001w可以掺杂为n型;如果存储单元是p型器件,则阱区1001w可以掺杂为p型。In the
在衬底1001上,可以通过例如淀积,依次形成第一掺杂剂源层1003、第一栅电极层1005、第二掺杂剂源层1007、第二栅电极层1009和第三掺杂剂源层1011。第一掺杂剂源层1003、第二掺杂剂源层1007和第三掺杂剂源层1011各自可以包括合适的电介质材料如氧化物,并含有一定类型的掺杂剂(例如,对于p型器件含有p型掺杂剂,对于n型器件含有n型掺杂剂),厚度为约20-50nm。掺杂剂例如可以通过原位掺杂在形成掺杂剂源层同时引入到掺杂剂源层中。在一个示例中,各掺杂剂源层可以包括n型掺杂的磷硅玻璃(PSG)或砷硅玻璃(AsSG)(对于n型器件),或者p型掺杂的硼硅玻璃(BSG)(对于p型器件),所含的掺杂剂的浓度可以为约0.01-10%。第一栅电极层1005和第二栅电极层1009可以包括合适的栅电极材料例如掺杂的多晶硅或者金属,厚度为约10-100nm。可以重复形成栅电极层和掺杂剂源层的步骤,直至所需的层数。On the
另外,为了后继处理中构图的方便以及提供适当的停止层等目的,在所生长的这些层之上,还可以形成硬掩模。例如,可以形成氮化物(例如,氮化硅)层1015,厚度例如为约10-100nm。In addition, a hard mask may also be formed over these grown layers for the purpose of facilitating patterning in subsequent processing and providing appropriate stop layers. For example, a nitride (eg, silicon nitride)
随后,可以限定有源区的位置。如图2的俯视图所示,衬底可以包括存储单元区和接触区,在存储单元区中可以形成存储单元,而在接触区中可以形成各种电接触部。当然,衬底还可以包括其他区域,例如用于形成相关电路的电路区等。在存储单元区中,可以在图1所示的结构上形成光刻胶1017。通过光刻(曝光和显影),将光刻胶1017构图为在有源区的位置处露出之下的氮化物层1015。孔的布局根据存储单元的布局而定,例如各孔可以按行和列排列为二维阵列。Subsequently, the location of the active region can be defined. As shown in the top view of FIG. 2, the substrate may include memory cell regions in which memory cells may be formed and contact regions in which various electrical contacts may be formed. Of course, the substrate may also include other regions, such as circuit regions for forming related circuits, and the like. In the memory cell region, a
接着,如图3(沿图2中AA′线的截面图)所示,可以通过光刻胶,向下开孔。具体地,可以依次选择性刻蚀例如反应离子刻蚀(RIE)氮化物层1015、第三掺杂剂源层1011、第二栅电极层1009、第二掺杂剂源层1007、第一栅电极层1005和第一掺杂剂源层1003,以形成孔。例如,RIE可以沿大致垂直于衬底表面的方向进行,从而得到沿大致垂直于衬底表面的方向延伸的孔。之后,可以去除光刻胶1017。在该示例中,孔可以贯穿栅电极层和掺杂剂源层的叠层。Next, as shown in FIG. 3 (a cross-sectional view along the line AA' in FIG. 2 ), a hole may be opened downward through the photoresist. Specifically, the
在此,将孔示出为圆形,但是本公开不限于此。孔可以是适于加工的任何形状。Here, the holes are shown as circular, but the present disclosure is not limited thereto. The holes can be of any shape suitable for machining.
然后,如图4所示,可以经由孔,(相对于掺杂剂源层)选择性刻蚀栅电极层1005、1009。例如,可以选择合适的蚀刻剂,其对栅电极层的刻蚀(远远)大于对掺杂剂源层的刻蚀。于是,可以使栅电极层1005、1009相对于掺杂剂源层1003、1007、1011凹入,以便提供容纳沟道区(的至少一部分)的空间。在此,可以控制刻蚀的量,使得栅电极层1005、1009中形成的凹入呈围绕各孔的环状,同时各孔之间不会连通。Then, as shown in FIG. 4, the
之后,如图5所示,可以在孔的内壁上形成存储栅介质叠层1019。例如,可以在图4所示的结构上依次淀积存储栅介质叠层中的各层(图中未示出该叠层中的层配置),这样存储栅介质叠层可以形成于图4中各露出表面上。例如,存储栅介质叠层1019可以包括依次叠置的第一栅介质层(例如,氧化物或高K介质如HfO2,厚度为约1-10nm)、电荷俘获层(例如,氮化物,厚度为约1-20nm)和第二栅介质层(例如,氧化物或高K介质,厚度为约1-10nm)。Afterwards, as shown in FIG. 5 , a storage
备选地,存储栅介质叠层1019可以包括依次叠置的第一栅介质层(例如,氧化物或高K介质如HfO2,厚度为约1-10nm)、浮栅层(例如,金属,厚度为约1-20nm)和第二栅介质层(例如,氧化物或高K介质,厚度为约1-10nm)。Alternatively, the storage
备选地,存储栅介质叠层1019可以包括铁电材料。例如,存储栅介质叠层1019可以包括依次叠置的第一金属层、铁电材料层、第二金属层和栅介质层(例如,氧化物或高K介质如HfO2,厚度为约1-10nm)。例如,铁电材料可以包括氧化铪如HfO2、氧化锆如ZrO2、氧化钽如TaO2、氧化铪锆HfxZr1-xO2(其中x取值为(0,1)的范围)如Hf0.5Zr0.5O2、氧化铪钽HfxTa1-xO2(其中x取值为(0,1)的范围)如Hf0.5Ta0.5O2、含Si的HfO2、含Al的HfO2、BaTiO3、KH2PO4或SBTi,第一金属层和第二金属层各自均可以包括TiN。这种情况下,存储栅介质叠层1019中的栅介质层一侧面向栅电极层。Alternatively, the storage
然后,可以在凹入中填充用于沟道区的半导体材料1021,例如多晶硅。在此,半导体材料1021可以轻掺杂以降低沟道电阻。对于结型器件,半导体材料1021可以针对p型器件为n型掺杂,针对n型器件为p型掺杂;而对于无结器件,半导体材料1021可以针对p型器件为p型掺杂,针对n型器件为n型掺杂。The recesses may then be filled with
例如,如图5所示,可以通过淀积向孔以及凹入中填充半导体材料1021,在淀积同时可以进行原位掺杂。所填充的半导体材料1021应当完全填满孔和凹入,并有超出。可以对半导体材料1021进行平坦化处理如化学机械抛光(CMP),以去除其位于孔和凹入之外的部分。例如,平坦化处理可以停止于硬掩模层1015(从而其顶面上的存储栅介质叠层也可以去除,参见图6)。For example, as shown in FIG. 5, the holes and recesses can be filled with
然后,如图6所示,可以对半导体材料1021进行回蚀,使其留于凹入中。例如,可以大致垂直于衬底表面的方向进行RIE,对半导体材料1021进行回蚀。由于凹入上方存在各层,从而凹入中的半导体材料1021可以被遮挡,且因此可以留下。留于凹入中的这部分(轻掺杂)半导体材料1021(可以称作“第一掺杂区”)随后可以用于沟道区。由于在栅电极层中的凹入中形成,因此所留下的半导体材料1021自对准于栅电极层。Then, as shown in FIG. 6, the
与此相配合,如图7所示,可以对存储栅介质叠层1019进行选择性刻蚀,使其限制于沟道区处,特别是在存储栅介质叠层1019中包含导电层的情况下。在该示例中,由于半导体材料1021的遮挡,存储栅介质叠层1019也留于凹入中。In conjunction with this, as shown in FIG. 7, the storage
当然,本公开不限于此。例如,存储栅介质叠层1019也可以留于孔的内壁特别是侧壁上(底壁上的部分例如可以通过竖直RIE而去除),特别是在存储栅介质叠层1019中不包含导电层的情况下,这不会影响器件的工作。Of course, the present disclosure is not limited thereto. For example, the storage
随后,如图8所示,可以向孔中填充用于有源区其他部分的半导体材料1023。在此,半导体材料1023与半导体材料1021的材料可以相同,例如多晶硅。在此,半导体材料1023可以中等掺杂以调节器件阈值电压。对于结型器件,半导体材料1023可以针对p型器件为n型掺杂,针对n型器件为p型掺杂;而对于无结器件,半导体材料1023可以针对p型器件为p型掺杂,针对n型器件为n型掺杂。Subsequently, as shown in FIG. 8 , the holes can be filled with
例如,可以通过淀积向孔中填充半导体材料1023,在淀积同时可以进行原位掺杂。所填充的半导体材料1023应当完全填满孔,并有超出。可以对半导体材料1023进行平坦化处理如CMP,以去除其位于孔之外的部分。例如,平坦化处理可以停止于硬掩模层1015。For example, the holes can be filled with
半导体材料1021和1023一起形成了(柱状)有源区。该有源区填充在孔内,从而与孔具有大致相同的形状,且同孔一样在衬底上竖直延伸。The
如图9所示,可以进行热处理如在约700℃-1100℃的温度下进行退火,从掺杂剂源层1003、1007、1011向有源区1021、1023中驱入掺杂剂。源自掺杂剂源层的掺杂剂在有源区中形成一定的分布,得到重掺杂的第二掺杂区,该第二掺杂区可以用作源/漏区S/D(在结型器件的情况下,源自掺杂剂源层的掺杂剂可以使得有源区中其扩散到的部分中的掺杂类型反转),如图9中的虚线框所示。由于作为扩散源的掺杂剂源层位于栅电极层的上下两侧,因此由此得到的第二掺杂区或者说源/漏区S/D可以对准于掺杂剂源层,且相应地位于沟道区(包括第一掺杂区,还可能包括部分半导体材料1023,例如位于源/漏区S/D之间的部分)的上下两侧。由于第一掺杂区和第二掺杂区各自可以分别自对准于栅电极层和掺杂剂源层,因此第一掺杂区中的掺杂分布可以与第二掺杂区中的掺杂分布基本对准(具体地,第一掺杂区的掺杂分布的上端可以与之上的第二掺杂区的掺杂分布的下端基本对准,而第一掺杂区的掺杂分布的下端可以与之下的第二掺杂区的掺杂分布的上端基本对准)。As shown in FIG. 9, a thermal treatment such as annealing at a temperature of about 700°C-1100°C may be performed to drive dopants from the dopant source layers 1003 , 1007 , 1011 into the
由于掺杂剂源层环绕各有源区的外周,因此扩散可以从有源区的外壁向内进行。扩散可以在径向上未弥合,从而源/漏区S/D可以呈环状。另外,源漏区S/D可以与半导体材料1021具有一定的交迭,最下层的源漏区S/D可以与公共地电势面1001w有一定的交迭。Since the dopant source layer surrounds the perimeter of each active region, diffusion can proceed inward from the outer walls of the active region. The diffusion may not be bridged in the radial direction, so that the source/drain regions S/D may be annular. In addition, the source and drain regions S/D may have a certain overlap with the
因此,在存储单元区中,形成了存储单元的竖直串,每一存储单元包括相应的沟道区以及位于沟道区上下两侧的源/漏区。由于相邻的存储单元之间共享源/漏区,所以每一串存储单元彼此串联连接在一起。Therefore, in the memory cell region, vertical strings of memory cells are formed, each memory cell including a corresponding channel region and source/drain regions located on the upper and lower sides of the channel region. Since the source/drain regions are shared between adjacent memory cells, each string of memory cells is connected to each other in series.
在该示例中,留下了掺杂剂源层。但是,本公开不限于此。例如,可以通过例如在接触区中形成加工孔,并经由加工孔进行选择性刻蚀来去除掺杂剂源层。由于掺杂剂源层的去除而留下的空间可以例如可以通过经由加工孔进行淀积来填充电介质材料。In this example, the dopant source layer is left. However, the present disclosure is not limited thereto. For example, the dopant source layer can be removed by, for example, forming machined holes in the contact regions and selectively etched through the machined holes. The space left by the removal of the dopant source layer can be filled with dielectric material, for example, by deposition through a machined hole.
同样,在该示例中,留下了多晶硅做为栅极。但是,本公开不限于此,可以进一步形成替代栅结构。例如,可以通过例如在接触区中形成加工孔,并经由加工孔进行选择性刻蚀来去除多晶硅层。由于多晶硅层的去除而留下的空间可以例如可以通过经由加工孔进行淀积来填充栅电极和/或存储栅介质叠层(在这种情况下,可以无需如以上结合图5和6所述在孔的内部上预先形成存储栅介质叠层)。Also, in this example, polysilicon is left as the gate. However, the present disclosure is not limited thereto, and a replacement gate structure may be further formed. For example, the polysilicon layer may be removed by, for example, forming machined holes in the contact regions, and selectively etching through the machined holes. The space left by the removal of the polysilicon layer may, for example, be filled by deposition through a machined hole to fill the gate electrode and/or the storage gate dielectric stack (in this case, it may not be necessary as described above in connection with FIGS. 5 and 6 A storage gate dielectric stack is preformed on the inside of the hole).
另外,在该示例中,针对沟道区单独调节了其掺杂分布。但是,本公开不限于此。例如,在如以上结合图3所述开孔之后,可以在孔的侧壁上形成存储栅介质叠层,并在其内侧填充(轻掺杂或中等掺杂)半导体材料用作有源区。然后,可以通过热处理向有源区中驱入掺杂剂,以形成重掺杂的源/漏区。In addition, in this example, its doping profile is individually adjusted for the channel region. However, the present disclosure is not limited thereto. For example, after opening the holes as described above in connection with FIG. 3, a storage gate dielectric stack can be formed on the sidewalls of the holes, and filled with (lightly or moderately doped) semiconductor material on the inside thereof as active regions. Dopants can then be driven into the active regions by thermal processing to form heavily doped source/drain regions.
随后,可以制造各种电接触部以实现所需的电连接。对于三维阵列,本领域存在多种方式来制作互连。例如,可以将接触区中的栅电极层构图为阶梯状,以便形成到各层栅电极层的电接触部。Subsequently, various electrical contacts can be made to achieve the desired electrical connections. For three-dimensional arrays, there are several ways in the art to make interconnects. For example, the gate electrode layers in the contact regions may be patterned in a stepped shape to form electrical contacts to the various gate electrode layers.
图10中示出了形成电接触部后的存储器件。如图10所示,可以在器件上形成电介质层1025(例如,氧化物)。在电介质层1025中,可以形成到公共地电势面1001w(且因此到所有的最下层存储单元的源/漏区)的电接触部1027-1,到各栅电极层1005、1009的电接触部1027-2、1027-3,以及到各最上层存储单元的源/漏区的电接触部1027-4、1027-5、1027-6。这种电接触部可以通过在电介质层中形成接触孔、并在其中填充导电材料如钨(W)来制作。The memory device after the electrical contacts are formed is shown in FIG. 10 . As shown in FIG. 10, a dielectric layer 1025 (eg, oxide) may be formed over the device. In the
于是,得到了根据该实施例的存储器件。如图10所示,该存储器件可以包括多个存储单元层(在该示例中,仅示出了两层),每个存储单元层包括存储单元的阵列。每一存储单元包括与相应栅电极层相对的沟道区以及位于沟道区两侧的源/漏区。沿竖直方向延伸的同一柱状有源区中各存储单元在竖直方向上连接成串,在上端连接到相应的电接触部,在下端连接到公共地电势平面。每一层中的存储单元共享相同的栅电极层。Thus, the memory device according to this embodiment is obtained. As shown in FIG. 10, the memory device may include multiple layers of memory cells (in this example, only two layers are shown), each layer of memory cells including an array of memory cells. Each memory cell includes a channel region opposite to the corresponding gate electrode layer and source/drain regions on both sides of the channel region. The memory cells in the same column-shaped active region extending in the vertical direction are vertically connected in a string, connected to the corresponding electrical contact at the upper end, and connected to the common ground potential plane at the lower end. The memory cells in each layer share the same gate electrode layer.
通过到栅电极层的电接触部,可以选择某一存储单元层。另外,通过源/漏接触部,可以选择某一存储单元串。A certain memory cell layer can be selected by electrical contact to the gate electrode layer. In addition, through the source/drain contacts, a certain memory cell string can be selected.
在该示例中,针对最上层的每个存储单元的源/漏区,均形成电接触部。由于存储单元的密度较大,故而这种源/漏接触部的密度较大。根据另一实施例,可以形成与最下层的存储单元的源/漏区电连接的按行(或列)排列的电极,且形成与最上层的存储单元的源/漏区电连接的按列(或行)排列的电极。这样,通过上侧的电极和下侧的电极(彼此交叉形成与存储单元阵列相对应的阵列),可以选择相应的存储单元串。In this example, electrical contacts are formed for the source/drain regions of each memory cell of the uppermost layer. The density of such source/drain contacts is greater due to the greater density of memory cells. According to another embodiment, electrodes arranged in rows (or columns) may be formed that are electrically connected to the source/drain regions of the lowermost memory cells, and columns arranged to be electrically connected to the source/drain regions of the uppermost memory cells may be formed (or row) array of electrodes. In this way, through the electrodes on the upper side and the electrodes on the lower side (crossing each other to form an array corresponding to the array of memory cells), a corresponding string of memory cells can be selected.
根据本公开的实施例,由于可以单独调节不同区域处的掺杂浓度,因此可以实现不同的掺杂分布。例如,第一掺杂区的掺杂浓度可以为约1E16-1E18cm-3,第二掺杂区的掺杂浓度可以为约1E18-5E21cm-3,有源区中第一掺杂区和第二掺杂区之外的部分的掺杂浓度可以为约1E17-5E19cm-3。According to the embodiments of the present disclosure, since the doping concentrations at different regions can be individually adjusted, different doping profiles can be achieved. For example, the doping concentration of the first doping region may be about 1E16-1E18 cm −3 , the doping concentration of the second doping region may be about 1E18-5E21 cm −3 , the first doping region and the second doping region in the active region The doping concentration of the portion outside the doped region may be about 1E17-5E19 cm −3 .
根据本公开的实施例,在存储栅介质叠层的法线方向上,有源区可以存在掺杂浓度分布。例如,有源区可以包括位于第一掺杂区内侧且掺杂浓度比第一掺杂区中的掺杂浓度高的区域。这种分布利于控制短沟道效应。例如,第一掺杂区中的掺杂浓度可以为约1E16-3E18cm-3,而所述区域中的掺杂浓度约为1E17-2E19cm-3。According to an embodiment of the present disclosure, in the normal direction of the storage gate dielectric stack, the active region may have a doping concentration profile. For example, the active region may include a region located inside the first doped region and having a higher doping concentration than in the first doped region. This distribution facilitates control of short channel effects. For example, the doping concentration in the first doped region may be about 1E16-3E18 cm −3 , while the doping concentration in the region is about 1E17-2E19 cm −3 .
图11和12示出了根据本公开另一实施例的制造存储器件的流程中部分阶段的流程图。以下,主要描述该实施例与上述实施例的不同之处。11 and 12 illustrate flowcharts of some stages in a process for fabricating a memory device according to another embodiment of the present disclosure. Hereinafter, the difference between this embodiment and the above-described embodiment will be mainly described.
在如以上结合图9所述在凹入中形成存储栅介质叠层1019和半导体材料1021之后,代替在孔中填满半导体材料1023,而是如图11所示,可以沿孔的内壁形成半导体材料1023′(关于其材料和掺杂,可以参见以上针对半导体材料1023的描述)。于是,可以形成中空的有源区,在其内侧可以填充电介质层1029(例如,氧化物)。这种结构例如可以如下形成。具体地,在图9所示的结构上,可以通过例如淀积以大致共形的方式形成半导体材料1023′(厚度例如为约5-20nm),然后可以淀积氧化物。随后,可以对淀积的半导体材料1023′和氧化物进行平坦化处理如CMP。平坦化处理可以停止于硬掩模层1015。After forming the storage
之后的处理可以如上所述进行,在此不再赘述。于是,可以得到如图12所示的结构。在该示例中,由于有源区在孔内壁上的厚度(图中水平方向上的维度)较小,从而源/漏区S/D可以在整个厚度上延伸,有效降低电阻。Subsequent processing can be performed as described above, and details are not repeated here. Thus, the structure shown in FIG. 12 can be obtained. In this example, since the thickness of the active region on the inner wall of the hole (the dimension in the horizontal direction in the figure) is small, the source/drain regions S/D can extend over the entire thickness, effectively reducing resistance.
图13和14示出了根据本公开又一实施例的制造存储器件的流程中部分阶段的流程图。以下,主要描述该实施例与上述实施例的不同之处。13 and 14 illustrate flowcharts of some stages in a process for fabricating a memory device according to yet another embodiment of the present disclosure. Hereinafter, the difference between this embodiment and the above-described embodiment will be mainly described.
在该实施例中,如图13所示,在各掺杂剂源层1003、1007、1011与各栅电极层1005、1009之间,可以设置扩散阻挡层1013。例如,扩散阻挡层1013可以包括氮化物,厚度为约1-3nm。一方面,扩散阻挡层1013可以抑制掺杂剂源层中掺杂剂的不期望扩散;另一方面,扩散阻挡层1013的厚度还可以用来控制掺杂剂向沟道区中的扩散(扩散阻挡层1013越厚,扩散进入沟道区中的杂质或掺杂剂就越少)。之后的处理可以如上所述进行,在此不再赘述。于是,可以得到如图14所示的结构。In this embodiment, as shown in FIG. 13 , a
另外,根据本公开的实施例,还可以在柱状有源区的最上端和/或最下端增加选择晶体管,在此不再赘述。这种选择晶体管也可以是竖直型器件。In addition, according to the embodiments of the present disclosure, a selection transistor may be added to the uppermost end and/or the lowermost end of the columnar active region, which will not be repeated here. This selection transistor can also be a vertical type device.
根据本公开实施例的存储器件可以应用于各种电子设备。例如,存储器件可以存储电子设备操作所需的各种程序、应用和数据。电子设备还可以包括与存储器件相配合的处理器。例如,处理器可以通过允许存储器件中存储的程序来操作电子设备。这种电子设备例如智能电话、计算机、平板电脑(PC)、可穿戴智能设备、移动电源、机器人、智能芯片等。The memory device according to the embodiment of the present disclosure may be applied to various electronic devices. For example, a storage device may store various programs, applications, and data required for the operation of an electronic device. The electronic device may also include a processor in cooperation with the memory device. For example, a processor may operate an electronic device by allowing a program stored in a storage device. Such electronic devices are, for example, smart phones, computers, tablet computers (PCs), wearable smart devices, power banks, robots, smart chips, and the like.
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design methods that are not exactly the same as those described above. Additionally, although the various embodiments have been described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710273427.2A CN106992182B (en) | 2017-04-24 | 2017-04-24 | Memory device, method for manufacturing the same, and electronic equipment including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710273427.2A CN106992182B (en) | 2017-04-24 | 2017-04-24 | Memory device, method for manufacturing the same, and electronic equipment including the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106992182A CN106992182A (en) | 2017-07-28 |
CN106992182B true CN106992182B (en) | 2020-06-09 |
Family
ID=59418327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710273427.2A Active CN106992182B (en) | 2017-04-24 | 2017-04-24 | Memory device, method for manufacturing the same, and electronic equipment including the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106992182B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109285838B (en) * | 2018-08-28 | 2023-05-02 | 中国科学院微电子研究所 | Semiconductor memory device, method of manufacturing the same, and electronic apparatus including the same |
CN112582374B (en) * | 2020-12-11 | 2023-11-07 | 中国科学院微电子研究所 | Semiconductor device with sidewall interconnection structure, method of manufacturing the same, and electronic apparatus |
CN112582377B (en) * | 2020-12-11 | 2023-11-17 | 中国科学院微电子研究所 | Semiconductor device with sidewall interconnection structure, manufacturing method thereof, and electronic equipment |
CN112582376B (en) * | 2020-12-11 | 2023-11-17 | 中国科学院微电子研究所 | Semiconductor device with sidewall interconnection structure, manufacturing method thereof, and electronic equipment |
CN117295339A (en) * | 2021-03-08 | 2023-12-26 | 中国科学院微电子研究所 | NOR type memory device, method of manufacturing the same, and electronic apparatus including the same |
CN113066795B (en) * | 2021-03-22 | 2022-02-22 | 长江存储科技有限责任公司 | Semiconductor device and preparation method thereof |
CN114121960B (en) * | 2021-11-19 | 2024-11-29 | 北京超弦存储器研究院 | Memory device, method of manufacturing the same, and electronic apparatus including the same |
CN117135923B (en) * | 2023-10-23 | 2024-01-26 | 北京超弦存储器研究院 | Semiconductor structure, preparation method thereof and electronic equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105826323A (en) * | 2015-01-06 | 2016-08-03 | 旺宏电子股份有限公司 | Memory element and manufacturing method thereof |
CN106158877A (en) * | 2016-09-30 | 2016-11-23 | 中国科学院微电子研究所 | Memory device, method of manufacturing the same, and electronic apparatus including the same |
CN106298679A (en) * | 2016-09-30 | 2017-01-04 | 中国科学院微电子研究所 | Memory device, method of manufacturing the same, and electronic apparatus including the same |
-
2017
- 2017-04-24 CN CN201710273427.2A patent/CN106992182B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105826323A (en) * | 2015-01-06 | 2016-08-03 | 旺宏电子股份有限公司 | Memory element and manufacturing method thereof |
CN106158877A (en) * | 2016-09-30 | 2016-11-23 | 中国科学院微电子研究所 | Memory device, method of manufacturing the same, and electronic apparatus including the same |
CN106298679A (en) * | 2016-09-30 | 2017-01-04 | 中国科学院微电子研究所 | Memory device, method of manufacturing the same, and electronic apparatus including the same |
Also Published As
Publication number | Publication date |
---|---|
CN106992182A (en) | 2017-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106992182B (en) | Memory device, method for manufacturing the same, and electronic equipment including the same | |
CN107887391B (en) | Memory device, method for manufacturing the same, and electronic equipment including the same | |
KR102612259B1 (en) | Three-dimensional NOR array comprising vertical word lines and individual channels and methods for manufacturing the same | |
CN106340521B (en) | Memory device, method of manufacturing the same, and electronic apparatus including the same | |
US9324727B2 (en) | Memory devices having semiconductor patterns on a substrate and methods of manufacturing the same | |
CN112909012B (en) | NOR type memory device, manufacturing method thereof, and electronic equipment including the memory device | |
CN106298792B (en) | Memory device, method for manufacturing the same, and electronic equipment including the same | |
US11895845B2 (en) | Memory device and method for manufacturing the same, and electronic apparatus including the memory device | |
KR102753006B1 (en) | NOR type memory device and method for manufacturing the same and electronic device including the memory device | |
CN106158877A (en) | Memory device, method of manufacturing the same, and electronic apparatus including the same | |
CN113629061B (en) | NOR type memory device, method of manufacturing the same, and electronic apparatus including the same | |
WO2018059110A1 (en) | Memory device, method for manufacturing same, and electronic apparatus comprising same | |
CN106206600A (en) | Memory device, method of manufacturing the same, and electronic apparatus including the same | |
KR102737028B1 (en) | NOR type memory device, method for manufacturing the same, and electronic device including the memory device | |
WO2022188621A1 (en) | Nor type memory device and manufacturing method therefor, and electronic apparatus comprising memory device | |
WO2022188620A1 (en) | Nor-type memory device and manufacturing method therefor, and electronic apparatus comprising memory device | |
CN107068686B (en) | Memory device, method of manufacturing the same, and electronic apparatus including the same | |
WO2023011084A1 (en) | Nor type memory device and manufacturing method therefor, and electronic device comprising memory device | |
CN108962905B (en) | Memory device, method of manufacturing the same, and electronic apparatus including the same | |
CN110943130B (en) | Transistor, semiconductor memory and manufacturing method thereof | |
TW202221908A (en) | Method for forming three-dimensional memory device | |
TWI852326B (en) | NOR type memory device and manufacturing method thereof and electronic device including the memory device | |
TWI827462B (en) | Memory device, manufacturing method thereof, and electronic device including memory device | |
US20240008283A1 (en) | Nor-type memory device, method of manufacturing nor-type memory device, and electronic apparatus including memory device | |
CN105552032B (en) | Method for manufacturing memory element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |