CN106990459B - One kind flexible adjustable lens with multi-layer structure and variable-power optical system - Google Patents
One kind flexible adjustable lens with multi-layer structure and variable-power optical system Download PDFInfo
- Publication number
- CN106990459B CN106990459B CN201710321798.3A CN201710321798A CN106990459B CN 106990459 B CN106990459 B CN 106990459B CN 201710321798 A CN201710321798 A CN 201710321798A CN 106990459 B CN106990459 B CN 106990459B
- Authority
- CN
- China
- Prior art keywords
- lens
- flexible adjustable
- flexible
- adjustable lens
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 53
- 239000011521 glass Substances 0.000 claims abstract description 29
- 230000005540 biological transmission Effects 0.000 claims abstract description 27
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 5
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 5
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims description 5
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 208000002925 dental caries Diseases 0.000 claims 3
- 238000002604 ultrasonography Methods 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003384 imaging method Methods 0.000 abstract description 14
- 238000012634 optical imaging Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 230000005499 meniscus Effects 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/12—Fluid-filled or evacuated lenses
- G02B3/14—Fluid-filled or evacuated lenses of variable focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/004—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
本发明公开了一种具有多层结构的柔性可调透镜及变倍光学系统。本发明利用刚体透镜、光学液体、多流道玻璃内透镜和透明弹性薄膜作为主要屈光介质,组成多层多流道柔性可调透镜;变倍光学系统包括从左向右依次同轴排列的预屈光透镜组、光阑、柔性可调节变倍透镜组和后屈光透镜组;柔性可调节变倍透镜组包含两块柔性可调透镜,在变倍调节过程中,环形超声波电机通过传动压环挤压柔性可调透镜的外表面,进而改变柔性可调透镜的焦距,协同调节两快柔性可调透镜的焦距即可实现系统的连续变倍调节。本发明具有结构紧凑,控制灵活,光轴稳定,调节范围大,成像质量高的优点,可应用于各种现代光学成像系统及机器人视觉系统中。
The invention discloses a flexible adjustable lens with a multi-layer structure and a variable power optical system. The present invention uses rigid lens, optical liquid, multi-channel glass inner lens and transparent elastic film as the main refractive medium to form a multi-layer multi-channel flexible adjustable lens; Pre-refraction lens group, diaphragm, flexible adjustable zoom lens group and post-refraction lens group; the flexible adjustable zoom lens group includes two flexible adjustable lenses. During the zoom adjustment process, the ring ultrasonic motor passes through the transmission The pressure ring squeezes the outer surface of the flexible tunable lens, thereby changing the focal length of the flexible tunable lens, and the continuous variable magnification adjustment of the system can be realized by coordinating the focal lengths of the two fast flexible tunable lenses. The invention has the advantages of compact structure, flexible control, stable optical axis, large adjustment range and high imaging quality, and can be applied to various modern optical imaging systems and robot vision systems.
Description
技术领域technical field
本发明涉及仿生视觉成像系统,尤其是涉及一种具有多层结构的柔性可调透镜及变倍光学系统。The invention relates to a bionic vision imaging system, in particular to a flexible adjustable lens and variable power optical system with a multi-layer structure.
背景技术Background technique
随着技术的发展与进步,人们对视觉成像设备的集成化、便携性和调焦能力的要求越来越高。光学透镜及其变倍成像模块是视觉成像设备的关键部分,对视觉成像系统的结构组成、调节特性和成像质量有着重要的影响。With the development and progress of technology, people have higher and higher requirements for the integration, portability and focusing ability of visual imaging equipment. The optical lens and its variable magnification imaging module are the key parts of the visual imaging equipment, which have an important impact on the structural composition, adjustment characteristics and imaging quality of the visual imaging system.
传统的光学变倍系统采用许多片不同的凹凸透镜组成多个光学透镜组,利用驱动电机对各透镜组的机械位置进行精确的控制,通过改变各透镜组的光学间隔来实现系统焦距与倍率的调节。这种传统的调节方式需要复杂精密的传动机构,尺寸较大、易产生机械磨损,要实现大范围的光学倍率调节往往需要更换不同的透镜组合,不易实现连续、大倍率的光学调节。The traditional optical zoom system uses many different concave-convex lenses to form multiple optical lens groups, uses the drive motor to precisely control the mechanical position of each lens group, and realizes the focal length and magnification of the system by changing the optical interval of each lens group. adjust. This traditional adjustment method requires a complex and precise transmission mechanism, which is large in size and prone to mechanical wear. To achieve a wide range of optical magnification adjustments, it is often necessary to replace different lens combinations, and it is difficult to achieve continuous and large-magnification optical adjustments.
近些年,新型可调透镜受到国内外研究者的广泛关注。不同于传统的玻璃透镜,新型可调透镜采用液体或者液晶材料作为主要的光学介质,通过改变透镜的曲率半径或者折射率来进行焦距的调节。但是采用液体作为主要光学液体,不利于保持光轴的稳定性和系统的可靠性,而采用液晶材料往往会受液晶分子极化现象的影响,难以保持理想的成像质量。另外,采用新型可调透镜所设计的光学系统,往往存在屈光介质单一、设计自由度少、成像质量不够理想等不足,使得基于可调透镜的光学系统还无法与传统的采用刚体透镜的光学系统相比拟。In recent years, new tunable lenses have attracted extensive attention from researchers at home and abroad. Different from the traditional glass lens, the new adjustable lens uses liquid or liquid crystal material as the main optical medium, and adjusts the focal length by changing the radius of curvature or refractive index of the lens. However, the use of liquid as the main optical liquid is not conducive to maintaining the stability of the optical axis and the reliability of the system, and the use of liquid crystal materials is often affected by the polarization of liquid crystal molecules, making it difficult to maintain ideal imaging quality. In addition, optical systems designed with new adjustable lenses often have shortcomings such as single refractive medium, less design freedom, and unsatisfactory imaging quality, making optical systems based on adjustable lenses unable to compete with traditional optical systems using rigid lenses. system compared.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种具有多层结构的柔性可调透镜及变倍光学系统,利用刚体透镜、光学液体、多流道玻璃内透镜和透明弹性薄膜作为主要屈光介质,组成多层多流道柔性可调透镜,提供更多的光学设计自由度,改善可调透镜的光学稳定性和成像质量;利用预屈光透镜组、光阑、柔性可调节变倍透镜组和后屈光透镜组,形成光学变倍系统,通过控制柔性可调透镜的表面形状来实现系统的倍率调节,提高光学系统的调节能力,实现整个系统的集成化与通用性。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a flexible adjustable lens and variable power optical system with a multi-layer structure, using rigid body lens, optical liquid, multi-channel glass inner lens and transparent elastic film as the main diopter Optical media, composed of multi-layer and multi-channel flexible adjustable lenses, provide more freedom in optical design, improve the optical stability and imaging quality of adjustable lenses; use pre-refractive lens groups, diaphragms, flexible adjustable zoom The lens group and the post-refractive lens group form an optical zoom system. By controlling the surface shape of the flexible adjustable lens, the magnification adjustment of the system is realized, the adjustment ability of the optical system is improved, and the integration and versatility of the entire system are realized.
为实现上述目的,本发明采用的技术方案是:一种具有多层结构的柔性可调透镜,包括刚体透镜、内导流环、多流道玻璃透镜、弹性薄膜和外固定环;In order to achieve the above object, the technical solution adopted by the present invention is: a flexible adjustable lens with a multi-layer structure, including a rigid body lens, an inner guide ring, a multi-channel glass lens, an elastic film and an outer fixing ring;
所述的外固定环内侧从左向右依次同轴固定着刚体透镜、内导流环、多流道玻璃透镜和弹性薄膜;刚体透镜的右端面与内导流环的左端面相接触;多流道玻璃固定于内导流环和弹性薄膜间,将外固定环内部分成两个相通的腔体,光学液体则充满两个腔体;通过内导流环和多流道玻璃透镜的细孔,光学液体可在两个腔体间流动;The inner side of the outer fixing ring is coaxially fixed in sequence from left to right to a rigid body lens, an inner diversion ring, a multi-channel glass lens and an elastic film; the right end face of the rigid body lens is in contact with the left end face of the inner diversion ring; The channel glass is fixed between the inner guide ring and the elastic film, and the outer fixed ring is divided into two connected cavities, and the optical liquid fills the two cavities; through the pores of the inner guide ring and the multi-channel glass lens, Optical liquid can flow between two cavities;
所述的柔性可调透镜在未受到外力挤压时为平凸透镜,当弹性薄膜受外力挤压变形时,成为双凸透镜。The flexible adjustable lens is a plano-convex lens when it is not extruded by an external force, and becomes a biconvex lens when the elastic film is extruded and deformed by an external force.
进一步地,所所述的刚体透镜采用透明的有机玻璃(PMMA)材料制作,为凹面朝向像侧的弯月形球面镜片;Further, the rigid body lens is made of transparent plexiglass (PMMA) material, which is a meniscus spherical lens with a concave surface facing the image side;
进一步地,所述的光学液体的折射率Ng满足条件:1.50<Ng<1.60。Further, the refractive index Ng of the optical liquid satisfies the condition: 1.50<Ng<1.60.
进一步地,所述的内导流环上有若干细长的直角形孔道;所述的多流道玻璃透镜呈双凸状,边缘区域有与直角形孔道相对应的通孔,且折射率满足条件:Ng<Nd,其中Nd是多流道玻璃透镜折射率,Ng为光学液体折射率。Further, there are several slender right-angled channels on the inner guide ring; the multi-channel glass lens is biconvex, and there are through holes corresponding to the right-angled channels in the edge area, and the refractive index meets Condition: Ng<Nd, where Nd is the refractive index of the multi-channel glass lens, and Ng is the refractive index of the optical liquid.
进一步地,所述的弹性薄膜由透明的有机硅(PDMS)材料制成,且薄膜中间区域薄于周边区域。Further, the elastic film is made of transparent organic silicon (PDMS) material, and the middle area of the film is thinner than the peripheral area.
一种变倍光学系统,包括自左向右同轴排列的预屈光透镜组、光阑、柔性可调节变倍透镜组和后屈光透镜组;预屈光透镜组的左侧为物方空间,后屈光透镜组的右侧为像方空间;A variable power optical system, including a pre-refractive lens group coaxially arranged from left to right, a diaphragm, a flexible adjustable variable power lens group and a post-refractive lens group; the left side of the pre-refractive lens group is the object side Space, the right side of the retrodioptric lens group is the image space;
所述的预屈光透镜组包括自左向右同轴排列的第一透镜、第二透镜、第三透镜和第四透镜,其中第一透镜和第三透镜为焦距为负、凹面朝像侧的弯月形球面镜片,第二透镜和第四透镜为焦距为正的双凸球面透镜;The pre-refractive lens group includes a first lens, a second lens, a third lens and a fourth lens arranged coaxially from left to right, wherein the first lens and the third lens have a negative focal length and a concave surface facing the image side The meniscus spherical lens, the second lens and the fourth lens are biconvex spherical lenses with a positive focal length;
所述的柔性可调节变倍透镜组包括同轴排列的第一柔性可调透镜、第一环形超声波电机、第一传动压环、第二柔性可调透镜、第二环形超声波电机和第二传动压环;所述第一柔性可调透镜和第二柔性可调透镜均采用上述的具有多层结构的柔性可调透镜;The flexible adjustable variable magnification lens group includes a coaxially arranged first flexible adjustable lens, a first annular ultrasonic motor, a first transmission pressure ring, a second flexible adjustable lens, a second annular ultrasonic motor and a second transmission A pressure ring; the first flexible tunable lens and the second flexible tunable lens both use the above-mentioned flexible tunable lens with a multi-layer structure;
所述的第一环形超声波电机的内环与第一传动压环的外侧面通过螺纹相联结,第一柔性可调透镜右端面的弹性薄膜与第一传动压环的左端面相接触,第一传动压环通过弹性薄膜作用于第一柔性可调透镜使其右端面曲率半径发生变化;The inner ring of the first annular ultrasonic motor is connected with the outer surface of the first transmission pressure ring through threads, the elastic film on the right end surface of the first flexible adjustable lens is in contact with the left end surface of the first transmission pressure ring, and the first transmission The pressure ring acts on the first flexible adjustable lens through the elastic film to change the curvature radius of the right end surface;
所述的第二环形超声波电机的内环与第二传动压环的外侧面通过螺纹相联结,第二柔性可调透镜左端面的弹性薄膜与第二传动压环的右端面相接触,第二传动压环通过弹性薄膜作用于第二柔性可调透镜使其左端面曲率半径发生变化;The inner ring of the second annular ultrasonic motor is connected with the outer surface of the second transmission pressure ring through threads, the elastic film on the left end surface of the second flexible adjustable lens is in contact with the right end surface of the second transmission pressure ring, and the second transmission The pressure ring acts on the second flexible adjustable lens through the elastic film to change the curvature radius of the left end surface;
所述的后屈光透镜组包括自左向右同轴排列的第五透镜、第六透镜和第七透镜,所述的第五透镜是焦距为正、凹面朝向物侧的弯月形球面镜片,所述的第六透镜是焦距为负、凹面朝向像侧的弯月形球面镜片,所述的第七透镜为焦距为正的双凸球面透镜,第六透镜和第七透镜胶合在一起形成胶合镜片。The retro-refractive lens group includes a fifth lens, a sixth lens, and a seventh lens arranged coaxially from left to right, and the fifth lens is a meniscus spherical lens with a positive focal length and a concave surface facing the object side , the sixth lens is a meniscus spherical lens with a negative focal length and the concave surface faces the image side, the seventh lens is a biconvex spherical lens with a positive focal length, and the sixth lens and the seventh lens are glued together to form Cemented lenses.
进一步地,所述的第一柔性可调透镜的右端面和第二柔性可调透镜的左端面间的初始距离L满足关系:L=fr1+fr2,其中fr1为第一柔性可调透镜的后焦距,fr2为第二柔性可调透镜的前焦距;在初始状态,通过环形超声波电机调节两个柔性可调透镜的焦距使其满足fr1=fr2,则此时第一柔性可调透镜和第二柔性可调透镜组成无焦系统,且倍率a=fr2/fr1=1。在倍率调节过程中,保持第一柔性可调透镜的后焦距fr1和第二柔性可调透镜的前焦距fr2之和等于L,通过协同控制两柔性可调透镜的表面形状,调节柔性可调透镜的焦距,进而改变系统的倍率。Further, the initial distance L between the right end surface of the first flexible tunable lens and the left end surface of the second flexible tunable lens satisfies the relationship: L=fr1+fr2, where fr1 is the rear surface of the first flexible tunable lens Focal length, fr2 is the front focal length of the second flexible adjustable lens; in the initial state, the focal lengths of the two flexible adjustable lenses are adjusted by the ring ultrasonic motor to satisfy fr1=fr2, then the first flexible adjustable lens and the second flexible adjustable lens The flexible adjustable lens forms an afocal system, and the magnification a=fr2/fr1=1. During the magnification adjustment process, keep the sum of the back focal length fr1 of the first flexible tunable lens and the front focal length fr2 of the second flexible tunable lens equal to L, and adjust the flexible tunable lens by cooperatively controlling the surface shape of the two flexible tunable lenses The focal length, thereby changing the magnification of the system.
本发明与背景技术相比,具有的有益效果是:Compared with the background technology, the present invention has the beneficial effects of:
1、利用刚体透镜、内导流环、多流道玻璃透镜、弹性薄膜和外固定环组成两个相通的密闭腔体,将光学液体充满两个腔体,形成多层多流道的固液混合结构,减小液体所占比重,增加液体流动的阻尼力,有效改善可调透镜的光学稳定性和成像质量。1. Use rigid body lens, inner guide ring, multi-channel glass lens, elastic film and outer fixed ring to form two connected airtight cavities, and fill the two cavities with optical liquid to form a multi-layer multi-channel solid-liquid The mixed structure reduces the proportion of liquid, increases the damping force of liquid flow, and effectively improves the optical stability and imaging quality of the adjustable lens.
2、柔性可调透镜各层介质的光学间隔、表面曲率均为设计变量,可以根据实际应用需求进行优化计算,共有四个屈光介质层,可为光学设计提供9个设计自由度。2. The optical spacing and surface curvature of each layer of the flexible adjustable lens are design variables, which can be optimized and calculated according to actual application requirements. There are four refractive media layers in total, which can provide 9 design degrees of freedom for optical design.
3、单个柔性可调透镜的屈光度可通过调节表面曲率在任意设计范围内实现精确调节,通过协同控制两个柔性可调透镜的表面形状,所述的变倍光学系统可灵活的实现大范围的连续变倍。3. The diopter of a single flexible adjustable lens can be precisely adjusted within any design range by adjusting the surface curvature, and by cooperatively controlling the surface shape of the two flexible adjustable lenses, the variable power optical system can flexibly realize a wide range of Continuous zoom.
4、利用预屈光透镜组、光阑、柔性可调节变倍透镜组和后屈光透镜组形成光学变倍系统,通过多组透镜进行像差补偿,并把视场光阑放置在预屈光透镜组和柔性可调节变倍透镜组之间,有效提高成像质量。4. The optical zoom system is formed by using the pre-refraction lens group, diaphragm, flexible adjustable zoom lens group and post-refraction lens group, aberration compensation is performed through multiple groups of lenses, and the field of view diaphragm is placed on the pre-refraction lens group. Between the optical lens group and the flexible adjustable zoom lens group, the imaging quality is effectively improved.
5、本发明具有结构紧凑,控制灵活,光轴稳定,调节范围大、操作方便及成像质量高的优点,可广泛应用于各种现代光学成像系统及机器人视觉系统中。5. The present invention has the advantages of compact structure, flexible control, stable optical axis, large adjustment range, convenient operation and high imaging quality, and can be widely used in various modern optical imaging systems and robot vision systems.
附图说明Description of drawings
图1是具有多层结构的柔性可调透镜的轴测图。Figure 1 is an isometric view of a flexible tunable lens with a multilayer structure.
图2是具有多层结构的柔性可调透镜剖视图。Fig. 2 is a cross-sectional view of a flexible tunable lens with a multi-layer structure.
图3是外固定环结构图。Fig. 3 is a structural diagram of the outer fixing ring.
图4是内导流环结构图。Figure 4 is a structural diagram of the inner guide ring.
图5是多流道玻璃透镜结构图。Fig. 5 is a structural diagram of a multi-channel glass lens.
图6是刚体透镜结构图。Fig. 6 is a structure diagram of a rigid body lens.
图7是变倍光学系统结构示意图。Fig. 7 is a schematic structural diagram of the zoom optical system.
图8a是变倍光学系统小倍率时的结构示意图。Fig. 8a is a schematic diagram of the structure of the zoom optical system at a small magnification.
图8b是变倍光学系统大倍率时的结构示意图。Fig. 8b is a schematic diagram of the structure of the zoom optical system at high magnification.
图中:1、预屈光透镜组,2、光阑,3、柔性可调节变倍透镜组,4、后屈光透镜组,101、第一透镜,102、第二透镜,103、第三透镜,104、第四透镜,301、第一柔性可调透镜,302、第一环形超声波电机,303、第一传动压环,304、第二柔性可调透镜,305、第二环形超声波电机,306、第二传动压环,401、第五透镜,402、第六透镜,403、第七透镜,3011、外固定环,3012、刚体透镜,3013、内导流环,3014、多流道玻璃透镜,3015、弹性薄膜。In the figure: 1. Pre-refraction lens group, 2. Diaphragm, 3. Flexible and adjustable zoom lens group, 4. Post-refraction lens group, 101, first lens, 102, second lens, 103, third Lens, 104, fourth lens, 301, first flexible adjustable lens, 302, first annular ultrasonic motor, 303, first transmission pressure ring, 304, second flexible adjustable lens, 305, second annular ultrasonic motor, 306, the second transmission pressure ring, 401, the fifth lens, 402, the sixth lens, 403, the seventh lens, 3011, the outer fixed ring, 3012, the rigid lens, 3013, the inner guide ring, 3014, the multi-channel glass Lens, 3015, elastic film.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然以下所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the embodiments described below are some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1至图6所示,在本发明的一个实施例中,一种具有多层结构的柔性可调透镜,包括刚体透镜3012、内导流环3013、多流道玻璃透镜3014、弹性薄膜3015和外固定环3011;所述的外固定环3011内侧从左向右依次同轴固定着刚体透镜3012、内导流环3013、多流道玻璃透镜3014和弹性薄膜3015;刚体透镜3012的右端面与内导流环3013的左端面相接触;多流道玻璃3014固定于内导流环3013和弹性薄膜3015间,将外固定环3011内部分成两个相通的腔体,光学液体3016则充满两个腔体;通过内导流环3013和多流道玻璃透镜3014的细孔,光学液体3016可在两个腔体间流动;在未受到外力挤压时,所述的柔性可调透镜为平凸透镜,当弹性薄膜3015的边缘区域受外力挤压时,光学液体3016涌向弹性薄膜3015中间区域,使其成为双凸透镜。As shown in Figures 1 to 6, in one embodiment of the present invention, a flexible adjustable lens with a multi-layer structure includes a rigid body lens 3012, an inner guide ring 3013, a multi-channel glass lens 3014, an elastic film 3015 and the outer fixing ring 3011; the inner side of the outer fixing ring 3011 is coaxially fixed with the rigid body lens 3012, the inner guide ring 3013, the multi-channel glass lens 3014 and the elastic film 3015; the right end of the rigid body lens 3012 The surface of the outer fixed ring 3011 is in contact with the left end surface of the inner guide ring 3013; the multi-channel glass 3014 is fixed between the inner guide ring 3013 and the elastic film 3015, and the outer fixed ring 3011 is divided into two connected cavities, and the optical liquid 3016 is filled with the two two cavities; through the pores of the inner guide ring 3013 and the multi-channel glass lens 3014, the optical liquid 3016 can flow between the two cavities; when not squeezed by external force, the flexible adjustable lens is flat Convex lens, when the edge area of the elastic film 3015 is squeezed by external force, the optical liquid 3016 rushes to the middle area of the elastic film 3015, making it a biconvex lens.
其中,所述的光学液体3016采用高透明的光学液体,且折射率Ng为1.56,满足条件:1.50<Ng<1.60;所述的内导流环3013上有6个细长的直角形孔道;所述的多流道玻璃透镜3014呈双凸状,其边缘区域有6个与内导流环3013中的孔道相连的通孔,且折射率为1.65,满足条件:Ng<Nd,其中Nd是多流道玻璃透镜折射率,Ng为光学液体折射率;所述的弹性薄膜3015由透明的有机硅(PDMS)材料制成,PDMS材料由PDMS溶液和固化剂混合交联固化而成,混合比例采用1:20,且薄膜中间区域较薄,周边区域较厚。Wherein, the optical liquid 3016 adopts a highly transparent optical liquid, and the refractive index Ng is 1.56, satisfying the condition: 1.50<Ng<1.60; the inner guide ring 3013 has 6 elongated rectangular channels; The multi-channel glass lens 3014 is biconvex, and its edge area has 6 through holes connected to the channels in the inner guide ring 3013, and the refractive index is 1.65, satisfying the condition: Ng<Nd, where Nd is The refractive index of the multi-channel glass lens, Ng is the refractive index of the optical liquid; the elastic film 3015 is made of a transparent organic silicon (PDMS) material, and the PDMS material is formed by mixing and cross-linking a PDMS solution and a curing agent, and the mixing ratio is The ratio of 1:20 is used, and the middle area of the film is thinner, and the peripheral area is thicker.
如附图7所示,在本发明的另一个实施例中,一种变倍光学系统包括自左向右同轴排列的预屈光透镜组1、光阑2、柔性可调节变倍透镜组3和后屈光透镜组4;预屈光透镜组1的左侧为物方空间,后屈光透镜组4的右侧为像方空间;As shown in Figure 7, in another embodiment of the present invention, a variable power optical system includes a pre-refractive lens group 1, a diaphragm 2, a flexible adjustable variable power lens group coaxially arranged from left to right 3 and the rear refractive lens group 4; the left side of the pre-refractive lens group 1 is the object space, and the right side of the rear refractive lens group 4 is the image space;
所述的预屈光透镜组1包括自左向右同轴排列的第一透镜101、第二透镜102、第三透镜103和第四透镜104,其中第一透镜101和第三透镜103为焦距为负、凹面朝像侧的弯月形球面镜片,第二透镜102和第四透镜104为焦距为正的双凸球面透镜;Described pre-refractive lens group 1 comprises the first lens 101, the second lens 102, the third lens 103 and the fourth lens 104 that are coaxially arranged from left to right, wherein the first lens 101 and the third lens 103 are the focal length It is a negative meniscus spherical lens with a concave surface facing the image side, and the second lens 102 and the fourth lens 104 are positive biconvex spherical lenses with a focal length;
所述的柔性可调节变倍透镜组3包括同轴排列的第一柔性可调透镜301、第一环形超声波电机302、第一传动压环303、第二柔性可调透镜304、第二环形超声波电机305和第二传动压环306;所述第一柔性可调透镜301和第二柔性可调透镜304均采用所述的具有多层结构的柔性可调透镜;The flexible adjustable zoom lens group 3 includes a coaxially arranged first flexible adjustable lens 301, a first annular ultrasonic motor 302, a first transmission pressure ring 303, a second flexible adjustable lens 304, and a second annular ultrasonic The motor 305 and the second transmission pressure ring 306; the first flexible adjustable lens 301 and the second flexible adjustable lens 304 both adopt the flexible adjustable lens with a multi-layer structure;
所述的第一环形超声波电机302的内环与第一传动压环303的外侧面通过螺纹相联结,第一柔性可调透镜301右端面的弹性薄膜与第一传动压环303的左端面相接触,第一传动压环303通过弹性薄膜作用于第一柔性可调透镜301使其右端面曲率半径发生变化;The inner ring of the first annular ultrasonic motor 302 is connected with the outer surface of the first transmission pressure ring 303 through threads, and the elastic film on the right end surface of the first flexible adjustable lens 301 is in contact with the left end surface of the first transmission pressure ring 303 , the first transmission pressure ring 303 acts on the first flexible adjustable lens 301 through the elastic film to change the curvature radius of the right end surface;
所述的第二环形超声波电机305的内环与第二传动压环306的外侧面通过螺纹相联结,第二柔性可调透镜304左端面的弹性薄膜与第二传动压环306的右端面相接触,第二传动压环306通过弹性薄膜作用于第二柔性可调透镜304使其左端面曲率半径发生变化;The inner ring of the second annular ultrasonic motor 305 is connected with the outer surface of the second transmission pressure ring 306 through threads, and the elastic film on the left end surface of the second flexible adjustable lens 304 is in contact with the right end surface of the second transmission pressure ring 306 , the second transmission pressure ring 306 acts on the second flexible adjustable lens 304 through the elastic film to change the curvature radius of the left end surface;
所述的后屈光透镜组4包括自左向右同轴排列的第五透镜401、第六透镜402和第七透镜403,所述的第五透镜401是焦距为正、凹面朝向物侧的弯月形球面镜片,所述的第六透镜402是焦距为负、凹面朝向像侧的弯月形球面镜片,所述的第七透镜403为焦距为正的双凸球面透镜,第六透镜402和第七透镜403胶合在一起形成胶合镜片。The rear refractive lens group 4 includes a fifth lens 401, a sixth lens 402 and a seventh lens 403 coaxially arranged from left to right, and the fifth lens 401 has a positive focal length and a concave surface facing the object side Meniscus spherical lens, the sixth lens 402 is a meniscus spherical lens with a negative focal length and the concave surface faces the image side, and the seventh lens 403 is a positive double-convex spherical lens with a focal length. The sixth lens 402 It is glued together with the seventh lens 403 to form a cemented lens.
如附图8a、8b所示,在变倍成像过程中,外界物体发出的光线通过预屈光透镜组1和光阑2后进入柔性可调节变倍透镜组3,经过柔性可调节变倍透镜组3的倍率调节后进入后屈光透镜组4,最后成像于图像传感器。设第一柔性可调透镜301的右端面和第二柔性可调透镜304的左端面间的初始距离为L,第一柔性可调透镜301的后焦距为fr1,第二柔性可调透镜304的前焦距fr2,系统倍率为a,在初始状态,令L=fr1+fr2,并通过环形超声波电机调节两个柔性可调透镜的焦距使其满足fr1=fr2,则此时第一柔性可调透镜301和第二柔性可调透镜304组成无焦系统,且倍率a=fr2/fr1=1。在倍率调节过程中,保持第一柔性可调透镜301的后焦距fr1和第二柔性可调透镜304的前焦距fr2之和等于L,通过协同控制两柔性可调透镜的表面形状,即可调节柔性可调透镜的焦距,进而改变系统的倍率。当减小第一柔性可调透镜301的后焦距fr1,增大第二柔性可调透镜304的前焦距fr2时,系统的倍率a增大;当减小fr2,增大fr1时,系统的倍率a则相应的减小。单个柔性可调透镜的焦距可通过调节表面曲率在任意设计范围内实现精确调节,协同控制两个柔性可调透镜的表面曲率,所述的变倍光学系统可灵活的实现大范围的连续变倍。As shown in Figures 8a and 8b, during the variable magnification imaging process, the light emitted by external objects passes through the pre-refractive lens group 1 and the diaphragm 2 and then enters the flexible adjustable variable magnification lens group 3, and passes through the flexible adjustable magnification variable lens group After the magnification of 3 is adjusted, it enters the rear refractive lens group 4, and finally forms an image on the image sensor. Assuming that the initial distance between the right end face of the first flexible tunable lens 301 and the left end face of the second flexible tunable lens 304 is L, the back focal length of the first flexible tunable lens 301 is fr1, the second flexible tunable lens 304 The front focal length is fr2, and the system magnification is a. In the initial state, let L=fr1+fr2, and adjust the focal lengths of the two flexible adjustable lenses through the ring ultrasonic motor so that fr1=fr2, then the first flexible adjustable lens at this time 301 and the second flexible adjustable lens 304 form an afocal system, and the magnification a=fr2/fr1=1. During the magnification adjustment process, the sum of the back focal length fr1 of the first flexible tunable lens 301 and the front focal length fr2 of the second flexible tunable lens 304 is kept equal to L, and can be adjusted by cooperatively controlling the surface shape of the two flexible tunable lenses. The focal length of the lens can be flexibly adjusted, thereby changing the magnification of the system. When reducing the back focal length fr1 of the first flexible tunable lens 301 and increasing the front focal length fr2 of the second flexible tunable lens 304, the system magnification a increases; when reducing fr2 and increasing fr1, the system magnification a is correspondingly reduced. The focal length of a single flexible adjustable lens can be precisely adjusted in any design range by adjusting the surface curvature, and the surface curvature of the two flexible adjustable lenses can be controlled cooperatively. The zoom optical system can flexibly realize a wide range of continuous zoom .
上述具体实施方式用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。The above specific embodiments are used to explain the present invention, rather than to limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modification and change made to the present invention will fall into the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710321798.3A CN106990459B (en) | 2017-05-09 | 2017-05-09 | One kind flexible adjustable lens with multi-layer structure and variable-power optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710321798.3A CN106990459B (en) | 2017-05-09 | 2017-05-09 | One kind flexible adjustable lens with multi-layer structure and variable-power optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106990459A CN106990459A (en) | 2017-07-28 |
CN106990459B true CN106990459B (en) | 2018-11-09 |
Family
ID=59417674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710321798.3A Active CN106990459B (en) | 2017-05-09 | 2017-05-09 | One kind flexible adjustable lens with multi-layer structure and variable-power optical system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106990459B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7202066B2 (en) * | 2017-10-19 | 2023-01-11 | 株式会社ミツトヨ | Variable focal length lens device |
CN109839713B (en) * | 2017-11-29 | 2021-12-03 | 宁波舜宇光电信息有限公司 | Zoom assembly, lens assembly and camera module |
CN110187418B (en) * | 2019-06-12 | 2020-10-02 | 北京理工大学 | Liquid film lens combined zoom optical system |
CN110764170B (en) * | 2019-11-27 | 2021-06-18 | Oppo广东移动通信有限公司 | Optical element, lens, camera and electronic device |
CN110927836B (en) * | 2019-12-06 | 2025-01-21 | 南京航空航天大学 | A thin-film variable-focus lens based on a threaded linear ultrasonic motor |
CN111240148B (en) * | 2019-12-27 | 2021-08-10 | 北京航空航天大学 | Holographic real-time acquisition and projection system based on self-adaptive zoom camera |
CN111552070B (en) * | 2020-04-20 | 2021-11-23 | 宁波大学 | Bionic flexible mobile optical imaging device |
CN115480328B (en) * | 2021-06-16 | 2024-04-26 | 北京小米移动软件有限公司 | Liquid lens, image pickup device, mobile terminal and liquid lens zooming method |
CN114280709B (en) * | 2022-01-25 | 2023-04-18 | 宁波大学 | Visual bionic photosensitive imaging device and application method |
CN114924336B (en) * | 2022-04-18 | 2024-07-12 | 江苏大学 | Multi-interlayer flexible zoom lens applied to cultural relics exhibition, holographic three-dimensional display system, augmented reality system and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101505699B1 (en) * | 2007-10-08 | 2015-03-24 | 블랙아이 옵틱스, 엘엘씨 | Liquid optics zoom lens system and imaging apparatus |
US8699141B2 (en) * | 2009-03-13 | 2014-04-15 | Knowles Electronics, Llc | Lens assembly apparatus and method |
US20140218646A1 (en) * | 2013-02-04 | 2014-08-07 | Kerr Corporation | Variable-Magnification Optical Loupe |
EP2633341B1 (en) * | 2010-10-26 | 2019-12-25 | Optotune AG | Variable focus lens having two liquid chambers |
CN105842840B (en) * | 2015-12-15 | 2018-02-13 | 浙江大学 | Imitative crystalline lens layer structure symmetrical expression zoom lens |
-
2017
- 2017-05-09 CN CN201710321798.3A patent/CN106990459B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106990459A (en) | 2017-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106990459B (en) | One kind flexible adjustable lens with multi-layer structure and variable-power optical system | |
CN103809225B (en) | A kind of bionical zoom lens and drive unit thereof | |
CN103576217B (en) | The liquid zoom lens that Prosthetic Hand crystalline lens regulates and aberration correcting method thereof | |
CN102385078B (en) | A kind of remote-controlled continuous zoom lens with liquid | |
CN110806610B (en) | An aberration-corrected zoom lens | |
CN111751910A (en) | A liquid lens zoom imaging method and system based on dielectric elastomer | |
CN102135643A (en) | Pressure-control adjustable optical attenuator | |
CN105842763A (en) | Bionic solid-liquid mixing adjustable lens and focusing device thereof | |
CN103076643B (en) | A liquid continuous zoom lens | |
CN202256729U (en) | A liquid continuous zoom lens | |
CN205263388U (en) | High power zoom | |
CN102236156A (en) | Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens | |
CN111796347B (en) | A liquid variable focus lens and driving method based on piezoelectric actuation | |
CN102129099A (en) | Handheld variable optical attenuator | |
CN112764139A (en) | Variable-focus micro lens based on hydraulic control | |
CN105223635B (en) | Method for designing and manufacturing aspheric liquid lens by using non-uniform film | |
CN107490843A (en) | A kind of intelligent interaction robot of day and night | |
CN102162914B (en) | Voltage-controlled variable optical attenuator | |
CN207318821U (en) | A kind of two groups of four constituent element moves LCOS projecting zoom lens | |
WO2023010350A1 (en) | Zoom imaging lens, camera device, and electronic device | |
CN109765740B (en) | An optofluidic lens based on droplet separation | |
CN201340503Y (en) | Mixed-type electric-control liquid crystal zoom lens | |
CN115185063A (en) | Large-aperture optical lens and imaging method thereof | |
CN109870749B (en) | A large-diameter dual-channel zoom liquid lens | |
CN106646830A (en) | Automobile super-wide-angle small prime lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221125 Address after: 2-218, Floor 2, Building 1, Yard 42, Gaoliangqiao Xiejie Street, Haidian District, Beijing 100089 Patentee after: Beijing Zhongke Vision Technology Co.,Ltd. Address before: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province Patentee before: Shenzhen dragon totem technology achievement transformation Co.,Ltd. Effective date of registration: 20221125 Address after: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province Patentee after: Shenzhen dragon totem technology achievement transformation Co.,Ltd. Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818 Patentee before: Ningbo University |
|
TR01 | Transfer of patent right |