CN106972112B - light emitting device - Google Patents
light emitting device Download PDFInfo
- Publication number
- CN106972112B CN106972112B CN201710096110.6A CN201710096110A CN106972112B CN 106972112 B CN106972112 B CN 106972112B CN 201710096110 A CN201710096110 A CN 201710096110A CN 106972112 B CN106972112 B CN 106972112B
- Authority
- CN
- China
- Prior art keywords
- light
- emitting device
- layer
- light emitting
- organic light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明提供一种发光装置,包含有机发光元件及光学层组。有机发光元件具有发光面。光学层组具有相对的第一表面及第二表面。第一表面较第二表面接近发光元件。光学层组包含偏光层及滤光层。偏光层设置于发光元件的发光面上。滤光层设置于发光元件的发光面上。当光线从第二表面穿过光学层组而通过第一表面成为第一光线,第一光线具有第一光谱,当光线从第一表面穿过光学层组而通过第二表面成为第二光线,第二光线具有第二光谱。第一光谱相异于第二光谱。第一光谱于波长值为380nm以下的穿透率小于或等于2%。
The invention provides a light-emitting device, which includes an organic light-emitting element and an optical layer group. The organic light-emitting element has a light-emitting surface. The optical layer set has first and second opposite surfaces. The first surface is closer to the light emitting element than the second surface. The optical layer group includes a polarizing layer and a filter layer. The polarizing layer is arranged on the light-emitting surface of the light-emitting element. The filter layer is arranged on the light-emitting surface of the light-emitting element. When the light passes through the optical layer group from the second surface and passes through the first surface to become a first light, the first light has a first spectrum; when the light passes through the optical layer group from the first surface and passes through the second surface to become a second light, The second light has a second spectrum. The first spectrum is different from the second spectrum. The transmittance of the first spectrum at a wavelength value below 380 nm is less than or equal to 2%.
Description
技术领域technical field
本发明是关于一种发光装置,特别是有关于一种以有机发光元件发光的发光装置。The present invention relates to a light-emitting device, in particular to a light-emitting device that uses an organic light-emitting element to emit light.
背景技术Background technique
自工业革命出现阴极射线管显示器,人们可通过发送信号供各台显示器接收,以令显示器的收视使用者获得与此信号相关的各种信息。然而,阴极射线管有着体积过大、耗电量过大以及辐射线剂量过高等缺点。因此,近年来有各种显示器不断地发展出来,以冀求体积缩小、省电以及低辐射剂量。而且,除了希望够克服上述阴极射线管的缺点以外,还希望能够保留阴极射线管的如色彩鲜艳及广视角等优点。Since the appearance of cathode ray tube monitors in the industrial revolution, people can send signals to be received by each monitor, so that the viewers of the monitors can obtain various information related to the signals. However, cathode ray tubes have disadvantages such as large volume, high power consumption, and high radiation dose. Therefore, in recent years, various displays have been continuously developed in order to reduce the volume, save power and lower the radiation dose. Moreover, in addition to overcoming the disadvantages of the above-mentioned cathode ray tube, it is also desired to retain the advantages of the cathode ray tube, such as bright colors and wide viewing angles.
于各种显示器中,发展有液晶显示器、电浆显示器及通过有机发光元件作为显示手段的显示器。有机发光元件具有色彩鲜艳、对比鲜明、高反应速率、画面不跳动、广视角、体积轻薄、耗电量低及辐射剂量低等优点。然而,有机发光元件于受到其他高能量射线照射后,有机发光元件内的有机分子可能会断裂,而可能会有启动电压升高且发光量变低等情形发生。Among various displays, liquid crystal displays, plasma displays, and displays using organic light-emitting elements as display means have been developed. Organic light-emitting devices have the advantages of bright colors, sharp contrast, high response rate, no flickering, wide viewing angle, light and thin volume, low power consumption and low radiation dose. However, after the organic light-emitting device is irradiated by other high-energy rays, the organic molecules in the organic light-emitting device may be broken, and the start-up voltage may increase and the light emission may decrease.
发明内容Contents of the invention
有鉴于以上的问题,本发明提出一种发光装置,通过限制照射于有机发光元件的光线以增进其寿命。In view of the above problems, the present invention proposes a light emitting device, which prolongs the lifetime of the organic light emitting device by limiting the light irradiated on it.
本发明的一实施例提出一种发光装置,包含有机发光元件及光学层组。有机发光元件具有发光面。光学层组具有相对的第一表面及第二表面。第一表面较第二表面接近发光元件。光学层组包含偏光层及滤光层。偏光层设置于发光元件的发光面上。滤光层设置于发光元件的发光面上。当光线从第二表面穿过光学层组而通过第一表面成为第一光线,第一光线具有第一光谱,当光线从第一表面穿过光学层组而通过第二表面成为第二光线,第二光线具有第二光谱。第一光谱相异于第二光谱。第一光谱于波长值为380nm以下的穿透率小于或等于2%。An embodiment of the present invention provides a light emitting device including an organic light emitting element and an optical layer set. An organic light emitting element has a light emitting surface. The optical layer set has opposite first surface and second surface. The first surface is closer to the light emitting element than the second surface. The optical layer group includes a polarizing layer and a filter layer. The polarizing layer is arranged on the light emitting surface of the light emitting element. The filter layer is arranged on the light emitting surface of the light emitting element. When the light passes through the optical layer group from the second surface and passes through the first surface to become the first light, the first light has a first spectrum; when the light passes through the optical layer group from the first surface and passes through the second surface to become the second light, The second light has a second spectrum. The first spectrum is different from the second spectrum. The transmittance of the first spectrum at a wavelength below 380nm is less than or equal to 2%.
根据本发明的实施例的发光装置,能够通过光学层组的配置,使得光线从第二表面穿过光学层组而通过第一表面时,波长值为380nm以下的光线仅能透光小于或等于2%,而不至于对有机发光元件造成伤害,而有机发光元件所发出的光线从第二表面穿过光学层组而通过第一表面时,则光线不会受到光学层组太多的影响,而能够维持有机发光元件所发出的光线的表现。According to the light-emitting device of the embodiment of the present invention, through the configuration of the optical layer group, when the light passes through the optical layer group from the second surface to the first surface, the light with a wavelength value below 380nm can only transmit light less than or equal to 2%, so as not to cause damage to the organic light-emitting element, and when the light emitted by the organic light-emitting element passes through the optical layer group from the second surface and passes through the first surface, the light will not be too much affected by the optical layer group, Therefore, the performance of the light emitted by the organic light-emitting element can be maintained.
以上的关于本发明内容的说明及以下的实施方式的说明是用以示范与解释本发明的精神与原理,并且提供本发明的权利要求书更进一步的解释。The above descriptions about the content of the present invention and the following descriptions of the embodiments are used to demonstrate and explain the spirit and principle of the present invention, and provide further explanations of the claims of the present invention.
附图说明Description of drawings
图1A绘示依照本发明的一实施例的发光装置的立体分解示意图;FIG. 1A is a three-dimensional exploded schematic diagram of a light emitting device according to an embodiment of the present invention;
图1B绘示图1A的有机发光元件所发出的蓝光的波长峰值减去蓝光的波长半高宽的波长值的示意图;FIG. 1B is a schematic diagram showing the peak wavelength of the blue light emitted by the organic light-emitting element in FIG. 1A minus the wavelength value of the FWMW of the blue light;
图2A绘示图1A的光学层组中,当光线从第二表面穿过光学层组而通过第一表面成为第一光线时,第一光线所具有的第一光谱的示意图;2A is a schematic diagram of the first spectrum of the first light when the light passes through the optical layer group from the second surface and passes through the first surface to become the first light in the optical layer group of FIG. 1A;
图2B绘示图1A的光学层组中,当光线从第一表面穿过光学层组而通过第二表面成为第二光线时,第二光线所具有的第二光谱的示意图;2B is a schematic diagram of a second spectrum of the second light when the light passes through the optical layer group from the first surface and passes through the second surface to become a second light in the optical layer group of FIG. 1A;
图3A绘示测试图1A于相异结构下的有机发光元件的红光发光强度相对于循环次数的关系的示意图;3A is a schematic diagram showing the relationship between the red light emission intensity of the organic light-emitting device in different structures and the number of cycles tested in FIG. 1A;
图3B绘示测试图1A于相异结构下的有机发光元件的绿光发光强度相对于循环次数的关系的示意图;FIG. 3B is a schematic diagram showing the relationship between the green light emission intensity of the organic light-emitting device in different structures and the number of cycles tested in FIG. 1A;
图3C绘示测试图1A于相异结构下的有机发光元件的蓝光发光强度相对于循环次数的关系的示意图;3C is a schematic diagram showing the relationship between the blue light emission intensity and the cycle number of the organic light-emitting device in different structures tested in FIG. 1A;
图4A绘示测试图1A于相异结构下的红光有机发光元件的跨压相对于循环次数的关系的示意图;4A is a schematic diagram showing the relationship between the cross-voltage and the number of cycles of testing the red organic light-emitting device in FIG. 1A under a different structure;
图4B绘示测试图1A于相异结构下的绿光有机发光元件的跨压相对于循环次数的关系的示意图;FIG. 4B is a schematic diagram showing the relationship between the cross-voltage of the green organic light-emitting device in different structures and the number of cycles tested in FIG. 1A;
图4C绘示测试图1A于相异结构下的蓝光有机发光元件的跨压相对于循环次数的关系的示意图;FIG. 4C is a schematic diagram showing the relationship between the cross-voltage of the blue organic light-emitting device in different structures and the number of cycles tested in FIG. 1A;
图5A绘示依照本发明的另一实施例的发光装置的剖面示意图;5A is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention;
图5B绘示依照本发明的另一实施例的发光装置的剖面示意图;5B is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention;
图5C绘示依照本发明的另一实施例的发光装置的剖面示意图;5C is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention;
图5D绘示依照本发明的另一实施例的发光装置的剖面示意图;5D is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention;
图5E绘示依照本发明的另一实施例的发光装置的剖面示意图;5E is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention;
图5F绘示依照本发明的另一实施例的发光装置的剖面示意图。FIG. 5F is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention.
附图标记reference sign
1、2、3、4、5、6、7、8、9、10、11 发光装置1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 Lighting devices
110 有机发光元件110 organic light-emitting elements
110a 发光面110a luminous surface
120 光学层组120 optical layer groups
120a 第一表面120a first surface
120b 第二表面120b second surface
121 偏光层121 Polarizing layer
122 滤光层122 filter layer
130 盖体130 Cover
131 第一保护层131 First layer of protection
132 第二保护层132 Second protective layer
L0、L1、L2 光线L0, L1, L2 rays
N1 第一快轴方向N1 First fast axis direction
N2 第一慢轴方向N2 First slow axis direction
N3 第二快轴方向N3 Second fast axis direction
N4 第二慢轴方向N4 Second slow axis direction
具体实施方式Detailed ways
以下在实施方式中详细叙述本发明的实施例的详细特征以及优点,其内容足以使任何本领域中技术人员了解本发明的实施例的技术内容并据以实施,且根据本说明书所揭露的内容、权利要求书及图式,任何本领域中技术人员可轻易地理解本发明相关的目的及优点。以下的实施例是进一步详细说明本发明的观点,但非以任何观点限制本发明的范畴。The detailed features and advantages of the embodiments of the present invention are described in detail below in the implementation manner, the content is enough for any person skilled in the art to understand the technical content of the embodiments of the present invention and implement them accordingly, and according to the content disclosed in this specification , claims and drawings, anyone skilled in the art can easily understand the related objects and advantages of the present invention. The following examples are to further describe the viewpoints of the present invention in detail, but not to limit the scope of the present invention in any way.
说明书中所述的“上”,可表示为悬置于上方,亦可表示为接触于上表面。The "upper" mentioned in the specification may mean suspended above, or be in contact with the upper surface.
请参照图1A及图1B,图1A绘示依照本发明的一实施例的发光装置1的立体分解示意图,图1B绘示图1A的有机发光元件110所发出的蓝光的发光强度相对于波长的示意图。发光装置1包含有机发光元件110及光学层组120。有机发光元件110具有发光面110a。光学层组120具有相对的第一表面120a及第二表面120b。第一表面120a较第二表面120b接近有机发光元件110。Please refer to FIG. 1A and FIG. 1B. FIG. 1A shows a three-dimensional exploded view of a light-emitting device 1 according to an embodiment of the present invention, and FIG. 1B shows the luminous intensity of the blue light emitted by the organic light-emitting element 110 in FIG. 1A relative to the wavelength. schematic diagram. The light emitting device 1 includes an organic light emitting element 110 and an optical layer set 120 . The organic light emitting element 110 has a light emitting surface 110a. The optical layer set 120 has opposite first surface 120a and second surface 120b. The first surface 120a is closer to the organic light emitting element 110 than the second surface 120b.
光学层组120包含偏光层121及滤光层122。偏光层121设置于发光元件110的发光面110a上。偏光层121可包含相位延迟层,用以延迟所经过的光线的相位,其中相位延迟层可为四分之一波片。偏光层121具有彼此相异的第一快轴方向N1及第一慢轴方向N2。第一快轴方向N1与第一慢轴方向N2的夹角可为90°。The optical layer set 120 includes a polarizing layer 121 and a filter layer 122 . The polarizing layer 121 is disposed on the light emitting surface 110 a of the light emitting element 110 . The polarizing layer 121 may include a phase retardation layer for retarding the phase of passing light, wherein the phase retardation layer may be a quarter-wave plate. The polarizing layer 121 has a first fast axis direction N1 and a first slow axis direction N2 which are different from each other. The included angle between the first fast axis direction N1 and the first slow axis direction N2 may be 90°.
滤光层122设置于有机发光元件110的发光面110a上。滤光层122可位于有机发光元件110及偏光层121之间。滤光层122的材质可为聚对苯二甲酸乙二酯(polyethyleneterephthalate,PET)。滤光层122可具有彼此相异的第二快轴方向N3及第二慢轴方向N4,第二快轴方向N3与第二慢轴方向N4的夹角可为90°。滤光层122沿第二快轴方向N3的折射率及沿第二慢轴方向N4的折射率相异。偏光层121的第一快轴方向N1与滤光层122的第二快轴方向N3的夹角可约为3°。举例而言,偏光层121的第一快轴方向N1的角度为0°或180°时,滤光层122的第二快轴方向N3的角度可约为177°。The filter layer 122 is disposed on the light emitting surface 110 a of the organic light emitting element 110 . The filter layer 122 can be located between the organic light emitting element 110 and the polarizing layer 121 . The material of the filter layer 122 may be polyethylene terephthalate (PET). The filter layer 122 may have a second fast axis direction N3 and a second slow axis direction N4 that are different from each other, and an included angle between the second fast axis direction N3 and the second slow axis direction N4 may be 90°. The refractive index of the filter layer 122 along the second fast axis direction N3 is different from the refractive index along the second slow axis direction N4. The included angle between the first fast axis direction N1 of the polarizing layer 121 and the second fast axis direction N3 of the filter layer 122 may be about 3°. For example, when the angle of the first fast axis direction N1 of the polarizing layer 121 is 0° or 180°, the angle of the second fast axis direction N3 of the filter layer 122 may be about 177°.
于制作滤光层122时,可通过拉伸滤光层122的材料且贴附于其他元件的方式,以完成滤光层122,其中拉伸滤光层122的方向可为第二快轴方向N3,被贴附的其他元件可为偏光层121。但不以此为限。于制作滤光层122时,亦可通过将液态的滤光层的材料涂布于其他元件并加以固化的方式,以完成滤光层122,其中涂布滤光层122的方向亦可为第二快轴方向N3,被涂布的其他元件亦可为偏光层121。另外,还可以配向方式沿第二快轴方向N3及第二慢轴方向N4形成滤光层122。其中,此配向方式可为将有滤光特性的离子掺杂于PET(polyethylene terephthalate)塑胶膜中,并使其以第二快轴方向N3或第二慢轴方向N4均匀排列。When making the filter layer 122, the material of the filter layer 122 can be stretched and attached to other components to complete the filter layer 122, wherein the direction of stretching the filter layer 122 can be the second fast axis direction N3, other attached components may be the polarizing layer 121 . But not limited to this. When making the filter layer 122, the filter layer 122 can also be completed by coating the material of the filter layer in liquid state on other elements and then solidified, wherein the direction of coating the filter layer 122 can also be the first In the direction of the two fast axes N3, other components coated can also be the polarizing layer 121 . In addition, the filter layer 122 can also be formed along the second fast axis direction N3 and the second slow axis direction N4 in an alignment manner. Wherein, the alignment method is to dope PET (polyethylene terephthalate) plastic film with ions having light filtering properties, and arrange them uniformly in the second fast axis direction N3 or the second slow axis direction N4.
于本实施例中,可见光的波长范围可为380nm~780nm,滤光层122对于可见光的总穿透率可为90%以上,或者对于可见光的平均穿透率可为90%以上。滤光层122对于波长值为420nm以下的光线的穿透率可小于15%。滤光层122及偏光层121对于可见光的总穿透率可为43%以上。滤光层122的厚度及偏光层121的厚度的总和可小于或等于180微米。In this embodiment, the wavelength range of visible light may be 380nm-780nm, and the total transmittance of visible light of the filter layer 122 may be above 90%, or the average transmittance of visible light may be above 90%. The transmittance of the filter layer 122 for light with a wavelength below 420 nm may be less than 15%. The total transmittance of the filter layer 122 and the polarizing layer 121 for visible light may be above 43%. The sum of the thickness of the filter layer 122 and the thickness of the polarizing layer 121 may be less than or equal to 180 microns.
而且,如图1B所示,图中的曲线为图1A的有机发光元件110所发出的蓝光的发光强度相对于波长的示意图。于本实施例中,有机发光元件110所发出的蓝光的波长范围可为420nm至480nm。此蓝光的最强强度可表示为H,于此最强强度所对应的波长值可表示为波长峰值L,此蓝光于最强强度的半高强度可表示为H/2,此蓝光对应于半高强度H/2时的波长值的宽度可表示为波长半高宽W,有机发光元件110所发出的此蓝光的波长峰值L减去此蓝光的波长半高宽W可表示为波长值L-W。滤光层122对于波长值L-W以下的光线的穿透率可小于2%。Moreover, as shown in FIG. 1B , the curve in the figure is a schematic diagram of the luminous intensity of the blue light emitted by the organic light emitting element 110 in FIG. 1A relative to the wavelength. In this embodiment, the wavelength range of the blue light emitted by the organic light emitting element 110 may be 420 nm to 480 nm. The strongest intensity of the blue light can be expressed as H, and the wavelength value corresponding to the strongest intensity can be expressed as the peak wavelength L, and the half-high intensity of the blue light at the strongest intensity can be expressed as H/2, and the blue light corresponds to half The width of the wavelength value at high intensity H/2 can be expressed as the wavelength half maximum width W, and the wavelength peak value L of the blue light emitted by the organic light emitting element 110 minus the wavelength half maximum width W of the blue light can be expressed as the wavelength value L− W. The transmittance of the filter layer 122 for the light below the wavelength value L-W may be less than 2%.
请参照图2A及图2B。图2A绘示图1A的光学层组120中,当光线L0从第二表面120b穿过光学层组120而通过第一表面120a成为第一光线L1时,第一光线L1所具有的第一光谱λ1的示意图。图2B绘示图1A的光学层组120中,当光线L0从第一表面120a穿过光学层组而通过第二表面120b成为第二光线L2时,第二光线L2所具有的第二光谱λ2的示意图。Please refer to FIG. 2A and FIG. 2B . FIG. 2A shows the first spectrum of the first light L1 in the optical layer group 120 of FIG. 1A when the light L0 passes through the optical layer group 120 from the second surface 120b and passes through the first surface 120a to become the first light L1. Schematic diagram of λ1. FIG. 2B shows that in the optical layer group 120 of FIG. 1A, when the light L0 passes through the optical layer group from the first surface 120a and becomes the second light L2 through the second surface 120b, the second spectrum λ2 of the second light L2 schematic diagram.
于欲取得光线穿过光学层组120的光谱时,可将光学层组120设置于盖体130上,且第一表面120a朝向盖体130,第二表面120b背对盖体130。滤光层122可位于盖体130及偏光层121之间。盖体130可为玻璃。如图2A所示,令测试用光线L0从第二表面120b穿过光学层组120而通过第一表面120a成为第一光线L1,且于盖体130接收第一光线L1而取得第一光谱λ1。如图2B所示,令测试用光线L0从盖体130穿过第一表面120a且穿过光学层组120而通过第二表面120b成为第二光线L2,且于第二表面120b接收第二光线而取得第二光谱λ2。综合图2A及图2B可知,第一光谱λ1相异于第二光谱λ2。第二光谱λ2于波长值为380nm以下的穿透率可大于2%。When it is desired to obtain the spectrum of light passing through the optical layer group 120 , the optical layer group 120 can be disposed on the cover body 130 , with the first surface 120 a facing the cover body 130 and the second surface 120 b facing away from the cover body 130 . The filter layer 122 can be located between the cover 130 and the polarizing layer 121 . The cover 130 can be glass. As shown in FIG. 2A , let the test light L0 pass through the optical layer group 120 from the second surface 120b and pass through the first surface 120a to become the first light L1, and receive the first light L1 at the cover 130 to obtain the first spectrum λ1 . As shown in FIG. 2B , let the test light L0 pass through the first surface 120a from the cover 130 and pass through the optical layer group 120 to become the second light L2 through the second surface 120b, and receive the second light at the second surface 120b And the second spectrum λ2 is obtained. From FIG. 2A and FIG. 2B , it can be seen that the first spectrum λ1 is different from the second spectrum λ2 . The transmittance of the second spectrum λ2 at wavelengths below 380 nm may be greater than 2%.
由图2A所示的第一光谱可知,如图中虚线圈起的部分所示,第一光线于波长约为380nm以下的穿透率非常接近为零,表示波长约为380nm以下的光线,例如UV(ultraviolet)光,几乎不会从第二表面120b穿透光学层组120而通过第一表面120a。详言之,第一光谱λ1于波长值为380nm以下的穿透率可小于或等于2%。因此,当如图1A所示将有机发光元件110设置于第一表面120a时,则可大幅避免有机发光元件110受到波长约为380nm以下的光线照射,而能够避免有机发光元件110内的有机分子因此发生断裂的情形,进而提升有机发光元件110的寿命。As can be seen from the first spectrum shown in FIG. 2A , as shown in the part circled by the dotted circle in the figure, the transmittance of the first light at a wavelength below about 380nm is very close to zero, indicating that the light at a wavelength below about 380nm, for example UV (ultraviolet) light hardly penetrates the optical layer group 120 from the second surface 120b and passes through the first surface 120a. Specifically, the transmittance of the first spectrum λ1 at wavelengths below 380 nm may be less than or equal to 2%. Therefore, when the organic light-emitting element 110 is disposed on the first surface 120a as shown in FIG. 1A, the organic light-emitting element 110 can be largely prevented from being irradiated by light with a wavelength of about 380 nm or less, and the organic molecules in the organic light-emitting element 110 can be avoided. Therefore, breakage occurs, thereby increasing the lifetime of the organic light emitting element 110 .
由图2B所示的第二光谱可知,如图中虚线圈起的部分所示,第二光线于波长约为380nm以下仍可有些许的穿透率,表示波长约为380nm以下的光线仍些许能够从第一表面120a穿透光学层组120而通过第二表面120b。详言之,第二光谱λ2于波长值为380nm以下的穿透率可大于2%。因此,当如图1A所示将有机发光元件110设置于第一表面120a时,有机发光元件110所发出的光线中的波长约为380nm以下的光线,亦能够经过光学层组120而供发光装置1的使用者观看,因此能够维持发光装置1所呈现的色彩表现。From the second spectrum shown in Figure 2B, it can be seen that, as shown in the part circled by the dotted circle in the figure, the second light can still have a little transmittance at a wavelength below about 380nm, which means that the light with a wavelength below about 380nm still has a little The optical layer group 120 can be penetrated from the first surface 120a to pass through the second surface 120b. Specifically, the transmittance of the second spectrum λ2 at wavelengths below 380 nm may be greater than 2%. Therefore, when the organic light emitting element 110 is arranged on the first surface 120a as shown in FIG. 1 for viewing by users, and thus the color performance presented by the light emitting device 1 can be maintained.
以下将说明图1A的光学层组120对于有机发光元件110的保护效果。The protection effect of the optical layer group 120 in FIG. 1A on the organic light emitting device 110 will be described below.
此处的测试条件,是将未运作时的发光装置储存于太阳照射模拟仪器中,且根据IEC 60068-2-5,Sa试验的地面太阳辐射模拟规范进行测试。其中,最高温约为40摄氏度,最低温约为25摄氏度,照度约为1120W/m2。于每一次循环中,照射状态下持续八个小时,黑暗状态下维持十六个小时。于每次取测试点时对有机发光元件110导通相同电流的电源,以测试其发光强度。The test condition here is to store the non-operating light-emitting device in a solar radiation simulation instrument, and conduct the test according to IEC 60068-2-5, the ground solar radiation simulation specification for the Sa test. Among them, the highest temperature is about 40 degrees Celsius, the lowest temperature is about 25 degrees Celsius, and the illuminance is about 1120W/m 2 . In each cycle, the light state lasted for eight hours and the dark state lasted for sixteen hours. A power supply with the same current is turned on to the organic light-emitting element 110 every time a test point is taken to test its luminous intensity.
请参照图3A、图3B及图3C。图3A绘示于相异结构下的有机发光元件110的红光发光强度相对于循环次数的关系的示意图。图3B绘示于相异结构下的有机发光元件110的绿光发光强度相对于循环次数的关系的示意图。图3C绘示于相异结构下的有机发光元件110的蓝光发光强度相对于循环次数的关系的示意图。图中以三角形标记(▲)的测试点为设置有光学层组120保护有机发光元件110的情形,此结构为第一结构,如图1A的发光装置1。图中以菱形标记(◆)的测试点为仅设置偏光层121保护有机发光元件110的情形,此结构为第二结构。图中以圆形标记(●)的测试点为未设置其他元件保护有机发光元件110的情形,此结构为第三结构。实粗线为参考数值,表示图1A的发光装置1完全未进行地面太阳辐射模拟测试时的情形。Please refer to FIG. 3A , FIG. 3B and FIG. 3C . FIG. 3A is a schematic diagram showing the relationship between the red light emission intensity of the organic light emitting device 110 and the cycle number under different structures. FIG. 3B is a schematic diagram showing the relationship between the green light emission intensity of the organic light emitting device 110 and the cycle number under different structures. FIG. 3C is a schematic diagram showing the relationship between the blue light emission intensity of the organic light emitting device 110 and the cycle number under different structures. The test point marked with a triangle (▲) in the figure is the situation where the optical layer group 120 is installed to protect the organic light emitting device 110, and this structure is the first structure, such as the light emitting device 1 of FIG. 1A. The test point marked with a diamond (◆) in the figure is the case where only the polarizing layer 121 is provided to protect the organic light emitting element 110, and this structure is the second structure. The test point marked with a circle (●) in the figure is the situation where no other elements are installed to protect the organic light emitting element 110 , and this structure is the third structure. The solid thick line is a reference value, which represents the situation when the light emitting device 1 in FIG. 1A is not subjected to the ground solar radiation simulation test at all.
如图3A所示,于六次循环后,未设置其他元件保护有机发光元件110的第三结构中,有机发光元件110的红光发光强度便降至70%以下。仅设置偏光层121保护有机发光元件110的第二结构中,有机发光元件110的红光发光强度便降至95%以下。设置光学层组120保护有机发光元件110的第一结构中,有机发光元件110的红光发光强度可维持在95%以上。于十次循环后,第二结构的有机发光元件110的红光发光强度便降至90%以下,第一结构的有机发光元件110的红光发光强度可维持在90%以上。其中,第一结构的有机发光元件110的红光发光强度比第二结构的有机发光元件110的红光发光强度高出约7.3%。As shown in FIG. 3A , after six cycles, in the third structure in which no other elements are provided to protect the organic light emitting element 110 , the red light emission intensity of the organic light emitting element 110 drops below 70%. In the second structure where only the polarizing layer 121 is provided to protect the organic light emitting element 110, the red light emission intensity of the organic light emitting element 110 is reduced to below 95%. In the first structure in which the optical layer group 120 is provided to protect the organic light emitting element 110, the red light emission intensity of the organic light emitting element 110 can be maintained above 95%. After ten cycles, the red light emission intensity of the organic light emitting device 110 of the second structure drops below 90%, and the red light emission intensity of the organic light emitting device 110 of the first structure can be maintained above 90%. Wherein, the red light emission intensity of the organic light emitting element 110 of the first structure is about 7.3% higher than the red light emission intensity of the organic light emitting element 110 of the second structure.
如图3B所示,未设置其他元件保护有机发光元件110的第三结构中,有机发光元件110经过于二次循环后其绿光发光强度便降至93%以下。仅设置偏光层121保护有机发光元件110的第二结构中以及设置光学层组120保护有机发光元件110的第一结构中,有机发光元件110于十次循环中的绿光发光强度可维持在98%以上。第二结构及第一结构于此测试中其有机发光元件110的绿光发光强度几乎未见有衰退的现象。As shown in FIG. 3B , in the third structure in which no other elements are provided to protect the organic light emitting element 110 , the green light emission intensity of the organic light emitting element 110 drops below 93% after the second cycle. In the second structure in which only the polarizing layer 121 is provided to protect the organic light emitting element 110 and in the first structure in which the optical layer group 120 is provided to protect the organic light emitting element 110, the green light emission intensity of the organic light emitting element 110 in ten cycles can be maintained at 98 %above. In the test of the second structure and the first structure, the green light emission intensity of the organic light-emitting element 110 has almost no decline.
如图3C所示,未设置其他元件保护有机发光元件110的第三结构中,有机发光元件110经过于二次循环后其蓝光发光强度便降至63%以下,而第一结构的有机发光元件110的蓝光发光强度几乎未见有衰退的现象。仅设置偏光层121保护有机发光元件110的第二结构中,有机发光元件110经过二次循环后其蓝光发光强度便降至88%以下,经过六次循环后其蓝光发光强度便降至82%以下,经过八次循环后其蓝光发光强度便降至75%以下,十次循环后的蓝光发光强度约为70~75%。设置光学层组120保护有机发光元件110的第一结构中,有机发光元件110经过四次循环前的蓝光发光强度可维持在95%以上,经过四次循环后其蓝光发光强度仅降至95%左右,经过七次循环后其蓝光发光强度才降至90%以下,十次循环后的蓝光发光强度仍然保有约为80~85%。因此,于十次循环后,以光学层组120保护的有机发光元件110的蓝光发光强度比仅以偏光层121保护有机发光元件110的蓝光发光强度高出约13.7%。As shown in FIG. 3C , in the third structure in which no other elements are installed to protect the organic light emitting element 110, the blue light emission intensity of the organic light emitting element 110 drops below 63% after the second cycle, while the organic light emitting element in the first structure The luminous intensity of blue light of 110 has almost no decline. In the second structure in which only the polarizing layer 121 is provided to protect the organic light-emitting element 110, the blue light emission intensity of the organic light-emitting element 110 will drop to below 88% after two cycles, and its blue light emission intensity will drop to 82% after six cycles. Below, the blue luminous intensity drops to below 75% after eight cycles, and the blue luminous intensity is about 70-75% after ten cycles. In the first structure in which the optical layer group 120 is set to protect the organic light-emitting element 110, the blue light emission intensity of the organic light-emitting element 110 can be maintained above 95% before four cycles, and its blue light emission intensity only drops to 95% after four cycles After about seven cycles, the blue luminous intensity drops below 90%, and after ten cycles, the blue luminous intensity still maintains about 80-85%. Therefore, after ten cycles, the blue light emission intensity of the organic light emitting device 110 protected by the optical layer set 120 is about 13.7% higher than that of the organic light emitting device 110 protected only by the polarizing layer 121 .
由上可知,光学层组120可有效保护有机发光元件110,以减缓亮度衰减的产生。It can be known from the above that the optical layer set 120 can effectively protect the organic light emitting element 110 to slow down the generation of brightness attenuation.
请参照图4A、图4B及图4C。图4A绘示于相异结构下的红光有机发光元件110的跨压(cross voltage)相对于循环次数的关系的示意图。图4B绘示于相异结构下的绿光有机发光元件110的跨压相对于循环次数的关系的示意图。图4C绘示于相异结构下的蓝光有机发光元件110的跨压相对于循环次数的关系的示意图。图中以三角形标记(▲)的测试点为设置有光学层组120保护有机发光元件110的情形,此结构为第一结构,如图1A的发光装置1。图中以菱形标记(◆)的测试点为仅设置偏光层121保护有机发光元件110的情形,此结构为第二结构。图中以圆形标记(●)的测试点为未设置其他元件保护有机发光元件110的情形,此结构为第三结构。Please refer to FIG. 4A , FIG. 4B and FIG. 4C . FIG. 4A is a schematic diagram showing the relationship between the cross voltage and the cycle number of the red OLED 110 under different structures. FIG. 4B is a schematic diagram illustrating the relationship between the voltage across the green organic light emitting device 110 and the number of cycles in different structures. FIG. 4C is a schematic diagram illustrating the relationship between the cross-voltage of the blue organic light-emitting device 110 and the number of cycles in different structures. The test point marked with a triangle (▲) in the figure is the situation where the optical layer group 120 is installed to protect the organic light emitting device 110, and this structure is the first structure, such as the light emitting device 1 of FIG. 1A. The test point marked with a diamond (◆) in the figure is the case where only the polarizing layer 121 is provided to protect the organic light emitting element 110, and this structure is the second structure. The test point marked with a circle (●) in the figure is the situation where no other elements are installed to protect the organic light emitting element 110 , and this structure is the third structure.
如图4A所示,未设置其他元件保护有机发光元件110时的第三结构中,红光有机发光元件110的跨压会不断地上升,十次循环后的跨压上升约4.5~5伏特。仅设置偏光层121保护有机发光元件110时的第二结构中,红光有机发光元件110的跨压会较缓慢地上升,十次循环后的跨压上升约3伏特。设置光学层组120保护有机发光元件110时的第一结构中,红光有机发光元件110的跨压会更缓慢地上升,十次循环后的跨压仅上升约1.5伏特。于十次循环后,以光学层组120保护的红光有机发光元件110的跨压比仅以偏光层121保护红光有机发光元件110的跨压低约1.5伏特。As shown in FIG. 4A , in the third structure when no other elements are installed to protect the organic light emitting element 110 , the cross voltage of the red light organic light emitting element 110 will continue to rise, and the cross voltage will increase by about 4.5-5 volts after ten cycles. In the second structure where only the polarizing layer 121 is provided to protect the organic light-emitting element 110 , the cross-voltage of the red-light organic light-emitting element 110 rises slowly, and the cross-voltage rises by about 3 volts after ten cycles. In the first structure when the optical layer group 120 is provided to protect the organic light emitting element 110 , the cross voltage of the red light organic light emitting element 110 will rise more slowly, and the cross voltage only rises about 1.5 volts after ten cycles. After ten cycles, the voltage across the red organic light emitting device 110 protected by the optical layer set 120 is about 1.5 volts lower than that of the red organic light emitting device 110 protected only by the polarizing layer 121 .
相似地,如图4B所示,未设置其他元件保护有机发光元件110时的第三结构中,绿光有机发光元件110的跨压会不断地上升,十次循环后的跨压上升约4.5~5伏特。仅设置偏光层121保护有机发光元件110时的第二结构中,绿光有机发光元件110的跨压会较缓慢地上升,十次循环后的跨压上升约2~2.5伏特。设置光学层组120保护有机发光元件110时的第一结构中,绿光有机发光元件110的跨压会更缓慢地上升,十次循环后的跨压上升约1.5伏特。于十次循环后,以光学层组120保护的绿光有机发光元件110的跨压比仅以偏光层121保护绿光有机发光元件110的跨压低约0.8伏特。Similarly, as shown in FIG. 4B , in the third structure when no other elements are installed to protect the organic light emitting element 110 , the cross-voltage of the green organic light-emitting element 110 will continue to rise, and the cross-voltage after ten cycles will increase by about 4.5- 5 volts. In the second structure where only the polarizing layer 121 is provided to protect the organic light-emitting element 110 , the cross-voltage of the green organic light-emitting element 110 rises relatively slowly, and the cross-voltage rises by about 2-2.5 volts after ten cycles. In the first structure when the optical layer group 120 is provided to protect the organic light emitting element 110 , the cross voltage of the green organic light emitting element 110 will rise more slowly, and the cross voltage will rise by about 1.5 volts after ten cycles. After ten cycles, the voltage across the green organic light emitting device 110 protected by the optical layer set 120 is about 0.8 volts lower than that of the green organic light emitting device 110 protected only by the polarizing layer 121 .
相似地,如图4C所示,未设置其他元件保护有机发光元件110的第三结构中,蓝光有机发光元件110的跨压会不断地上升,十次循环后的跨压上升约5~5.5伏特。仅设置偏光层121保护有机发光元件110的第二结构中,蓝光有机发光元件110的跨压会较缓慢地上升,十次循环后的跨压上升约3~3.5伏特。设置光学层组120保护有机发光元件110的第一结构中,蓝光有机发光元件110的跨压会更缓慢地上升,十次循环后的跨压上升约2.5~3伏特。于十次循环后,以光学层组120保护的蓝光有机发光元件110的跨压比仅以偏光层121保护有机发光元件110的跨压低约0.6伏特。Similarly, as shown in FIG. 4C , in the third structure in which no other elements are installed to protect the organic light emitting element 110 , the cross voltage of the blue organic light emitting element 110 will continue to rise, and the cross voltage rises by about 5-5.5 volts after ten cycles. . In the second structure where only the polarizing layer 121 is provided to protect the organic light-emitting element 110 , the cross-voltage of the blue-light organic light-emitting element 110 rises relatively slowly, and the cross-voltage rises by about 3-3.5 volts after ten cycles. In the first structure in which the optical layer group 120 is provided to protect the organic light emitting element 110 , the cross voltage of the blue organic light emitting element 110 will rise more slowly, and the cross voltage will rise by about 2.5-3 volts after ten cycles. After ten cycles, the voltage across the blue organic light emitting device 110 protected by the optical layer set 120 is about 0.6 volts lower than that of the organic light emitting device 110 protected only by the polarizing layer 121 .
由上可知,光学层组120可有效保护有机发光元件110,以减缓跨压上升的情形,进而能够减少耗电。It can be seen from the above that the optical layer set 120 can effectively protect the organic light emitting device 110 to slow down the rise of the cross voltage, thereby reducing power consumption.
另外,以下将介绍依照本发明的各种实施例的发光装置。In addition, light emitting devices according to various embodiments of the present invention will be described below.
请参照图5A,绘示依照本发明的另一实施例之发光装置2的剖面示意图。于本实施例中,发光装置2包含有机发光元件110、可作为光学层组的偏光层121及滤光层122、第一保护层131及第二保护层132。图5A的有机发光元件110、偏光层121及滤光层122可与图1A中的有机发光元件110、偏光层121及滤光层122类似或相同,故在此不再赘述其详细内容。第二保护层132设置于有机发光元件110上,且发光面110a朝向第二保护层132。第二保护层132设置于第一保护层131及有机发光元件110之间。第一保护层131的硬度大于第二保护层132。第一保护层131及第二保护层132皆可为透光材质。第一保护层131例如可以为强化玻璃盖板,但不以此为限。第二保护层例如可以是玻璃或塑胶,但不以此为限。Please refer to FIG. 5A , which is a schematic cross-sectional view of a light emitting device 2 according to another embodiment of the present invention. In this embodiment, the light-emitting device 2 includes an organic light-emitting element 110 , a polarizing layer 121 and a filter layer 122 , a first protection layer 131 and a second protection layer 132 , which can be used as an optical layer group. The organic light-emitting element 110, polarizing layer 121, and filter layer 122 in FIG. 5A may be similar or identical to the organic light-emitting element 110, polarizing layer 121, and filter layer 122 in FIG. 1A, so details thereof will not be repeated here. The second protection layer 132 is disposed on the organic light emitting element 110 , and the light emitting surface 110 a faces the second protection layer 132 . The second protection layer 132 is disposed between the first protection layer 131 and the organic light emitting element 110 . The hardness of the first protective layer 131 is greater than that of the second protective layer 132 . Both the first protection layer 131 and the second protection layer 132 can be light-transmitting materials. The first protective layer 131 can be, for example, a tempered glass cover, but not limited thereto. The second protective layer can be, for example, glass or plastic, but not limited thereto.
于本实施例中,第二保护层132可设置于有机发光元件110的发光面110a上。滤光层122可设置于第二保护层132上。偏光层121可设置于滤光层122上。第一保护层131可设置于偏光层121上。其中,各层之间可直接紧密接合,或者可夹有胶层或空气层,更或者可部分紧密接合且部分夹有胶层或空气层。In this embodiment, the second protection layer 132 can be disposed on the light emitting surface 110 a of the organic light emitting element 110 . The filter layer 122 can be disposed on the second protection layer 132 . The polarizing layer 121 can be disposed on the filter layer 122 . The first protective layer 131 can be disposed on the polarizing layer 121 . Wherein, the layers may be directly tightly bonded, or may be sandwiched with an adhesive layer or an air layer, or may be partially tightly bonded and partially sandwiched with an adhesive layer or an air layer.
请参照图5B,绘示依照本发明的另一实施例的发光装置3的剖面示意图。于本实施例中,第二保护层132可设置于有机发光元件110的发光面110a上。第一保护层131可设置于第二保护层132上。滤光层122可设置于第一保护层131上。偏光层121可设置于滤光层122上。其中,各层之间可直接紧密接合,或者可夹有胶层或空气层,更或者可部分紧密接合且部分夹有胶层或空气层。Please refer to FIG. 5B , which is a schematic cross-sectional view of a light emitting device 3 according to another embodiment of the present invention. In this embodiment, the second protection layer 132 can be disposed on the light emitting surface 110 a of the organic light emitting element 110 . The first protection layer 131 may be disposed on the second protection layer 132 . The filter layer 122 can be disposed on the first protection layer 131 . The polarizing layer 121 can be disposed on the filter layer 122 . Wherein, the layers may be directly tightly bonded, or may be sandwiched with an adhesive layer or an air layer, or may be partially tightly bonded and partially sandwiched with an adhesive layer or an air layer.
请参照图5C,绘示依照本发明的另一实施例的发光装置4的剖面示意图。于本实施例中,第二保护层132可设置于有机发光元件110的发光面110a上。滤光层122可设置于第二保护层132上。第一保护层131可设置于滤光层122上。偏光层121可设置于第一保护层131上。其中,各层之间可直接紧密接合,或者可夹有胶层或空气层,更或者可部分紧密接合且部分夹有胶层或空气层。Please refer to FIG. 5C , which is a schematic cross-sectional view of a light emitting device 4 according to another embodiment of the present invention. In this embodiment, the second protection layer 132 can be disposed on the light emitting surface 110 a of the organic light emitting element 110 . The filter layer 122 can be disposed on the second protection layer 132 . The first protection layer 131 can be disposed on the filter layer 122 . The polarizing layer 121 can be disposed on the first protection layer 131 . Wherein, the layers may be directly tightly bonded, or may be sandwiched with an adhesive layer or an air layer, or may be partially tightly bonded and partially sandwiched with an adhesive layer or an air layer.
请参照图5D,绘示依照本发明的另一实施例之发光装置5的剖面示意图。于本实施例中,滤光层122可设置于有机发光元件110的发光面110a上。偏光层121可设置于滤光层122上。第二保护层132可设置于偏光层121上。第一保护层131可设置于第二保护层132上。其中,各层之间可直接紧密接合,或者可夹有胶层或空气层,更或者可部分紧密接合且部分夹有胶层或空气层。Please refer to FIG. 5D , which is a schematic cross-sectional view of a light emitting device 5 according to another embodiment of the present invention. In this embodiment, the filter layer 122 can be disposed on the light emitting surface 110 a of the organic light emitting device 110 . The polarizing layer 121 can be disposed on the filter layer 122 . The second protective layer 132 can be disposed on the polarizing layer 121 . The first protection layer 131 may be disposed on the second protection layer 132 . Wherein, the layers may be directly tightly bonded, or may be sandwiched with an adhesive layer or an air layer, or may be partially tightly bonded and partially sandwiched with an adhesive layer or an air layer.
请参照图5E,绘示依照本发明的另一实施例的发光装置6的剖面示意图。于本实施例中,滤光层122可设置于有机发光元件110的发光面110a上。第二保护层132可设置于滤光层122上。偏光层121可设置于第二保护层132上。第一保护层131可设置于偏光层121上。其中,各层之间可直接紧密接合,或者可夹有胶层或空气层,更或者可部分紧密接合且部分夹有胶层或空气层。Please refer to FIG. 5E , which is a schematic cross-sectional view of a light emitting device 6 according to another embodiment of the present invention. In this embodiment, the filter layer 122 can be disposed on the light emitting surface 110 a of the organic light emitting device 110 . The second protective layer 132 can be disposed on the filter layer 122 . The polarizing layer 121 can be disposed on the second protection layer 132 . The first protective layer 131 can be disposed on the polarizing layer 121 . Wherein, the layers may be directly tightly bonded, or may be sandwiched with an adhesive layer or an air layer, or may be partially tightly bonded and partially sandwiched with an adhesive layer or an air layer.
请参照图5F,绘示依照本发明的另一实施例之发光装置7的剖面示意图。于本实施例中,滤光层122可设置于有机发光元件110的发光面110a上。第二保护层132可设置于滤光层122上。第一保护层131可设置于第二保护层132上。偏光层121可设置于第一保护层131上。其中,各层之间可直接紧密接合,或者可夹有胶层或空气层,更或者可部分紧密接合且部分夹有胶层或空气层。Please refer to FIG. 5F , which is a schematic cross-sectional view of a light emitting device 7 according to another embodiment of the present invention. In this embodiment, the filter layer 122 can be disposed on the light emitting surface 110 a of the organic light emitting device 110 . The second protective layer 132 can be disposed on the filter layer 122 . The first protection layer 131 may be disposed on the second protection layer 132 . The polarizing layer 121 can be disposed on the first protection layer 131 . Wherein, the layers may be directly tightly bonded, or may be sandwiched with an adhesive layer or an air layer, or may be partially tightly bonded and partially sandwiched with an adhesive layer or an air layer.
综上所述,本发明的实施例的发光装置,能够通过光学层组120的配置,使得光线从第二表面穿过光学层组而通过第一表面时,波长值为380nm以下的能量较高的光线仅能透光小于或等于2%,而不至于对有机发光元件造成伤害,而有机发光元件所发出的光线从第二表面穿过光学层组而通过第一表面时,则光线不会受到光学层组太多的影响,而能够维持有机发光元件所发出的光线的表现。To sum up, the light-emitting device of the embodiment of the present invention can configure the optical layer group 120 so that when the light passes through the optical layer group from the second surface to the first surface, the energy with a wavelength value below 380nm is relatively high. The light can only transmit less than or equal to 2%, and will not cause damage to the organic light-emitting element, and when the light emitted by the organic light-emitting element passes through the optical layer group from the second surface and passes through the first surface, the light will not Affected by too many optical layer groups, the performance of the light emitted by the organic light-emitting device can be maintained.
虽然本发明以前述的实施例揭露如上,然其并非用以限定本发明。在不脱离本发明的精神和范围内,所为的更动与润饰,均属本发明的专利保护范围。关于本发明所界定的保护范围请参考权利要求书。Although the present invention is disclosed by the aforementioned embodiments, they are not intended to limit the present invention. Without departing from the spirit and scope of the present invention, all changes and modifications made belong to the scope of patent protection of the present invention. Please refer to the claims for the scope of protection defined by the present invention.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105141479A TWI589048B (en) | 2016-12-14 | 2016-12-14 | Light emitting device |
TW105141479 | 2016-12-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106972112A CN106972112A (en) | 2017-07-21 |
CN106972112B true CN106972112B (en) | 2018-11-09 |
Family
ID=59328393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710096110.6A Active CN106972112B (en) | 2016-12-14 | 2017-02-22 | light emitting device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106972112B (en) |
TW (1) | TWI589048B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1897298A (en) * | 2005-07-01 | 2007-01-17 | 三星电子株式会社 | Display device and method of manufacturing the same |
CN101212023A (en) * | 2006-12-28 | 2008-07-02 | 上海广电电子股份有限公司 | Organic top luminous device and method for producing the luminous device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004102223A (en) * | 2002-07-15 | 2004-04-02 | Fuji Photo Film Co Ltd | Filter for organic electroluminescent display element |
EP1557891A3 (en) * | 2004-01-20 | 2006-10-04 | LG Electronics Inc. | Organic electroluminescent device and fabrication method thereof |
JP2015084000A (en) * | 2012-02-07 | 2015-04-30 | シャープ株式会社 | Display element and illumination device |
TWI520398B (en) * | 2012-06-15 | 2016-02-01 | 群康科技(深圳)有限公司 | Organic light emitting device and image display system therewith |
JP2016170271A (en) * | 2015-03-12 | 2016-09-23 | 大日本印刷株式会社 | Optical sheet and display device |
-
2016
- 2016-12-14 TW TW105141479A patent/TWI589048B/en active
-
2017
- 2017-02-22 CN CN201710096110.6A patent/CN106972112B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1897298A (en) * | 2005-07-01 | 2007-01-17 | 三星电子株式会社 | Display device and method of manufacturing the same |
CN101212023A (en) * | 2006-12-28 | 2008-07-02 | 上海广电电子股份有限公司 | Organic top luminous device and method for producing the luminous device |
Also Published As
Publication number | Publication date |
---|---|
TWI589048B (en) | 2017-06-21 |
CN106972112A (en) | 2017-07-21 |
TW201822389A (en) | 2018-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI653473B (en) | Image display device | |
TWI556021B (en) | Method for improving contrast of polarizing plate, image display device, and image display device | |
US20150370130A1 (en) | Light-emitting modules and lighting modules | |
JP2003332068A (en) | Electroluminescence element | |
CN104508517A (en) | Optical sheet and surface light source device | |
JP2016534413A5 (en) | ||
KR102160091B1 (en) | Polarizing plate and method of fabricating the same | |
TW201512712A (en) | Polarizer, image display device, and contrast improvement method for image display device at bright spot | |
CN106023822B (en) | OLED display device and manufacturing method thereof | |
JPWO2011078092A1 (en) | Optical sheet and surface light source device | |
JP6721359B2 (en) | Image display | |
CN106538052A (en) | Organic EL light-emitting device | |
TWI702447B (en) | Image display device | |
EP3495878B1 (en) | Display device and method of manufacturing the same | |
US8866130B2 (en) | Light-emitting device and lighting apparatus | |
CN106972112B (en) | light emitting device | |
KR20180122341A (en) | Organic EL display device | |
JP2012234809A (en) | Surface emitter | |
JP2006212549A (en) | Method for manufacturing hard coat film | |
JP7201017B2 (en) | image display device | |
KR102743169B1 (en) | OLED display panels and display devices | |
JP2017199019A (en) | Image display device | |
JP2014157286A (en) | Image display device | |
JP2016201323A (en) | Light emitting device and display device | |
JP2014157289A (en) | Image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |