CN106970358B - An Optimal Method for Angular Doppler Registration of Clutter Spectrum of Non-Side-Looking Array Radar - Google Patents
An Optimal Method for Angular Doppler Registration of Clutter Spectrum of Non-Side-Looking Array Radar Download PDFInfo
- Publication number
- CN106970358B CN106970358B CN201710293575.0A CN201710293575A CN106970358B CN 106970358 B CN106970358 B CN 106970358B CN 201710293575 A CN201710293575 A CN 201710293575A CN 106970358 B CN106970358 B CN 106970358B
- Authority
- CN
- China
- Prior art keywords
- clutter
- training sample
- clutter data
- array radar
- sampling point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000012549 training Methods 0.000 claims abstract description 120
- 239000011159 matrix material Substances 0.000 claims abstract description 67
- 239000013598 vector Substances 0.000 claims abstract description 57
- 238000012937 correction Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000001914 filtration Methods 0.000 claims abstract 3
- 238000005070 sampling Methods 0.000 claims description 112
- 230000009466 transformation Effects 0.000 claims description 12
- 230000001427 coherent effect Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 6
- 238000003491 array Methods 0.000 claims description 4
- JXASPPWQHFOWPL-UHFFFAOYSA-N Tamarixin Natural products C1=C(O)C(OC)=CC=C1C1=C(OC2C(C(O)C(O)C(CO)O2)O)C(=O)C2=C(O)C=C(O)C=C2O1 JXASPPWQHFOWPL-UHFFFAOYSA-N 0.000 claims 1
- 230000017105 transposition Effects 0.000 claims 1
- 230000001629 suppression Effects 0.000 abstract description 13
- 238000005457 optimization Methods 0.000 abstract description 6
- 230000003044 adaptive effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000003672 processing method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于雷达技术领域,尤其涉及一种非正侧视阵雷达杂波谱的角度多普勒配准的优化方法,适用于在已知的雷达配置参数存在误差时,对雷达杂波谱进行较为理想的补偿。The invention belongs to the field of radar technology, and in particular relates to an optimization method for angle Doppler registration of a non-side-looking array radar clutter spectrum, which is suitable for ideally performing radar clutter spectrum when errors exist in known radar configuration parameters. compensation.
背景技术Background technique
机载雷达具有空中警戒、侦察、控制和制导武器等功能,在我国国防建设中发挥着重要作用。机载雷达在下视工作时,由于地面杂波分布范围广、强度大,动目标被完全掩盖而无法识别。如何对地面杂波进行有效抑制,是机载雷达信号处理的重要内容。空时自适应处理(space-time adaptive processing,STAP)方法是抑制地面杂波、补偿平台运动引起的杂波谱展宽、检测地面慢速目标的有效手段。杂波协方差矩阵(Clutter CovarianceMatrix,CCM)是空时自适应处理方法杂波抑制性能的决定性因素。在实际应用中,待检测单元的杂波协方差矩阵是利用与待检测单元独立同分布(Independent IdenticallyDistributed,IID)的临近训练样本单元,通过采样协方差求逆(Sample MatrixInversion,SMI)方法估计得到的,以实现自适应地杂波抑制,为了使空时滤波器的输出信杂噪比损失小于3dB,用来估计杂波协方差矩阵的独立同分布的训练样本数需大于系统自由度的两倍。对于非正侧视阵,地面杂波多普勒频率具有严重的距离依赖性,尤其在近程条件下,距离依赖性更加显著,使得杂波分布不满足独立同分布条件,进而无法以训练样本来准确估计待检测单元的杂波协方差矩阵,使空时自适应处理方法的杂波抑制性能下降。Airborne radar has the functions of air warning, reconnaissance, control and guided weapons, etc., and plays an important role in my country's national defense construction. When the airborne radar is looking down, due to the wide distribution and high intensity of the ground clutter, the moving target is completely covered and cannot be identified. How to effectively suppress ground clutter is an important content of airborne radar signal processing. Space-time adaptive processing (STAP) method is an effective means to suppress ground clutter, compensate for clutter spectrum broadening caused by platform motion, and detect ground slow targets. The clutter covariance matrix (Clutter CovarianceMatrix, CCM) is the decisive factor of the clutter suppression performance of the space-time adaptive processing method. In practical applications, the clutter covariance matrix of the unit to be detected is estimated by the sample covariance inversion (Sample MatrixInversion, SMI) method by using the adjacent training sample units that are independent and identically distributed (IID) with the unit to be detected In order to achieve adaptive clutter suppression, in order to make the output signal-to-noise ratio loss of the space-time filter less than 3dB, the number of independent and identically distributed training samples used to estimate the clutter covariance matrix must be greater than two degrees of freedom of the system times. For non-side-looking arrays, the ground clutter Doppler frequency has a serious distance dependence, especially in short-range conditions, the distance dependence is more significant, so that the clutter distribution does not meet the independent and identical distribution conditions, and it is impossible to use training samples to Accurately estimating the clutter covariance matrix of the unit to be detected degrades the clutter suppression performance of the space-time adaptive processing method.
目前,补偿距离依赖性的方法有很多,包括多普勒翘曲(Doppler Warping,DW)法、角度多普勒补偿(Angle Doppler Compensation,ADC)法、自适应角度Doppler补偿(Adaptive Angle Doppler Compensation,A2DC)法以及基于配准补偿(RegistrationBased Compensation,RBC)等方法。其中,DW法本质上是将由不同俯仰角导致的训练样本与检测距离单元之间的杂波Doppler频率差异进行补偿,从而使得训练样本中的杂波近似平稳。ADC法和A2DC法除对训练样本与待检测距离单元间的Doppler差异进行补偿以外,还将由不同俯仰角导致的空间频率差异进行补偿。RBC法利用时域平滑子快拍进行雷达杂波谱峰值的提取,能够实现雷达杂波的完全补偿,并且在理想情况下可以得到很好的雷达杂波抑制性能。At present, there are many methods for compensating distance dependence, including Doppler Warping (Doppler Warping, DW) method, Angle Doppler Compensation (Angle Doppler Compensation, ADC) method, Adaptive Angle Doppler Compensation (Adaptive Angle Doppler Compensation, A2DC) method and registration based compensation (RegistrationBased Compensation, RBC) and other methods. Among them, the DW method essentially compensates the clutter Doppler frequency difference between the training sample and the detection range unit caused by different pitch angles, so that the clutter in the training sample is approximately stable. In addition to compensating for the Doppler difference between the training sample and the range unit to be detected, the ADC method and the A2DC method will also compensate for the spatial frequency difference caused by different pitch angles. The RBC method extracts the peak value of radar clutter spectrum by using time-domain smoother snapshots, which can realize the complete compensation of radar clutter, and can obtain good radar clutter suppression performance under ideal conditions.
然而,在上述补偿方法中,DW法仅在多普勒域进行主瓣杂波谱中心补偿,得到的补偿效果不是特别理想。ADC法通过在空间角度域和多普勒域的补偿,将各训练样本单元和待检测样本单元的杂波特性配准,计算杂波转换矩阵,从而在一定程度上抑制杂波距离依赖性,对于主瓣杂波,该方法的补偿效果更为明显。但是,在实际应用中,每个训练样本的杂波转换矩阵都需要根据载机平台提供的飞行配置参数(例如俯仰角、方位角、偏航角和速度等),利用杂波空时耦合关系计算得到,因而任意配置参数的误差都会对该方法的杂波距离依赖性补偿性能造成一定的影响。A2DC法虽然不需知道配置参数,且在理想情况下雷达杂波抑制性能也很好,但是实际中每个距离单元雷达杂波的协方差矩阵极不稳定,导致雷达杂波抑制性能下降很多。RBC法利用时域平滑子快拍进行雷达杂波谱峰值的提取,使得雷达杂波谱峰值的估计精度以及RBC法的鲁棒性都会对使用STAP技术性能造成影响。However, among the above compensation methods, the DW method only compensates the center of the main lobe clutter spectrum in the Doppler domain, and the compensation effect obtained is not particularly ideal. The ADC method registers the clutter characteristics of each training sample unit and the sample unit to be tested through compensation in the space angle domain and the Doppler domain, and calculates the clutter conversion matrix, thereby suppressing the clutter distance dependence to a certain extent , for the main lobe clutter, the compensation effect of this method is more obvious. However, in practical applications, the clutter transformation matrix of each training sample needs to be based on the flight configuration parameters (such as pitch angle, azimuth angle, yaw angle and speed, etc.) Therefore, the error of any configuration parameters will have a certain impact on the performance of the clutter distance-dependent compensation of the method. Although the A2DC method does not need to know the configuration parameters, and the radar clutter suppression performance is also very good under ideal conditions, in practice, the covariance matrix of the radar clutter in each range unit is extremely unstable, resulting in a large drop in radar clutter suppression performance. The RBC method uses time-domain smoother snapshots to extract the peak value of the radar clutter spectrum, so that the estimation accuracy of the peak value of the radar clutter spectrum and the robustness of the RBC method will affect the performance of the STAP technology.
发明内容Contents of the invention
针对上述现有技术存在的问题,本发明的目的在于提供一种非正侧视阵雷达杂波谱的角度多普勒配准的优化方法,使得非正侧视阵雷达杂波谱处理后其杂波更加均匀。For the problems existing in the above-mentioned prior art, the object of the present invention is to provide a kind of optimization method of the angle Doppler registration of the non-side-looking array radar clutter spectrum, so that after the non-side-looking array radar clutter spectrum is processed, its clutter more uniform.
本发明提出了一种非正侧视阵雷达杂波谱的角度多普勒配准的优化方法。该方法通过自适应迭代方法(IAA,Iterative Adaptive Approach)估计非正侧视阵雷达杂波谱,得到每个训练样本的杂波功率近似值,确定每个训练样本最大功率点所在的多普勒频率位置和空间频率位置,确定其杂波谱中心,再结合角度多普勒补偿(ADC,Angle DopplerCompensation)方法进行空域及多普勒域的二维补偿,得到和待检测单元杂波统计特性相一致的训练样本数据,使得非正侧视阵雷达杂波谱处理后其杂波更加均匀,进而改进了空时自适应处理(STAP)技术在非正侧视阵雷达应用中的杂波性能。The invention proposes an optimization method for angle Doppler registration of non-side-looking array radar clutter spectrum. This method estimates the clutter spectrum of the non-front-side-looking array radar through the adaptive iterative method (IAA, Iterative Adaptive Approach), obtains the approximate value of the clutter power of each training sample, and determines the Doppler frequency position of the maximum power point of each training sample and the spatial frequency position, determine the center of the clutter spectrum, and then combine the Angle Doppler Compensation (ADC, Angle Doppler Compensation) method to perform two-dimensional compensation in the air domain and Doppler domain, and obtain the training consistent with the clutter statistical characteristics of the unit to be detected The sample data makes the clutter of the non-side-view array radar more uniform after processing the clutter spectrum, and then improves the clutter performance of the space-time adaptive processing (STAP) technology in the application of the non-side-view array radar.
为达到上述目的,本发明采用如下技术方案予以实现。In order to achieve the above object, the present invention adopts the following technical solutions to achieve.
一种非正侧视阵雷达杂波谱的角度多普勒配准的优化方法,所述方法包括如下步骤:A method for optimizing the angle Doppler registration of a non-side-looking array radar clutter spectrum, said method comprising the steps of:
步骤1,获取非正侧视阵雷达接收到的L个距离单元的杂波数据,并设定第k个距离单元为待检测距离单元,则除待检测距离单元外的其他L-1个距离单元为训练样本单元;L表示非正侧视阵雷达接收到的杂波数据包含的距离单元总个数;Step 1. Obtain the clutter data of L distance units received by the non-frontal side-view array radar, and set the kth distance unit as the distance unit to be detected, then the other L-1 distance units except the distance unit to be detected The unit is the training sample unit; L represents the total number of distance units contained in the clutter data received by the non-side-looking array radar;
步骤2,设定所述非正侧视阵雷达的归一化空间频率区间[-1,1]和所述非正侧视阵雷达的归一化多普勒频率区间[-1,1];且所述非正侧视阵雷达的归一化空间频率区间和所述非正侧视阵雷达的归一化多普勒频率区间构成非正侧视阵雷达的空时二维平面;Step 2, setting the normalized spatial frequency interval [-1, 1] of the non-frontal side-view array radar and the normalized Doppler frequency interval [-1, 1] of the non-frontal side-view array radar ; And the normalized spatial frequency interval of the non-frontal side-view array radar and the normalized Doppler frequency interval of the non-frontal side-view array radar constitute the space-time two-dimensional plane of the non-frontal side-view array radar;
步骤3,令l=1,l∈{1,2,…,L},l≠k,l表示第l个训练样本单元;Step 3, let l=1, l∈{1, 2, ..., L}, l≠k, l represents the lth training sample unit;
步骤4,对第l个训练样本单元的杂波数据在所述非正侧视阵雷达的空时二维平面上进行采样,得到Ks×Kt个采样点;Ks表示第l个训练样本单元的杂波数据在非正侧视阵雷达的归一化空间频率区间的采样点个数,Kt表示第l个训练样本单元的杂波数据在非正侧视阵雷达的归一化多普勒频率区间的采样点个数;Step 4: Sampling the clutter data of the lth training sample unit on the space-time two-dimensional plane of the non-side-view array radar to obtain K s ×K t sampling points; K s represents the lth training The number of sampling points of the clutter data of the sample unit in the normalized spatial frequency interval of the non-side-view array radar, K t represents the normalization of the clutter data of the lth training sample unit in the non-side-view array radar The number of sampling points in the Doppler frequency interval;
步骤5,对于第l个训练样本单元的杂波数据在非正侧视阵雷达的空时二维平面上的第(p,q)个采样点,获取所述第(p,q)个采样点处的空时导向矢量,p∈{1,2,…,Kt},q∈{1,2,…,Ks};从而得到第l个训练样本单元的杂波数据在非正侧视阵雷达的空时二维平面上所有Ks×Kt个采样点处的空时导向矢量;Step 5, for the (p, q)th sampling point of the clutter data of the lth training sample unit on the space-time two-dimensional plane of the non-side-view array radar, obtain the (p, q)th sampling point The space-time steering vector at the point, p∈{1, 2,..., K t }, q∈{1, 2,..., K s }; so that the clutter data of the lth training sample unit is on the non-positive side Space-time steering vectors at all K s ×K t sampling points on the space-time two-dimensional plane of line-of-sight radar;
步骤6,根据第l个训练样本单元的杂波数据,第(p,q)个采样点处的空时导向矢量,计算第(p,q)个采样点处的初始功率p∈{1,2,…,Kt},q∈{1,2,…,Ks};并根据每个采样点处的初始功率确定第l个训练样本单元的杂波数据的杂波功率谱P(0);Step 6, according to the clutter data of the lth training sample unit and the space-time steering vector at the (p, q)th sampling point, calculate the initial power at the (p, q)th sampling point p ∈ {1, 2, ..., K t }, q ∈ {1, 2, ..., K s }; and determine the clutter of the clutter data of the l-th training sample unit according to the initial power at each sampling point power spectrum P (0) ;
并设置迭代次数n的初值为1;And set the initial value of the number of iterations n to 1;
步骤7,根据第(p,q)个采样点处的功率以及第(p,q)个采样点处的空时导向矢量构造第(p,q)个采样点处的协方差矩阵p∈{1,2,…,Kt},q∈{1,2,…,Ks};Step 7, according to the power at the (p, q)th sampling point And the space-time steering vector at the (p, q)th sampling point constructs the covariance matrix at the (p, q)th sampling point p ∈ {1, 2, ..., K t }, q ∈ {1, 2, ..., K s };
步骤8,根据第l个训练样本单元的杂波数据,第(p,q)个采样点处的空时导向矢量以及第(p,q)个采样点处的协方差矩阵计算第n次迭代后第(p,q)个采样点处的功率p∈{1,2,…,Kt},q∈{1,2,…,Ks};并根据第n次迭代后每个采样点处的功率确定第l个训练样本单元的杂波数据第n次迭代后的杂波功率谱P(n);Step 8, according to the clutter data of the lth training sample unit, the space-time steering vector at the (p, q) sampling point and the covariance matrix at the (p, q) sampling point Calculate the power at the (p,q)th sample point after the nth iteration p ∈ {1, 2, ..., K t }, q ∈ {1, 2, ..., K s }; and according to the power at each sampling point after the nth iteration Determine the clutter power spectrum P (n) after the nth iteration of the clutter data of the l training sample unit;
步骤9,若且0<n<num,则令n的值加1,重复执行步骤7和步骤8;num表示设定的迭代次数的最大值,表示求范数;Step 9, if And 0 < n < num, then add 1 to the value of n, repeat steps 7 and 8; num represents the maximum value of the set iteration number, express request norm;
若或者n>num,则停止迭代,并将第n次迭代后每个采样点处的功率作为第l个训练样本单元的杂波数据中每个采样点处的最终功率;like Or n>num, then stop the iteration, and the power at each sampling point after the nth iteration As the final power at each sampling point in the clutter data of the lth training sample unit;
步骤10,确定第l个训练样本单元的杂波数据中每个采样点处的最终功率的最大值,获取该最大值对应的采样点处的归一化多普勒频率和归一化空间频率,将其分别作为第l个训练样本单元的杂波数据的功率谱对应的归一化多普勒频率和归一化空间频率;Step 10, determine the maximum value of the final power at each sampling point in the clutter data of the lth training sample unit, and obtain the normalized Doppler frequency and normalized spatial frequency at the sampling point corresponding to the maximum value , which are respectively used as the normalized Doppler frequency and the normalized spatial frequency corresponding to the power spectrum of the clutter data of the lth training sample unit;
步骤11,确定待检测距离单元的杂波数据的杂波功率谱对应的归一化多普勒频率和归一化空间频率;根据第l个训练样本单元的杂波数据的功率谱对应的归一化多普勒频率和归一化空间频率,待检测距离单元的杂波数据的杂波功率谱对应的归一化多普勒频率和归一化空间频率,计算第l个训练样本单元的杂波数据的功率谱对应的修正多普勒频率和修正空间频率;Step 11, determine the normalized Doppler frequency and the normalized spatial frequency corresponding to the clutter power spectrum of the clutter data of the distance unit to be detected; Normalized Doppler frequency and normalized spatial frequency, normalized Doppler frequency and normalized spatial frequency corresponding to the clutter power spectrum of the clutter data of the distance unit to be detected, calculate the lth training sample unit Corrected Doppler frequency and corrected spatial frequency corresponding to power spectrum of clutter data;
步骤12,根据所述第l个训练样本单元的杂波数据的功率谱对应的修正多普勒频率和修正空间频率,计算第l个训练样本单元的杂波数据的功率谱对应多普勒域转换矩阵和空域转换矩阵,进而根据第l个训练样本单元的杂波数据的功率谱对应多普勒域转换矩阵和空域转换矩阵,计算得到第l个训练样本单元的杂波数据的功率谱对应修正矩阵;Step 12, according to the corrected Doppler frequency and the corrected spatial frequency corresponding to the power spectrum of the clutter data of the lth training sample unit, calculate the corresponding Doppler domain of the power spectrum of the clutter data of the lth training sample unit transformation matrix and spatial transformation matrix, and then according to the power spectrum of the clutter data of the lth training sample unit corresponding to the Doppler domain transformation matrix and the spatial domain transformation matrix, the power spectrum correspondence of the clutter data of the lth training sample unit is calculated correction matrix;
根据第l个训练样本单元的杂波数据以及第l个训练样本单元的杂波数据的功率谱对应修正矩阵,得到经过修正后的第l个训练样本单元的杂波数据;According to the clutter data of the lth training sample unit and the corresponding correction matrix of the power spectrum of the clutter data of the lth training sample unit, the clutter data of the lth training sample unit after correction is obtained;
步骤13,令l的值加1,并重复执行步骤4到步骤12,从而得到L-1个经过修正后的杂波数据,从而根据L-1个经过修正后的杂波数据计算得到待检测距离单元的杂波数据的协方差矩阵;In step 13, add 1 to the value of l, and repeat steps 4 to 12, so as to obtain L-1 corrected clutter data, and then calculate the to-be-detected clutter data based on L-1 corrected clutter data The covariance matrix of the clutter data for the range cell;
获取待检测距离单元的空时导向矢量,从而根据所述待检测距离单元的空时导向矢量以及待检测距离单元的杂波数据的协方差矩阵,求得滤波权向量,根据所述滤波权向量分别对所述L个距离单元的杂波数据进行角度多普勒配准。Obtain the space-time steering vector of the distance unit to be detected, thereby obtain the filter weight vector according to the space-time steering vector of the distance unit to be detected and the covariance matrix of the clutter data of the distance unit to be detected, and obtain the filter weight vector according to the filter weight vector Angle Doppler registration is performed on the clutter data of the L range units respectively.
本发明的有益效果:本发明方法在单个快拍情况下利用IAA方法估计非正侧视阵雷达杂波谱,得到每个训练样本的杂波功率近似值,确定其杂波谱中心,再结合ADC方法进行空域及多普勒域的二维补偿,使得非正侧视阵雷达杂波谱处理后其杂波更加均匀,进而改进了空时自适应处理(STAP)技术在非正侧视阵雷达的杂波性能。Beneficial effects of the present invention: the method of the present invention utilizes the IAA method to estimate the clutter spectrum of the non-side-looking array radar in the case of a single snapshot, obtains the clutter power approximate value of each training sample, determines its clutter spectrum center, and then combines the ADC method to carry out The two-dimensional compensation in the airspace and Doppler domain makes the clutter of the non-side-looking array radar more uniform after processing the clutter spectrum, and then improves the space-time adaptive processing (STAP) technology in the clutter of the non-side-looking array radar. performance.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例提供的一种非正侧视阵雷达杂波谱的角度多普勒配准的优化方法的流程示意图;Fig. 1 is a schematic flow chart of an optimization method for angular Doppler registration of a non-side-looking array radar clutter spectrum provided by an embodiment of the present invention;
图2为非正侧视阵雷达下最优的杂波谱示意图;Figure 2 is a schematic diagram of the optimal clutter spectrum under the non-side-view array radar;
图3为非正侧视阵雷达下未经补偿得到的杂波谱示意图;Figure 3 is a schematic diagram of the uncompensated clutter spectrum obtained under the non-side-looking array radar;
图4为非正侧视阵雷达下使用现有A2DC方法得到的杂波谱示意图;Fig. 4 is a schematic diagram of the clutter spectrum obtained by using the existing A2DC method under the non-side-view array radar;
图5为非正侧视阵雷达下使用本发明方法得到的杂波谱示意图;Fig. 5 is the clutter spectrum schematic diagram that uses the method of the present invention to obtain under the non-side-looking array radar;
图6为图2、图3、图4、图5所示四种情况下非正侧视阵雷达杂波抑制改善因子对比示意图。Fig. 6 is a schematic diagram of comparison of clutter suppression improvement factors of non-frontal side-looking array radars in the four cases shown in Fig. 2 , Fig. 3 , Fig. 4 , and Fig. 5 .
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明实施例提供一种非正侧视阵雷达杂波谱的角度多普勒配准的优化方法,如图1所示,所述方法包括如下步骤:An embodiment of the present invention provides an optimization method for angular Doppler registration of a non-side-looking array radar clutter spectrum, as shown in FIG. 1 , the method includes the following steps:
步骤1,获取非正侧视阵雷达接收到的L个距离单元的杂波数据,并设定第k个距离单元为待检测距离单元,则除待检测距离单元外的其他L-1个距离单元为训练样本单元;L表示非正侧视阵雷达接收到的杂波数据包含的距离单元总个数。Step 1. Obtain the clutter data of L distance units received by the non-frontal side-view array radar, and set the kth distance unit as the distance unit to be detected, then the other L-1 distance units except the distance unit to be detected The unit is the training sample unit; L represents the total number of distance units contained in the clutter data received by the non-side-looking array radar.
一般的,当非正侧视阵雷达接收到的L个距离单元的杂波数据中包含目标数据,则将目标所在的距离单元作为待检测距离单元。Generally, when the clutter data of L range units received by the non-side-view array radar contains target data, the range unit where the target is located is taken as the range unit to be detected.
步骤1中,获取非正侧视阵雷达接收到的L个距离单元的杂波数据,具体为:In step 1, the clutter data of L range units received by the non-frontal side-view array radar are obtained, specifically:
设置所述非正侧视阵雷达的天线是由均匀分布的N个阵元组成的线性阵列,且所述非正侧视阵雷达在一个相干处理间隔内发射的M个脉冲;The antenna of the non-front-side-view array radar is set to be a linear array composed of N array elements uniformly distributed, and the non-front-side-view array radar transmits M pulses within a coherent processing interval;
在每个脉冲、每个阵元通道上分别进行L次距离上的采样,则实际接收到的杂波数据是N×M×L为的三维数据;将第l个距离单元的第n个阵元的第m个脉冲接收到的杂波数据记为xnml,则第l个距离单元的第n个阵元接收到的杂波数据记为xnl=[xn1l,xn2l,…,xnMl]T,将第l个距离单元的N个阵元接收到的杂波数据排成NM×1维的列矢量Xl,从而得到第l个距离单元的杂波数据Xl=[x1l T,x2l T,…,xNl T]T,其中,l∈{1,2,…,L}。Sampling on the distance is carried out L times on each pulse and each array element channel respectively, then the actually received clutter data is three-dimensional data of N×M×L; the nth array of the lth distance unit The clutter data received by the m-th pulse of the element is denoted as x nml , and the clutter data received by the n-th array element of the l-th distance unit is denoted as x nl =[x n1l , x n2l ,..., x nMl ] T , arrange the clutter data received by the N array elements of the l-th distance unit into an NM×1-dimensional column vector X l , so as to obtain the clutter data Xl=[x 1l T of the l-th distance unit , x 2l T ,…,x Nl T ] T , where l∈{1, 2,…, L}.
一般的,选取训练样本单元的个数大于2NM。Generally, the number of selected training sample units is greater than 2NM.
步骤2,设定所述非正侧视阵雷达的归一化空间频率区间[-1,1]和所述非正侧视阵雷达的归一化多普勒频率区间[-1,1];且所述非正侧视阵雷达的归一化空间频率区间和所述非正侧视阵雷达的归一化多普勒频率区间构成非正侧视阵雷达的空时二维平面。Step 2, setting the normalized spatial frequency interval [-1, 1] of the non-frontal side-view array radar and the normalized Doppler frequency interval [-1, 1] of the non-frontal side-view array radar ; and the normalized spatial frequency interval of the non-frontal side-view array radar and the normalized Doppler frequency interval of the non-frontal side-view array radar constitute a space-time two-dimensional plane of the non-frontal side-view array radar.
某一距离单元的杂波数据是由阵元数、脉冲数构建的一个二维平面上的数据,是最原始的获取到的回波数据;空时二维平面是由归一化之后的角度、多普勒频率构建的一个二维平面,角度和多普勒频率是根据已知的配置参数来计算得出的。The clutter data of a certain distance unit is the data on a two-dimensional plane constructed by the number of array elements and the number of pulses, which is the most original acquired echo data; the space-time two-dimensional plane is the angle after normalization , Doppler frequency to construct a two-dimensional plane, the angle and Doppler frequency are calculated based on known configuration parameters.
步骤3,令l=1,l∈{1,2,…,L},l≠k,l表示第l个训练样本单元。Step 3, let l=1, l∈{1, 2, ..., L}, l≠k, l represents the lth training sample unit.
步骤4,对第l个训练样本单元的杂波数据在所述非正侧视阵雷达的空时二维平面上进行采样,得到Ks×Kt个采样点;Ks表示第l个训练样本单元的杂波数据在非正侧视阵雷达的归一化空间频率区间的采样点个数,Kt表示第l个训练样本单元的杂波数据在非正侧视阵雷达的归一化多普勒频率区间的采样点个数。Step 4: Sampling the clutter data of the lth training sample unit on the space-time two-dimensional plane of the non-side-view array radar to obtain K s ×K t sampling points; K s represents the lth training The number of sampling points of the clutter data of the sample unit in the normalized spatial frequency interval of the non-side-view array radar, K t represents the normalization of the clutter data of the lth training sample unit in the non-side-view array radar The number of sampling points in the Doppler frequency range.
步骤4中,Ks=10N,kt=10M;In step 4, K s =10N, k t =10M;
其中,N表示非正侧视阵雷达的天线包含的阵元个数,M表示非正侧视阵雷达在一个相干处理间隔内发射的脉冲个数,Ks表示第l个训练样本单元的杂波数据在非正侧视阵雷达的归一化空间频率区间的采样点个数,Kt表示第l个训练样本单元的杂波数据在非正侧视阵雷达的归一化多普勒频率区间的采样点个数。Among them, N represents the number of array elements contained in the antenna of the non-side-view array radar, M represents the number of pulses transmitted by the non-side-view array radar in a coherent processing interval, K s represents the miscellaneous value of the lth training sample unit The number of sampling points of the wave data in the normalized spatial frequency interval of the non-side-view array radar, K t represents the normalized Doppler frequency of the clutter data of the lth training sample unit in the non-side-view array radar The number of sampling points in the interval.
为了更加精确的重构协方差矩阵,这里分别将空时平面的空域划分成Ks个网格点,多普勒域划分成Kt个网格点,那么各网格点所对应的归一化空间频率可以表示为fs,q,q∈{1,2,…,Ks},归一化多普勒频率可以表示为fd,p,p∈{1,2,…,Kt},依据克拉美罗下界理论,无限增加网格分布数目,不会明显改善谱估计的性能,为此这里选取Ks=10N,kt=10M,此时空时平面可以划分为K=KsKt个网格点,即100NM个网格点,故当前训练样本的杂波数据可以用该网格采样点处的角度多普勒数据来表示。对所述归一化空间频率区间[-1,1]进行均匀采样,获得Ks个采样点;对所述归一化多普勒频率区间[-1,1]进行均匀采样,获得Kt个采样点。In order to reconstruct the covariance matrix more accurately, here the airspace of the space-time plane is divided into K s grid points, and the Doppler domain is divided into K t grid points, then the corresponding normalization of each grid point The normalized spatial frequency can be expressed as f s, q , q ∈ {1, 2, ..., K s }, and the normalized Doppler frequency can be expressed as f d, p , p ∈ {1, 2, ..., K t }, according to the Cramereau lower bound theory, increasing the number of grid distributions indefinitely will not significantly improve the performance of spectral estimation. Therefore, K s =10N, k t =10M are selected here, and the space-time plane can be divided into K=K s K t grid points, that is, 100NM grid points, so the clutter data of the current training sample can be represented by the angle Doppler data at the grid sampling point. The normalized spatial frequency interval [-1, 1] is uniformly sampled to obtain K s sampling points; the normalized Doppler frequency interval [-1, 1] is uniformly sampled to obtain K t sampling points.
步骤5,对于第l个训练样本单元的杂波数据在非正侧视阵雷达的空时二维平面上的第(p,q)个采样点,获取所述第(p,q)个采样点处的空时导向矢量,p∈{1,2,…,Kt},q∈{1,2,…,Ks};从而得到第l个训练样本单元的杂波数据在非正侧视阵雷达的空时二维平面上所有Ks×Kt个采样点处的空时导向矢量。Step 5, for the (p, q)th sampling point of the clutter data of the lth training sample unit on the space-time two-dimensional plane of the non-side-view array radar, obtain the (p, q)th sampling point The space-time steering vector at the point, p∈{1, 2,..., K t }, q∈{1, 2,..., K s }; so that the clutter data of the lth training sample unit is on the non-positive side Space-time steering vectors at all K s ×K t sampling points on the space-time two-dimensional plane of line-of-sight radar.
步骤5中,获取所述第(p,q)个采样点处的空时导向矢量,具体为:In step 5, the space-time steering vector at the (p, q)th sampling point is obtained, specifically:
获取第(p,q)个采样点在非正侧视阵雷达的归一化空间频率区间上的导向矢量 Obtain the steering vector of the (p, q)th sampling point on the normalized spatial frequency interval of the non-side-view array radar
获取第(p,q)个采样点在非正侧视阵雷达的归一化多普勒频率区间上的导向矢量 Obtain the steering vector of the (p, q)th sampling point on the normalized Doppler frequency interval of the non-frontal side-view array radar
从而,所述第(p,q)个采样点处的空时导向矢量 Thus, the space-time steering vector at the (p, q)th sampling point
其中,fd,p表示非正侧视阵雷达的归一化多普勒频率区间上第p个采样点的归一化多普勒频率,fs,q表示非正侧视阵雷达的归一化空间频率区间上第q个采样点的归一化空间频率;表示kronecker积,(·)T表示转置。Among them, f d, p represent the normalized Doppler frequency of the pth sampling point on the normalized Doppler frequency interval of the non-frontal side-looking array radar, and f s, q represent the normalized Doppler frequency of the non-frontal side-looking array radar. The normalized spatial frequency of the qth sampling point on the normalized spatial frequency interval; Indicates kronecker product, (·) T indicates transpose.
步骤6,根据第l个训练样本单元的杂波数据,第(p,q)个采样点处的空时导向矢量,计算第(p,q)个采样点处的初始功率p∈{1,2,…,Kt},q∈{1,2,…,Ks};并根据每个采样点处的初始功率确定第l个训练样本单元的杂波数据的杂波功率谱P(0);Step 6, according to the clutter data of the lth training sample unit and the space-time steering vector at the (p, q)th sampling point, calculate the initial power at the (p, q)th sampling point p ∈ {1, 2, ..., K t }, q ∈ {1, 2, ..., K s }; and determine the clutter of the clutter data of the l-th training sample unit according to the initial power at each sampling point power spectrum P (0) ;
并设置迭代次数n的初值为1。And set the initial value of the number of iterations n to 1.
步骤6中,采用下式计算第(p,q)个采样点处的初始功率 In step 6, use the following formula to calculate the initial power at the (p, q)th sampling point
其中,S(fd,p,fs,q)表示第(p,q)个采样点处的空时导向矢量,Xl表示第l个训练样本单元的杂波数据,(·)H表示共轭转置,|·|表示取绝对值操作;Among them, S(f d, p , f s, q ) represents the space-time steering vector at the (p, q)th sampling point, X l represents the clutter data of the l-th training sample unit, ( ) H represents Conjugate transpose, |·| means to take the absolute value operation;
根据每个采样点处的初始功率确定第l个训练样本单元的杂波数据的杂波功率谱P(0)为diag(·)表示对角矩阵,即对角元素为的对角矩阵。According to the initial power at each sampling point, determine the clutter power spectrum P (0) of the clutter data of the lth training sample unit as diag(·) represents a diagonal matrix, that is, the diagonal elements are The diagonal matrix of .
步骤7,根据第(p,q)个采样点处的功率以及第(p,q)个采样点处的空时导向矢量构造第(p,q)个采样点处的协方差矩阵p∈{1,2,…,Kt},q∈{1,2,…,Ks}。Step 7, according to the power at the (p, q)th sampling point And the space-time steering vector at the (p, q)th sampling point constructs the covariance matrix at the (p, q)th sampling point p ∈ {1, 2, ..., K t }, q ∈ {1, 2, ..., K s }.
步骤7中,根据第(p,q)个采样点处的功率以及第(p,q)个采样点处的空时导向矢量构造第(p,q)个采样点处的协方差矩阵如下:In step 7, according to the power at the (p, q)th sampling point And the space-time steering vector at the (p, q)th sampling point constructs the covariance matrix at the (p, q)th sampling point as follows:
其中,S(fd,p,fs,q)表示第(p,q)个采样点处的空时导向矢量。Among them, S(f d, p , f s, q ) represents the space-time steering vector at the (p, q)th sampling point.
步骤8,根据第l个训练样本单元的杂波数据,第(p,q)个采样点处的空时导向矢量以及第(p,q)个采样点处的协方差矩阵计算第n次迭代后第(p,q)个采样点处的功率p∈{1,2,…,Kt},q∈{1,2,…,Ks};并根据第n次迭代后每个采样点处的功率确定第l个训练样本单元的杂波数据第n次迭代后的杂波功率谱P(n)。Step 8, according to the clutter data of the lth training sample unit, the space-time steering vector at the (p, q) sampling point and the covariance matrix at the (p, q) sampling point Calculate the power at the (p,q)th sample point after the nth iteration p ∈ {1, 2, ..., K t }, q ∈ {1, 2, ..., K s }; and according to the power at each sampling point after the nth iteration Determine the clutter power spectrum P (n) after the nth iteration of the clutter data of the lth training sample unit.
步骤8中,根据第l个训练样本单元的杂波数据,第(p,q)个采样点处的空时导向矢量以及第(p,q)个采样点处的协方差矩阵计算第n次迭代后第(p,q)个采样点处的功率如下:In step 8, according to the clutter data of the lth training sample unit, the space-time steering vector at the (p, q) sampling point and the covariance matrix at the (p, q) sampling point Calculate the power at the (p,q)th sample point after the nth iteration as follows:
其中,S(fd,p,fs,q)表示第(p,q)个采样点处的空时导向矢量,Xl表示第l个训练样本单元的杂波数据,(·)H表示共轭转置,|·|表示取绝对值操作,(·)-1表示矩阵求逆;Among them, S(f d, p , f s, q ) represents the space-time steering vector at the (p, q)th sampling point, X l represents the clutter data of the l-th training sample unit, ( ) H represents Conjugate transpose, |·| means to take the absolute value operation, (·) -1 means matrix inversion;
根据第n次迭代后每个采样点处的功率确定第l个训练样本单元的杂波数据第n次迭代后的杂波功率谱P(n)如下:According to the power at each sampling point after the nth iteration Determine the clutter power spectrum P (n) after the nth iteration of the clutter data of the lth training sample unit as follows:
其中,diag(·)表示对角矩阵,即对角元素为的对角矩阵。Among them, diag( ) represents a diagonal matrix, that is, the diagonal elements are The diagonal matrix of .
步骤9,若且0<n<num,则令n的值加1,重复执行步骤7和步骤8;num表示设定的迭代次数的最大值,表示求范数;Step 9, if And 0 < n < num, then add 1 to the value of n, repeat steps 7 and 8; num represents the maximum value of the set iteration number, express request norm;
若或者n>num,则停止迭代,并将第n次迭代后每个采样点处的功率作为第l个训练样本单元的杂波数据中每个采样点处的最终功率。like Or n>num, then stop the iteration, and the power at each sampling point after the nth iteration As the final power at each sampling point in the clutter data of the lth training sample unit.
步骤10,确定第l个训练样本单元的杂波数据中每个采样点处的最终功率的最大值,获取该最大值对应的采样点处的归一化多普勒频率和归一化空间频率,将其分别作为第l个训练样本单元的杂波数据的功率谱对应的归一化多普勒频率和归一化空间频率。Step 10, determine the maximum value of the final power at each sampling point in the clutter data of the lth training sample unit, and obtain the normalized Doppler frequency and normalized spatial frequency at the sampling point corresponding to the maximum value , which are respectively taken as the normalized Doppler frequency and normalized spatial frequency corresponding to the power spectrum of the clutter data of the l-th training sample unit.
步骤11,确定待检测距离单元的杂波数据的杂波功率谱对应的归一化多普勒频率和归一化空间频率;根据第l个训练样本单元的杂波数据的功率谱对应的归一化多普勒频率和归一化空间频率,待检测距离单元的杂波数据的杂波功率谱对应的归一化多普勒频率和归一化空间频率,计算第l个训练样本单元的杂波数据的功率谱对应的修正多普勒频率和修正空间频率。Step 11, determine the normalized Doppler frequency and the normalized spatial frequency corresponding to the clutter power spectrum of the clutter data of the distance unit to be detected; Normalized Doppler frequency and normalized spatial frequency, normalized Doppler frequency and normalized spatial frequency corresponding to the clutter power spectrum of the clutter data of the distance unit to be detected, calculate the lth training sample unit The power spectrum of the clutter data corresponds to the corrected Doppler frequency and the corrected spatial frequency.
步骤11中:确定待检测距离单元的杂波数据的杂波功率谱对应的归一化多普勒频率fd,k和归一化空间频率fs,k:In step 11: determine the normalized Doppler frequency fd, k and the normalized spatial frequency fs , k corresponding to the clutter power spectrum of the clutter data of the range unit to be detected:
其中,λ为非正侧视阵雷达的工作波长,为均匀线阵的阵元间距,载机以速度v沿x轴飞行,均匀线阵所在的与x-y平面垂直的平面与x轴的夹角为θk表示待检测距离单元杂波数据所对应的俯仰角,表示待检测距离单元杂波数据相对于均匀线阵所对应的方位角,阵元数为N,脉冲重复频率为fr;Among them, λ is the working wavelength of the non-side-looking array radar, is the array element spacing of the uniform linear array, and the carrier aircraft flies along the x-axis at the speed v, the angle between the plane perpendicular to the xy plane where the uniform linear array is located and the x-axis is θ k represents the pitch angle corresponding to the clutter data of the range unit to be detected, Indicates the azimuth angle corresponding to the clutter data of the distance unit to be detected relative to the uniform linear array, the number of array elements is N, and the pulse repetition frequency is f r ;
计算第l个训练样本单元的杂波数据的功率谱对应的修正多普勒频率Δfd,l=fd,l-fd,k和修正空间频率Δfs,l=fs,l-fs,k;Calculate the corrected Doppler frequency Δf d,l =f d,l -f d,k and the corrected spatial frequency Δf s,l =f s,l -f corresponding to the power spectrum of the clutter data of the lth training sample unit s, k ;
其中,fd,l表示第l个训练样本单元的杂波数据的功率谱对应的归一化多普勒频率,fs,l表示第l个训练样本单元的杂波数据的功率谱对应的归一化空间频率,fd,k表示待检测距离单元的杂波数据的杂波功率谱对应的归一化多普勒频率,fs,k表示待检测距离单元的杂波数据的杂波功率谱对应的归一化空间频率。Among them, f d, l represent the normalized Doppler frequency corresponding to the power spectrum of the clutter data of the l-th training sample unit, and f s, l represent the corresponding frequency of the power spectrum of the clutter data of the l-th training sample unit Normalized spatial frequency, f d, k represent the normalized Doppler frequency corresponding to the clutter power spectrum of the clutter data of the range unit to be detected, f s, k represent the clutter of the clutter data of the range unit to be detected The normalized spatial frequency corresponding to the power spectrum.
步骤12,根据所述第l个训练样本单元的杂波数据的功率谱对应的修正多普勒频率和修正空间频率,计算第l个训练样本单元的杂波数据的功率谱对应多普勒域转换矩阵和空域转换矩阵,进而根据第l个训练样本单元的杂波数据的功率谱对应多普勒域转换矩阵和空域转换矩阵,计算得到第l个训练样本单元的杂波数据的功率谱对应修正矩阵;Step 12, according to the corrected Doppler frequency and the corrected spatial frequency corresponding to the power spectrum of the clutter data of the lth training sample unit, calculate the corresponding Doppler domain of the power spectrum of the clutter data of the lth training sample unit transformation matrix and spatial transformation matrix, and then according to the power spectrum of the clutter data of the lth training sample unit corresponding to the Doppler domain transformation matrix and the spatial domain transformation matrix, the power spectrum correspondence of the clutter data of the lth training sample unit is calculated correction matrix;
根据第l个训练样本单元的杂波数据以及第l个训练样本单元的杂波数据的功率谱对应修正矩阵,得到经过修正后的第l个训练样本单元的杂波数据。According to the clutter data of the lth training sample unit and the corresponding correction matrix of the power spectrum of the clutter data of the lth training sample unit, the corrected clutter data of the lth training sample unit is obtained.
步骤12中,计算第l个训练样本单元的杂波数据的功率谱对应多普勒域转换矩阵Td,l和空域转换矩阵Ts,l:In step 12, the power spectrum of the clutter data of the lth training sample unit is calculated corresponding to the Doppler domain transformation matrix T d, l and the space domain transformation matrix T s, l :
计算得到第l个训练样本单元的杂波数据的功率谱对应修正矩阵TIAA-ADC:Calculate the corresponding correction matrix T IAA-ADC of the power spectrum of the clutter data of the lth training sample unit:
根据第l个训练样本单元的杂波数据以及第l个训练样本单元的杂波数据的功率谱对应修正矩阵,得到经过修正后的第l个训练样本单元的杂波数据 According to the clutter data of the lth training sample unit and the corresponding correction matrix of the power spectrum of the clutter data of the lth training sample unit, the corrected clutter data of the lth training sample unit is obtained
其中,Δfd,l表示第l个训练样本单元的杂波数据的功率谱对应的修正多普勒频率,Δfs,l表示第l个训练样本单元的杂波数据的功率谱对应的修正空间频率,表示kronecker积,N表示非正侧视阵雷达的天线包含的阵元个数,M表示非正侧视阵雷达在一个相干处理间隔内发射的脉冲个数。Among them, Δf d, l represents the corrected Doppler frequency corresponding to the power spectrum of the clutter data of the l-th training sample unit, and Δf s, l represents the correction space corresponding to the power spectrum of the clutter data of the l-th training sample unit frequency, Represents the kronecker product, N represents the number of array elements contained in the antenna of the non-side-view array radar, and M represents the number of pulses transmitted by the non-side-view array radar within a coherent processing interval.
步骤13,令l的值加1,并重复执行步骤4到步骤12,从而得到L-1个经过修正后的杂波数据,从而根据L-1个经过修正后的杂波数据计算得到待检测距离单元的杂波数据的协方差矩阵;In step 13, add 1 to the value of l, and repeat steps 4 to 12, so as to obtain L-1 corrected clutter data, and then calculate the to-be-detected clutter data based on L-1 corrected clutter data The covariance matrix of the clutter data for the range cell;
获取待检测距离单元的空时导向矢量,从而根据所述待检测距离单元的空时导向矢量以及待检测距离单元的杂波数据的协方差矩阵,求得滤波权向量,根据所述滤波权向量分别对所述L个距离单元的杂波数据进行角度多普勒配准。Obtain the space-time steering vector of the distance unit to be detected, thereby obtain the filter weight vector according to the space-time steering vector of the distance unit to be detected and the covariance matrix of the clutter data of the distance unit to be detected, and obtain the filter weight vector according to the filter weight vector Angle Doppler registration is performed on the clutter data of the L range units respectively.
步骤13中,根据L-1个经过修正后的杂波数据计算得到待检测距离单元的杂波数据的协方差矩阵 In step 13, calculate the covariance matrix of the clutter data of the distance unit to be detected according to the L-1 corrected clutter data
其中,表示经过修正后的第l个训练样本单元的杂波数据;in, Indicates the clutter data of the lth training sample unit after correction;
获取待检测距离单元的空时导向矢量S(fd,k,fs,k),根据所述待检测距离单元的空时导向矢量S(fd,k,fs,k)以及待检测距离单元的杂波数据的协方差矩阵求得滤波权向量即 Acquire the space-time steering vector S(f d, k , f s, k ) of the distance unit to be detected, according to the space-time steering vector S(f d, k , f s, k ) of the distance unit to be detected and the Covariance matrix of clutter data for range cells Find the filter weight vector which is
其中,为归一化常数。in, is the normalization constant.
最后,将非正侧视阵雷达接收到的L个距离单元的杂波数据分别通过所述滤波权向量进行杂波抑制,得到均匀的杂波谱。Finally, the clutter data of the L range units received by the non-side-looking array radar are respectively suppressed through the filter weight vectors to obtain a uniform clutter spectrum.
需要补充的是,计算非正侧视阵雷达杂波抑制改善因子IF(fdt),用来衡量非正侧视阵雷达杂波谱的角度多普勒补偿效果。What needs to be added is to calculate the improvement factor IF(f dt ) of non-frontal side-view array radar clutter suppression, which is used to measure the angle Doppler compensation effect of non-frontal side-view array radar clutter spectrum.
具体地,其表达式为: Specifically, its expression is:
其中,PC表示设置的非正侧视阵雷达杂波输入功率,PN表示设置的非正侧视阵雷达噪声输入功率。Among them, P C represents the set non-side-looking array radar clutter input power, and PN represents the set non-side-looking array radar noise input power.
本发明的效果可通过以下仿真实验进一步说明。The effects of the present invention can be further illustrated by the following simulation experiments.
(一)仿真实验数据说明(1) Description of simulation experiment data
对非正侧视阵雷达杂波的抑制性能进行评估时,为了能够与传统的自适应角度多普勒补偿方法进行对比,本发明方法仿真采用均匀线阵;选择适当的重频,不考虑距离模糊问题,非正侧视阵雷达阵元级的杂噪比为60dB,对第60号距离单元进行处理。本部分通过仿真未经补偿、经角度多普勒补偿方法补偿和本发明方法补偿后的采样协方差求逆方法估计的杂波功率谱,并与最优的杂波功率谱进行对比。不同方法的杂波功率谱均采用最小方差无失真响应(Minimum Variance Distortionless Response,MVDR)谱。非正侧视阵雷达仿真参数如表1所示。When evaluating the suppression performance of non-side-view array radar clutter, in order to be able to compare with the traditional adaptive angle Doppler compensation method, the method simulation of the present invention adopts a uniform line array; select the appropriate repetition frequency, regardless of the distance For the fuzzy problem, the noise-to-noise ratio at the element level of the non-side-looking array radar is 60dB, and the No. 60 range unit is processed. In this part, the clutter power spectrum estimated by the sampling covariance inversion method without compensation, compensated by angle Doppler compensation method and compensated by the method of the present invention is compared with the optimal clutter power spectrum. The clutter power spectrum of different methods adopts Minimum Variance Distortionless Response (MVDR) spectrum. The simulation parameters of the non-front-side-looking array radar are shown in Table 1.
表1Table 1
(二)仿真结果及分析(2) Simulation results and analysis
本发明的仿真结果如图2~图6所示;其中,图2为非正侧视阵雷达下60号距离单元最优的杂波谱示意图,图3为非正侧视阵雷达下60号距离单元未经补偿得到的杂波谱示意图,图4为非正侧视阵雷达下60号距离单元使用A2DC法得到的杂波谱示意图,图5为非正侧视阵雷达下60号距离单元使用IAA-ADC得到的杂波谱示意图;图6为未补偿的、A2DC法、IAA-ADC法杂波抑制改善因子和最优的杂波抑制改善因子对比图。The simulation result of the present invention is as shown in Figure 2~Fig. 6; Wherein, Fig. 2 is the optimal clutter spectrum schematic diagram of No. 60 range unit under the non-frontal side-view array radar, and Fig. 3 is No. 60 distances under the non-frontal side-view array radar Schematic diagram of the clutter spectrum obtained by the unit without compensation. Figure 4 is a schematic diagram of the clutter spectrum obtained by using the A2DC method for the No. 60 range unit under the non-frontal side-looking array radar. Schematic diagram of the clutter spectrum obtained by the ADC; Figure 6 is a comparison chart of the clutter suppression improvement factor and the optimal clutter suppression improvement factor of the uncompensated, A2DC method, and IAA-ADC method.
由于非均匀场景下样本数不足,未补偿的雷达杂波谱旁瓣高、分辨率差;使用A2DC法和使用IAA-ADC法都能获得较高分辨率的频谱。但是A2DC法在实际中每个距离单元雷达杂波的协方差矩阵极不稳定,导致雷达杂波抑制性能下降很多;本发明使用的IAA-ADC法通过迭代方法重构协方差矩阵,使得非正侧视阵雷达杂波谱处理后更加均匀,谱估计的性能提高。Due to the insufficient number of samples in the non-uniform scene, the uncompensated radar clutter spectrum has high sidelobes and poor resolution; both the A2DC method and the IAA-ADC method can obtain a higher-resolution spectrum. But the covariance matrix of the radar clutter of each range unit is extremely unstable in the A2DC method in practice, causing the radar clutter suppression performance to drop a lot; The side-looking array radar clutter spectrum is more uniform after processing, and the performance of spectrum estimation is improved.
综上所述,仿真实验验证了本发明的正确性,有效性和可靠性。In summary, the simulation experiment has verified the correctness, effectiveness and reliability of the present invention.
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。Those of ordinary skill in the art can understand that all or part of the steps to realize the above method embodiments can be completed by hardware related to program instructions, and the aforementioned programs can be stored in computer-readable storage media. When the program is executed, the execution includes The steps of the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710293575.0A CN106970358B (en) | 2017-04-28 | 2017-04-28 | An Optimal Method for Angular Doppler Registration of Clutter Spectrum of Non-Side-Looking Array Radar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710293575.0A CN106970358B (en) | 2017-04-28 | 2017-04-28 | An Optimal Method for Angular Doppler Registration of Clutter Spectrum of Non-Side-Looking Array Radar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106970358A CN106970358A (en) | 2017-07-21 |
CN106970358B true CN106970358B (en) | 2019-12-24 |
Family
ID=59330410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710293575.0A Active CN106970358B (en) | 2017-04-28 | 2017-04-28 | An Optimal Method for Angular Doppler Registration of Clutter Spectrum of Non-Side-Looking Array Radar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106970358B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108020817A (en) * | 2017-09-28 | 2018-05-11 | 西安电子科技大学 | Air-borne Forward-looking battle array radar clutter suppression method based on registration |
CN108387876B (en) * | 2018-04-27 | 2020-11-27 | 杭州电子科技大学 | Double base distance error registration method for external radiation source radar network based on CTLS |
CN112255601B (en) * | 2020-10-17 | 2022-02-01 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Shore-based multi-channel radar simulated airborne data diagnosis method |
CN112415475A (en) * | 2020-11-13 | 2021-02-26 | 中国民航大学 | Non-grid sparse recovery non-front side array STAP method based on atomic norm |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103926572A (en) * | 2014-03-28 | 2014-07-16 | 西安电子科技大学 | Clutter rejection method of self-adaption subspace for non-sidelooking airborne array radar |
CN104155633A (en) * | 2014-08-12 | 2014-11-19 | 西安电子科技大学 | Clutter suppression method of non-positive side-looking bistatic MIMO radar |
CN104345300A (en) * | 2014-10-30 | 2015-02-11 | 河海大学 | Onboard non-positive side view array radar STAP (Space Time Adaptive Processing) method for clutter space-time spectrum linear compensation |
CN105785326A (en) * | 2016-03-18 | 2016-07-20 | 西安电子科技大学 | Non-forward looking array radar clutter spectrum registration optimization method |
CN106168662A (en) * | 2016-07-26 | 2016-11-30 | 中国人民解放军海军航空工程学院 | The error registration method of passive sensor based on Maximum-likelihood estimation and device |
CN106443672A (en) * | 2016-08-30 | 2017-02-22 | 西安电子科技大学 | A Method for Adaptive Reconstruction of Azimuth Multi-Channel SAR Signals |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI490524B (en) * | 2013-11-01 | 2015-07-01 | U & U Engineering Inc | Full analog microwave sensor for multiple range selection and ultra-low power consumption |
-
2017
- 2017-04-28 CN CN201710293575.0A patent/CN106970358B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103926572A (en) * | 2014-03-28 | 2014-07-16 | 西安电子科技大学 | Clutter rejection method of self-adaption subspace for non-sidelooking airborne array radar |
CN104155633A (en) * | 2014-08-12 | 2014-11-19 | 西安电子科技大学 | Clutter suppression method of non-positive side-looking bistatic MIMO radar |
CN104345300A (en) * | 2014-10-30 | 2015-02-11 | 河海大学 | Onboard non-positive side view array radar STAP (Space Time Adaptive Processing) method for clutter space-time spectrum linear compensation |
CN105785326A (en) * | 2016-03-18 | 2016-07-20 | 西安电子科技大学 | Non-forward looking array radar clutter spectrum registration optimization method |
CN106168662A (en) * | 2016-07-26 | 2016-11-30 | 中国人民解放军海军航空工程学院 | The error registration method of passive sensor based on Maximum-likelihood estimation and device |
CN106443672A (en) * | 2016-08-30 | 2017-02-22 | 西安电子科技大学 | A Method for Adaptive Reconstruction of Azimuth Multi-Channel SAR Signals |
Also Published As
Publication number | Publication date |
---|---|
CN106970358A (en) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109116311B (en) | Clutter suppression method based on knowledge-assisted sparse iterative covariance estimation | |
CN104360325B (en) | Space-time adaptive processing method for airborne forward-looking array radar | |
CN105445701B (en) | The pulse angle estimating method of DDMA MIMO radar targets | |
CN108761419B (en) | Low-altitude wind shear wind speed estimation method based on self-adaptive processing of combined space-time main channel | |
CN108459312A (en) | Weighting multifrequency maximum likelihood elevation estimate method based on the estimation of the composite multi-path factor | |
CN106970358B (en) | An Optimal Method for Angular Doppler Registration of Clutter Spectrum of Non-Side-Looking Array Radar | |
CN103926572B (en) | A kind of clutter suppression method of battle array radar self adaptation subspace, airborne anon-normal side | |
CN105738879B (en) | Radar clutter space-time adaptive pre-filtering method based on sparse recovery | |
CN113504509B (en) | A Beam Domain Compensated Uniform Acceleration Airborne Radar Clutter Suppression Method | |
CN106772253B (en) | A Radar Clutter Suppression Method in Inhomogeneous Clutter Environment | |
CN106483516A (en) | Radar clutter space-time adaptive processing method based on priori | |
CN103412290B (en) | Knowledge-assisted APR non-uniform sample detection method | |
CN112612006B (en) | Deep learning-based non-uniform clutter suppression method for airborne radar | |
CN102608587B (en) | Air Maneuvering Target Detection Method Based on Nonlinear Least Squares | |
Tao et al. | A knowledge aided SPICE space time adaptive processing method for airborne radar with conformal array | |
CN105785326B (en) | A kind of optimization method of non-working side battle array radar clutter spectrum registration | |
CN109001687A (en) | Airborne radar space-time self-adaptive filtering method based on generalized sidelobe cancellation structure | |
CN102621536B (en) | RELAX-based air multi-maneuvering target detecting and parameter estimating method | |
CN110554391A (en) | low-altitude wind shear wind speed estimation method based on DDD-GMB | |
CN111239677A (en) | Multi-beam passive monopulse angle measurement method based on digital array | |
CN105044688B (en) | The sane space-time adaptive processing method of radar based on iteration subspace tracking algorithm | |
CN103728600A (en) | Non-self-adaptation space time clutter block filtering method for onboard multiple input multiple output (MIMO) radar | |
CN110376561B (en) | A time-domain dimension reduction method for multi-shot iterative array element amplitude and phase error estimation | |
CN107748364A (en) | Low wind field speed estimation method based on contraction multistage wiener filter | |
CN113534055B (en) | Interpolation-compensated clutter suppression method for uniform-acceleration airborne radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |