CN106953157B - An antenna device for a radar sensor - Google Patents
An antenna device for a radar sensor Download PDFInfo
- Publication number
- CN106953157B CN106953157B CN201710250046.2A CN201710250046A CN106953157B CN 106953157 B CN106953157 B CN 106953157B CN 201710250046 A CN201710250046 A CN 201710250046A CN 106953157 B CN106953157 B CN 106953157B
- Authority
- CN
- China
- Prior art keywords
- feed
- antenna
- radio frequency
- unit
- antenna unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
- H01Q1/525—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开一种用于雷达传感器的天线装置,包括印刷电路板,印刷电路板的底层板上布置有一组以上的天线单元,每组天线单元包括接收天线、发射天线,印刷电路板的顶层板上布置有射频电路,每组天线单元分别布置于底层板的两侧,底层板上还设置有馈电传输单元,馈电传输单元将天线单元的馈电点在底层板上向射频电路所在区域方向延伸至目标馈电点的位置,由目标馈电点过孔延伸至顶层板后与射频电路连接。本发明具有结构简单紧凑、馈电传输布线简单以及装置所需成本低、体积小等优点。
The invention discloses an antenna device for a radar sensor, which comprises a printed circuit board, and more than one group of antenna units are arranged on the bottom board of the printed circuit board, and each group of antenna units includes a receiving antenna and a transmitting antenna, and the top layer board of the printed circuit board The radio frequency circuit is arranged on the top, and each group of antenna units is respectively arranged on both sides of the bottom board, and a feed transmission unit is also arranged on the bottom board, and the feed transmission unit connects the feed point of the antenna unit to the area where the radio frequency circuit is located on the bottom board. The direction extends to the position of the target feed point, and the through hole extends from the target feed point to the top layer board and then connects with the radio frequency circuit. The invention has the advantages of simple and compact structure, simple feeding and transmission wiring, low cost and small volume of the device.
Description
技术领域technical field
本发明涉及毫米波雷达技术领域,尤其涉及一种毫米波雷达中用于雷达传感器的天线装置。The invention relates to the technical field of millimeter wave radar, in particular to an antenna device used for a radar sensor in millimeter wave radar.
背景技术Background technique
毫米波雷达发射的电磁波长通常为几毫米,对于相同口径的天线尺寸,毫米波天线的波束更窄,增益更高,并且它具有更高的测角和测距精度,因此广泛应用于各个领域中,典型的应用领域如汽车主动安全以及区域安全防护等。毫米波雷达是通过发射天线来发射高频电磁波,再通过接收天线接收目标的回波信号,进而通过混频、零中频放大、中频放大、AD采样、信号处理等电路输出目标的信息。采用调频连续波体制的单发单收毫米波雷达能够获取目标的速度信息,采用多收天线则还能获取目标的角度信息。The electromagnetic wavelength emitted by millimeter-wave radar is usually a few millimeters. For the same antenna size, the millimeter-wave antenna has a narrower beam and higher gain, and it has higher angle and distance measurement accuracy, so it is widely used in various fields Among them, typical application areas such as automotive active safety and regional safety protection. The millimeter-wave radar transmits high-frequency electromagnetic waves through the transmitting antenna, and then receives the echo signal of the target through the receiving antenna, and then outputs the information of the target through circuits such as frequency mixing, zero-IF amplification, intermediate frequency amplification, AD sampling, and signal processing. The single-send and single-receive millimeter-wave radar using the FM continuous wave system can obtain the speed information of the target, and the multi-receive antenna can also obtain the angle information of the target.
雷达传感器作为毫米波雷达的主要部件,是通过天线的辐射来覆盖待防护的区域。表征天线的辐射特性的一个重要参数是天线的辐射方向图,辐射方向图的主波束即为波束,发射天线和接收天线的波束则决定了雷达传感器的探测区域。毫米波雷达传感器在实际应用中,如应用于区域周界防护,通常要求发射天线具有窄波束和高增益的辐射特性。现有的毫米波雷达天线中,发射天线和接收天线通常是采用单一的馈电方式,发射天线和接收天线的馈电点位于射频电路板中心线的两侧,再由发射天线、接收天线的馈电点直接通过馈电传输结构传输至射频电路的两个馈电口。但是上述毫米波雷达天线中,发射天线、接收天线的馈电点与射频电路的两个馈电口之间通常距离较远,直接从发射天线、接收天线传输到达射频处理电路时将使得馈电传输线过长,造成天线装置中传输线布线复杂,进而会使得整个电路板的体积大、结构不紧凑,同时也增大了毫米波雷达传感器的成本。As the main component of the millimeter wave radar, the radar sensor covers the area to be protected through the radiation of the antenna. An important parameter that characterizes the radiation characteristics of the antenna is the radiation pattern of the antenna. The main beam of the radiation pattern is the beam, and the beams of the transmitting antenna and the receiving antenna determine the detection area of the radar sensor. In practical applications of millimeter-wave radar sensors, such as regional perimeter protection, the transmitting antenna is usually required to have a narrow beam and high-gain radiation characteristics. In the existing millimeter-wave radar antenna, the transmitting antenna and the receiving antenna usually adopt a single feeding method, and the feeding points of the transmitting antenna and the receiving antenna are located on both sides of the center line of the radio frequency circuit board, and then the transmitting antenna and the receiving antenna The feed point is directly transmitted to the two feed ports of the radio frequency circuit through the feed transmission structure. However, in the above-mentioned millimeter-wave radar antenna, the distance between the feed point of the transmitting antenna and the receiving antenna and the two feed ports of the radio frequency circuit is usually relatively long, and the direct transmission from the transmitting antenna and the receiving antenna to the radio frequency processing circuit will make the feed The transmission line is too long, resulting in complex wiring of the transmission line in the antenna device, which in turn makes the entire circuit board bulky and not compact, and also increases the cost of the millimeter-wave radar sensor.
发明内容Contents of the invention
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种结构简单紧凑、馈电传输布线简单以及装置所需成本低、体积小的用于雷达传感器的天线装置。The technical problem to be solved by the present invention is: aiming at the technical problems existing in the prior art, the present invention provides an antenna device for radar sensors with simple and compact structure, simple feeding and transmission wiring, low device cost and small volume .
为解决上述技术问题,本发明提出的技术方案为:In order to solve the problems of the technologies described above, the technical solution proposed by the present invention is:
一种用于雷达传感器的天线装置,包括印刷电路板,所述印刷电路板的底层板上布置有一组以上的天线单元,每组所述天线单元包括接收天线、发射天线,所述印刷电路板的顶层板上布置有射频电路,每组所述天线单元分别布置于所述底层板的两侧,所述底层板上还设置有馈电传输单元,所述馈电传输单元将所述天线单元的馈电点在所述底层板上向所述射频电路所在区域方向延伸至目标馈电点的位置,由目标馈电点过孔延伸至所述顶层板后与所述射频电路连接。An antenna device for a radar sensor, comprising a printed circuit board, more than one group of antenna units are arranged on the bottom plate of the printed circuit board, each group of antenna units includes a receiving antenna and a transmitting antenna, and the printed circuit board A radio frequency circuit is arranged on the top layer board of each group, and each group of antenna units is respectively arranged on both sides of the bottom board, and a feed transmission unit is also arranged on the bottom board, and the feed transmission unit connects the antenna unit The feed point on the bottom layer extends to the position of the target feed point in the direction of the area where the radio frequency circuit is located, and is connected to the radio frequency circuit after extending from the target feed point to the top layer via a hole.
作为本发明的进一步改进:每组所述天线单元分别对应为由端馈天线构成的端馈天线单元、由中馈天线构成的中馈天线单元,所述端馈天线单元的馈电点连接所述馈电传输单元,所述中馈天线单元的馈电点过孔延伸至所述顶层板后与所述射频电路连接。As a further improvement of the present invention: each group of antenna units corresponds to an end-fed antenna unit composed of an end-fed antenna and a center-fed antenna unit composed of a center-fed antenna, and the feed point of the end-fed antenna unit is connected to the The feed transmission unit, the feed point of the mid-feed antenna unit extends to the top layer board through a hole and is connected to the radio frequency circuit.
作为本发明的进一步改进:所述馈电传输单元的传输终端所在位置为将目标馈电点过孔延伸至所述顶层板时,能够处于所述射频电路所在的指定区域内。As a further improvement of the present invention: the position of the transmission terminal of the feed transmission unit can be located in the designated area where the radio frequency circuit is located when extending the via hole of the target feed point to the top layer board.
作为本发明的进一步改进:所述端馈天线单元包括多个并联连接的端馈阵列天线,所述中馈天线单元包括多个并联连接的中馈阵列天线。As a further improvement of the present invention: the end-fed antenna unit includes a plurality of parallel-connected end-fed array antennas, and the center-fed antenna unit includes a plurality of parallel-connected center-fed array antennas.
作为本发明的进一步改进:所述中馈天线单元与所述射频电路布置在所述印刷电路板的同侧。As a further improvement of the present invention: the center-fed antenna unit and the radio frequency circuit are arranged on the same side of the printed circuit board.
作为本发明的进一步改进:所述中馈天线单元所在的位置为将所述中馈天线单元的馈电点过孔延伸至所述顶层板时,能够处于所述射频电路所在的指定区域内。As a further improvement of the present invention: the position of the center-fed antenna unit is such that when the feed point via hole of the center-fed antenna unit is extended to the top layer board, it can be within the specified area where the radio frequency circuit is located.
作为本发明的进一步改进:所述端馈天线单元包括水平方向的第一主馈电网络、多个具有相同结构且为垂直方向的第一分馈电网络,所述第一主馈电网络的左、右部分相对于端部馈电点对称,所述第一分馈电网络中上部分的微带天线阵元与下部分的微带天线阵元对称。As a further improvement of the present invention: the end-fed antenna unit includes a first main feed network in the horizontal direction, a plurality of first sub-feed networks with the same structure and in the vertical direction, the first main feed network The left and right parts are symmetrical with respect to the feeding points at the ends, and the microstrip antenna array elements in the upper part and the microstrip antenna array elements in the lower part of the first sub-feeding network are symmetrical.
作为本发明的进一步改进:所述中馈天线单元包括水平方向的第二主馈电网络、多个具有相同结构且为垂直方向的第二分馈电网络,所述第二主馈电网络的左右部分、上下部分分别相对于中部馈电点对称,所述第二分馈电网络中上部分的微带天线阵元与下部分的微带天线阵元对称且相位相反,所述第二分馈电网络中上部分的馈入处还设置有传输线,以保持所述第二分馈电网络的上部分与下部分同相馈电。As a further improvement of the present invention: the center-fed antenna unit includes a second main feed network in the horizontal direction, a plurality of second sub-feed networks with the same structure and in the vertical direction, the second main feed network The left and right parts and the upper and lower parts are respectively symmetrical with respect to the feeding point in the middle part, and the microstrip antenna array elements in the upper part in the second sub-feed network are symmetrical and opposite in phase to the microstrip antenna array elements in the lower part, and the second sub-feeding network A transmission line is also provided at the feeding point of the upper part of the feed network to keep the upper part and the lower part of the second sub-feed network fed in the same phase.
作为本发明的进一步改进:所述馈电传输单元为馈电传输线。As a further improvement of the present invention: the feed transmission unit is a feed transmission line.
作为本发明的进一步改进:所述底层板上还设置有高频基板,所述天线单元、馈电传输单元印刷在所述高频基板上。As a further improvement of the present invention: the bottom plate is also provided with a high-frequency substrate, and the antenna unit and the feeding transmission unit are printed on the high-frequency substrate.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
1)本发明用于雷达传感器的天线装置,每组天线单元分别布置于印刷电路板的两侧,能够增加高频收发电路间的隔离度,进而提高雷达传感器的探测灵敏度,同时通过馈电传输单元将天线单元的馈电点先在底层板上向射频电路所在区域方向延伸,使得延伸后的目标馈电点能够靠近射频电路,再从目标馈电点直接过孔延伸至顶层板后与射频电路连接,能够缩短天线装置中底层天线单元至顶层射频电路之间的传输线,同时使得传输布线简单,有效减小装置的体积以及减少装置所需成本;1) The present invention is used for the antenna device of the radar sensor, and each group of antenna units is respectively arranged on both sides of the printed circuit board, which can increase the isolation between the high-frequency transceiver circuits, thereby improving the detection sensitivity of the radar sensor, and at the same time transmit The unit extends the feed point of the antenna unit on the bottom board to the area where the radio frequency circuit is located, so that the extended target feed point can be close to the radio frequency circuit, and then directly extends from the target feed point to the top board through holes and connects with the radio frequency circuit. The circuit connection can shorten the transmission line between the bottom antenna unit and the top radio frequency circuit in the antenna device, and at the same time make the transmission wiring simple, effectively reduce the volume of the device and reduce the cost of the device;
2)本发明用于雷达传感器的天线装置,进一步通过使得发射天线、接收天线采用不同的馈电方式,相比于传统的天线装置采用单一的馈电方式,能够增加天线装置的灵活性,提高系统资源利用率;同时对于端馈天线单元,通过连接馈电传输单元将端馈天线单元的馈电点在底层板上向射频电路所在区域方向延伸至目标馈电点,从目标馈电点直接过孔延伸至顶层板,对于中馈天线单元,则直接将馈电点过孔延伸至顶层板,结合不同馈电方式能够缩短天线单元至射频电路之间的传输线,使得传输布线简单;2) The antenna device used in the radar sensor of the present invention further adopts different feeding methods for the transmitting antenna and the receiving antenna, which can increase the flexibility of the antenna device and improve the System resource utilization; at the same time, for the end-fed antenna unit, by connecting the feed transmission unit, the feed point of the end-fed antenna unit is extended on the bottom board to the direction of the area where the radio frequency circuit is located to the target feed point, directly from the target feed point The via hole extends to the top layer board. For the mid-feed antenna unit, the feed point via hole is directly extended to the top layer board. Combining different feeding methods can shorten the transmission line between the antenna unit and the radio frequency circuit, making the transmission wiring simple;
3)本发明用于雷达传感器的天线装置,每组天线单元采用端馈天线单元、中馈天线单元的基础上,端馈天线单元通过馈电传输单元将馈电点向射频电路方向延伸,中馈天线单元与射频电路布置在同一侧,并同时使馈电传输单元传输终端的目标馈电点、中馈天线单元的馈电点的位置为孔延伸至顶层板后处于射频电路所在的指定区域内,能够最大限度的缩短从底层的天线单元至顶层的射频电路之间的传输线长度,大大降低天线装置传输布线的复杂度,使得天线装置的结构紧凑。3) The present invention is used for the antenna device of the radar sensor. Each group of antenna units adopts the end-fed antenna unit and the center-fed antenna unit. The feed antenna unit and the radio frequency circuit are arranged on the same side, and at the same time, the position of the target feed point of the feed transmission unit transmission terminal and the feed point of the middle feed antenna unit is located in the designated area where the radio frequency circuit is located after the hole extends to the top layer board Inside, the length of the transmission line from the antenna unit at the bottom layer to the radio frequency circuit at the top layer can be shortened to the greatest extent, greatly reducing the complexity of the transmission wiring of the antenna device, and making the structure of the antenna device compact.
附图说明Description of drawings
图1是本实施例用于雷达传感器的天线装置的结构原理示意图。FIG. 1 is a schematic diagram of the structure and principle of the antenna device used in the radar sensor in this embodiment.
图2是本实施例中天线单元的具体结构示意图。Fig. 2 is a schematic diagram of the specific structure of the antenna unit in this embodiment.
图3是本实施例中端馈天线单元的俯仰面馈电网络结构示意图。Fig. 3 is a schematic structural diagram of the feed network of the elevation plane of the end-fed antenna unit in this embodiment.
图4是本实施例中端馈天线单元的方位面馈电网络结构示意图。Fig. 4 is a schematic structural diagram of the azimuth plane feeding network of the end-fed antenna unit in this embodiment.
图5是本实施例中中馈天线单元的俯仰面馈电网络结构示意图。FIG. 5 is a schematic structural diagram of a feeding network of a center-fed antenna unit in this embodiment.
图6是本实施例中中馈天线单元的方位面馈电网络结构示意图。。Fig. 6 is a schematic structural diagram of an azimuth-plane feed network of the center-fed antenna unit in this embodiment. .
图7是本实施例中端馈天线单元的辐射方向图结果示意图。Fig. 7 is a schematic diagram of the radiation pattern results of the end-fed antenna unit in this embodiment.
图8是本实施例中中馈天线单元的辐射方向图结果示意图。Fig. 8 is a schematic diagram of the radiation pattern results of the center-fed antenna unit in this embodiment.
图例说明:1、底层板;11、天线单元;111、端馈天线单元;112、中馈天线单元;12、馈电传输单元;2、顶层板;21、射频电路。Legend: 1. Bottom board; 11. Antenna unit; 111. End-fed antenna unit; 112. Center-fed antenna unit; 12. Feed transmission unit; 2. Top board; 21. Radio frequency circuit.
具体实施方式Detailed ways
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings and specific preferred embodiments, but the protection scope of the present invention is not limited thereby.
如图1、2所示,本实施例用于雷达传感器的天线装置包括印刷电路板,印刷电路板的底层板1布置有一组以上的天线单元11,每组天线单元11包括接收天线、发射天线,印刷电路板的顶层板2布置有用于处理高频信号的射频电路21,顶层板2上具体还设置有信号处理电路等,每组天线单元11分别布置于印刷电路板的两侧,底层板1上还设置有馈电传输单元12,馈电传输单元12将天线单元11的馈电点在底层板1上向射频电路21所在区域方向延伸至目标馈电点的位置,由目标馈电点过孔延伸至顶层板2后与射频电路21连接。As shown in Figures 1 and 2, the antenna device used in the radar sensor in this embodiment includes a printed circuit board, and the bottom plate 1 of the printed circuit board is arranged with more than one group of
本实施例每组天线单元11分别布置于印刷电路板的两侧,即发射天线、接收天线以一定间隔分布在高频印制板中心线两侧,能够增加高频收发电路间的隔离度,进而提高雷达传感器的探测灵敏度,同时通过馈电传输单元12将天线单元11的馈电点先在底层板1上向射频电路21所在区域方向延伸,使得延伸后的目标馈电点能够靠近射频电路21,再从目标馈电点直接过孔延伸至顶层板2后与射频电路21连接,能够缩短天线装置中底层天线单元11至顶层射频电路21之间的传输线,同时使得传输布线简单,有效减小装置的体积以及减少装置所需成本。In this embodiment, each group of
如图1所示,本实施例每组天线单元11具体分别对应为由端馈天线构成的端馈天线单元111、由中馈天线构成的中馈天线单元112,端馈天线单元111具有端部馈电点(第一馈电点),中馈天线单元112具有中部馈电点(第二馈电点),端馈天线单元111、中馈天线单元112均印刷在高频印制板的底层板1上,其中端馈天线单元111包括多个并联连接的端馈阵列天线,用来辐射高频发射信号,即为发射天线,中馈天线单元112包括多个并联连接的中馈阵列天线,用来接收在目标上所反射的回波信号,即为接收天线。每组天线单元11中发射天线、接收天线具体可根据实际需求设置一个为端馈馈电方式的天线,另一个为中馈馈电方式的天线。发射天线、接收天线采用不同的馈电方式,相比于传统的天线装置采用单一的馈电方式,能够增加天线装置的灵活性,提高系统资源利用率。As shown in Figure 1, each group of
本实施例中,具体由端馈天线单元111的馈电点连接馈电传输单元12,其中馈电传输单元12的起始端连接端馈天线单元111的馈电点,传输终端为目标馈电点的位置,使得通过馈电传输单元12将端馈天线单元111的端部馈电点(第一馈电点)在底层板1上向射频电路21所在区域方向延伸至目标馈电点(第三馈电点)的位置,由第三馈电点过孔延伸至顶层板2后与射频电路21连接;中馈天线单元112的中部馈电点(第二馈电点)直接过孔延伸至顶层板2后与射频电路21连接。In this embodiment, the feed point of the end-
本实施例中,馈电传输单元12为馈电传输线,即将天线单元11的馈电点先经过一段馈电传输线后传输过渡到目标馈电点的位置,再由目标馈电点直接过孔延伸至顶层板2后连接至射频电路21的馈电点。参见图1,端馈天线单元111的第一馈电点和中馈天线单元112的第二馈电点布局在印刷电路板(PCB 印制板)的底层板1的两侧,处理雷达高频信号的射频电路21布局在PCB印制板顶层板2的右下角区域,第一馈电点若直接通过金属化过孔到高频印制板射频电路所在的顶层板2,则需要再经过一段很长的传输线连接到射频电路21的馈电点,会造成印制板背面传输线走线复杂,甚至干扰整个印制板电路布局,使得天线结构不紧凑。本实施例通过在底层板1上设置馈电传输单元12,由馈电传输单元12将端馈天线单元111的第一馈电点馈电传输过渡到底层板1的第三馈电点处,进而再过孔到顶层板2后连接至射频电路21的馈电点,使得端馈天线单元111的馈电口与射频电路21之间的馈电传输布线简单,进而使得天线装置的结构紧凑。In this embodiment, the
本实施例每组天线单元11分别对应为端馈天线单元111、中馈天线单元112,使得发射天线、接收天线采用不同的馈电方式,同时对于端馈天线单元111,通过连接馈电传输单元12将端馈天线单元111的第一馈电点在底层板1上向射频电路21所在区域方向延伸至第三馈电点,从第三馈电点直接过孔延伸至顶层板2,对于中馈天线单元112,则直接将馈电点过孔延伸至顶层板2,结合不同馈电方式能够缩短天线单元11至射频电路21之间的传输线,使得传输布线简单。In this embodiment, each group of
本实施例中,馈电传输单元12的传输终端所在位置为将目标馈电点过孔延伸至顶层板2时,能够处于射频电路21所在的指定区域内,目标馈电点具体通过金属化过孔延伸至顶层板2。如图1所示,本实施例馈电传输单元12的传输终端所在位置,即为第三馈电点的位置,第三馈电点过孔延伸至顶层板2后处于射频电路21所在的指定区域A内,其中区域A为以射频电路21位置为中心的矩形区域,从而从第三馈电点可方便传输布线至射频电路21,缩短传输线长度。区域A大小及结构可根据实际需求设定。In this embodiment, the position of the transmission terminal of the
本实施例中,中馈天线单元112与射频电路21布置在印刷电路板的同侧,使得从中馈天线单元112至射频电路21之间的传输距离短,便于实现布线,结合上述端馈天线单元111通过馈电传输单元12延伸至第三馈电点后,由第三馈电点延伸至顶层板2与射频电路21连接,能够使得天线装置的整体传输线短、传输布线简单。In this embodiment, the center-fed
本实施例中,中馈天线单元112所在的位置为将中馈天线单元112的馈电点通过过孔延伸至顶层板2时,能够处于射频电路21所在的指定区域内,中馈天线单元112的馈电点具体直接通过金属化过孔延伸至顶层板2后与射频电路21连接。如图1所示,本实施例中馈天线单元112的馈电点(第二馈电点),过孔延伸至顶层板2后处于射频电路21所在的指定区域A内,其中区域A为以射频电路21位置为中心的矩形区域,从而从第二馈电点可方便传输布线至射频电路21,缩短传输线长度。In this embodiment, the position of the center-fed
采用上述结构,每组天线单元11分别对应为端馈天线单元111、中馈天线单元112,端馈天线单元111通过馈电传输单元12将馈电点向射频电路21方向延伸,中馈天线单元112与射频电路21布置在同一侧,并同时使馈电传输单元12传输终端的目标馈电点、中馈天线单元112的馈电点的位置为孔延伸至顶层板2后处于射频电路21所在的指定区域内,能够最大限度的缩短从底层的天线单元11至顶层的射频电路21之间的传输线长度,大大降低传输布线复杂度,从而使得天线装置结构紧凑,减小天线装置体积及所需成本。With the above structure, each group of
本实施例中,每组天线单元11中天线具体均为阵列天线,阵列天线可以为贴片天线阵列天线或缝隙天线阵列等,阵列天线均与微带线馈电网络相连并进行阻抗匹配,天线阵元的极化方式具体可以为斜极化、水平极化、垂直极化或者圆极化等;辐射体的波束具体为窄波束,波束具体设定为在方位面内的半功率波瓣宽度小于第一预设阈值(本实施例具体取20度),波束在俯仰面内的半功率波瓣宽度小于第二预设阈值(本实施例具体取15度),使得在获得较高天线增益的同时还能使得雷达探测宽度在距雷达较远位置时不至于扩散的太宽,能够满足区域周界防护等所需的窄波束、高增益的应用需求。In this embodiment, the antennas in each group of
本实施例中,每组天线单元1的波束均为辐射方向图的主波束,除主波束外的其他波束为副瓣,具体设定副瓣电平在俯仰面和方位面内均比主波束的最大电平小第三预设阈值(本实施例具体取18dB)以上,以极大的减少来自主波束外其他目标的干扰。In this embodiment, the beams of each group of antenna units 1 are the main beams of the radiation pattern, and the other beams except the main beam are side lobes. The maximum level of the signal is smaller than the third preset threshold (specifically 18dB in this embodiment), so as to greatly reduce the interference from other targets outside the main beam.
如图2、3、4所示,本实施例中端馈天线单元111包括水平方向的第一主馈电网络A11、多个具有相同结构且为垂直方向的第一分馈电网络A12,第一主馈电网络A11的左、右部分相对于端部馈电点(第一馈电点)对称,第一分馈电网络中上部分的微带天线阵元与下部分的微带天线阵元对称。本实施例具体包括1个水平方向的第一主馈电网络A11和5个垂直方向具有相同结构的第二分馈电网络A12,由于天线阵列采用端馈馈电方式,第一主馈电网络A11关于第一馈电点左右对称;微带天线阵元的辐射性能好、剖面及成本低,且易与高频信号处理电路集成,本实施例端馈天线单元111具体包含40个微带天线阵元,各个微带天线阵元通过微带线进行相互连接,并最终与第一主馈电网络A11相连,从端馈天线单元111的馈电点馈入的能量按计算好的比例分配到40个微带天线阵元上,并以水平极化方式辐射出去,水平面的方向图主要由第一主馈电网络A11的分配比决定,垂直面的方向图则主要由第一分馈电网络A12的分配比决定,本实施例中两个面上的副瓣电平均取为-20dB。端馈天线单元111的矩形阵列结构中微带天线阵元个数具体还可以根据雷达的主瓣宽度以及增益等参数进行设定。As shown in Figures 2, 3, and 4, the end-fed
如图3所示,以第一主馈电网络A11的左半部分A21为例对第一主馈电网络A11进行具体说明,A21通过阻抗变换线A2121~A2124将第一馈电点的能量按指定比例且同相地分配到A211~A213分馈电网络中,同时在第一馈电点进入第一主馈电网络A11之前进行了一段阻抗匹配,保持第一馈电点处输入阻抗匹配为指定大小(本实施例具体取50欧姆),分配到3个分馈电网络的指定电流比例具体可根据副瓣电平(本实施例具体取-20dB)按照泰勒公式进行计算得到,从左到右的分馈电网络的分配比具体为0.54:0.83:1。As shown in Fig. 3, the first main feeding network A11 is described in detail by taking the left half A21 of the first main feeding network A11 as an example. A21 transforms the energy of the first feeding point by the The specified ratio is distributed to the sub-feed network A211~A213 in the same phase. At the same time, a period of impedance matching is performed before the first feed point enters the first main feed network A11, and the input impedance matching at the first feed point is kept as specified. Size (50 ohms in this embodiment), the specified current ratio distributed to the three sub-feed networks can be calculated according to the sidelobe level (-20dB in this embodiment) according to Taylor's formula, from left to right The distribution ratio of the sub-feeding network is specifically 0.54:0.83:1.
如图4所示,本实施例第一分馈电网络A12具体共有8个微带天线阵元以及阻抗变换线,其中各天线阵元串联连接且上下对称,天线阵元既是辐射阵元同时又是阻抗变换线,使得既能够辐射电磁波能量又能够起阻抗匹配作用。以第一分馈电网络A12的下半部分A13为例,A13通过阻抗变换线A121-A124把从第一主馈电网络A11的阵列端口输入的能量按指定比例且同相的分配到4个天线阵元中,分配到4个天线阵元的指定电流比例具体可根据副瓣电平(本实施例具体取-20dB)按照泰勒公式进行计算得到,从下到上的分馈电网络的分配比具体为0.54:0.67:0.86:1。As shown in Figure 4, the first sub-feeding network A12 of this embodiment has 8 microstrip antenna elements and impedance transformation lines in total, wherein each antenna element is connected in series and is symmetrical up and down, and the antenna element is both a radiation element and a It is an impedance transformation line, which can not only radiate electromagnetic wave energy but also play the role of impedance matching. Taking the lower part A13 of the first sub-feed network A12 as an example, A13 distributes the energy input from the array port of the first main feed network A11 to the four antennas in a specified proportion and in phase through impedance transformation lines A121-A124 In the array element, the specified current ratio allocated to the four antenna array elements can be calculated according to the sidelobe level (in this embodiment, -20dB) according to the Taylor formula. The distribution ratio of the sub-feed network from bottom to top Specifically, it is 0.54:0.67:0.86:1.
如图2、5、6所示,本实施例中馈天线单元112包括水平方向的第二主馈电网络B11、多个具有相同结构且为垂直方向的第二分馈电网络B12,第二主馈电网络B11的左右部分、上下部分分别相对于中部馈电点(第二馈电点)对称,第二分馈电网络B12中上部分的微带天线阵元与下部分的微带天线阵元对称且相位相反,第二分馈电网络中上部分的馈入处还设置有传输线,以保持第二分馈电网络的上部分与下部分同相馈电。本实施例具体包括1个水平方向的主馈电网络B11和5个垂直方向具有相同结构的分馈电网络B12,由于天线阵列采用中馈馈电方式,主馈电网络B11关于第二馈电点上下、左右都对称,第二分馈电网络B12上下对称,同时第二分馈电网络B12的上、下两部分相位相反,且在上半部分的馈入处添加一段半导波长传输线,以保持上、下两部分天线阵元同相馈电;本实施例中馈天线单元112与端馈天线单元111一致,具体包含40个微带天线阵元,各个微带天线阵元通过微带线进行相互连接,并最终与第二主馈电网络B11相连,从中馈天线单元112的第二馈电点馈入的能量按计算好的比例分配到40个微带天线阵元上,并以水平极化方式辐射出去,水平面的方向图主要由第二主馈电网络B11的分配比决定,垂直面的方向图主要由第二分馈电网络B12的分配比决定,本实施例中两个面上的副瓣电平均取为-20dB。中馈天线单元112的矩形阵列结构中微带天线阵元个数同样可以根据雷达的主瓣宽度以及增益等参数进行具体设定。As shown in Figures 2, 5, and 6, the
如图5所示,以第二主馈电网络B11的左半部分B21为例,B21通过阻抗变换线B2121-B2124将第二馈电点的能量按指定比例且同相地分配到3个分馈电网络中,且第二馈电点处的输入阻抗匹配为指定大小(本实施例具体取50欧姆),分配到3个分馈电网络的指定电流比例具体可根据副瓣电平(本实施例取-20dB)按照泰勒公式进行计算得到,从左到右的分馈电网络的分配比具体为0.54:0.83:1。As shown in Figure 5, taking the left half part B21 of the second main feed network B11 as an example, B21 distributes the energy of the second feed point to three sub-feeders in a specified proportion and in phase through impedance transformation lines B2121-B2124 In the electrical network, and the input impedance matching at the second feed point is a specified size (in this embodiment, 50 ohms is used), the specified current ratio distributed to the three sub-feed networks can be determined according to the sidelobe level (in this embodiment Take -20dB for example) Calculated according to Taylor's formula, the distribution ratio of the feeder network from left to right is specifically 0.54:0.83:1.
如图6所示,本实施例第二分馈电网络B12具体共有8个微带天线阵元以及阻抗变换线,上部分4个天线阵元串联连接,下部分4个天线阵元串联连接,上、下部分的天线阵元并联连接且对称,天线阵元既是辐射阵元同时又是阻抗变换线,使得既能够辐射电磁波能量又能够起阻抗匹配作用。以第二分馈电网络B12的上半部分B13为例,B13通过阻抗变换线B121-B124把从第二主馈电网络B11的阵列端口输入的能量按指定比例且同相的分配到4个天线阵元中,分配到4个天线阵元的指定电流比例具体可根据副瓣电平(本实施例取-20dB)按照泰勒公式进行计算得到,从下到上的分馈电网络的分配比具体为0.54:0.67:0.86:1。As shown in Figure 6, the second sub-feeding network B12 of this embodiment specifically has 8 microstrip antenna array elements and impedance transformation lines, the upper part of the 4 antenna array elements are connected in series, and the lower part of the 4 antenna array elements are connected in series, The antenna array elements in the upper and lower parts are connected in parallel and are symmetrical. The antenna array elements are not only radiation array elements but also impedance transformation lines, so that they can not only radiate electromagnetic wave energy but also play an impedance matching role. Taking the upper part B13 of the second sub-feed network B12 as an example, B13 distributes the energy input from the array port of the second main feed network B11 to the four antennas in a specified proportion and in phase through impedance transformation lines B121-B124 In the array element, the specified current ratio allocated to the four antenna array elements can be calculated according to the sidelobe level (-20dB in this embodiment) according to the Taylor formula, and the distribution ratio of the sub-feed network from bottom to top is specific It is 0.54:0.67:0.86:1.
如图7所示为本发明具体实施例中所得到的端馈天线单元111的辐射方向图,其中实线表示俯仰面的辐射方向图,虚线表示方位面的辐射方向图。由图中可知,采用本实施例上述结构的天线装置在俯仰面的辐射方向图的半功率波瓣宽度可达13.5º,副瓣电平小于-17dB,方位面的辐射方向图的半功率波瓣宽度为20º,副瓣电平小于-23dB。7 shows the radiation pattern of the end-fed
如图8所示为本发明具体实施例中所得到的中馈天线单元112的辐射方向图,其中实线表示俯仰面的辐射方向图,虚线表示方位面的辐射方向图。由图中可知,采用本实施例上述结构的天线在俯仰面的辐射方向图的半功率波瓣宽度可达12.5º,副瓣电平小于-19.7dB,方位面的辐射方向图的半功率波瓣宽度为19.7º,副瓣电平小于-19.2dB。即采用本实施例上述天线装置,能够使得天线结构紧凑,传输布线简单,装置体积及成本小,同时能够保证天线具有窄波束、高增益以及副瓣电小,满足区域周界防护等的应用需求。Fig. 8 shows the radiation pattern of the
本实施例中,底层板1上还设置有高频基板,天线单元11、馈电传输单元12均印刷在高频基板上。In this embodiment, a high-frequency substrate is further provided on the bottom board 1 , and the
本实施例上述用于雷达传感器的天线装置适用于毫米波雷达传感器中,尤其适用于防碰撞的毫米波高度传感器中。The above-mentioned antenna device for radar sensors in this embodiment is suitable for millimeter-wave radar sensors, especially for anti-collision millimeter-wave height sensors.
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。The above are only preferred embodiments of the present invention, and do not limit the present invention in any form. Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention shall fall within the protection scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710250046.2A CN106953157B (en) | 2017-04-17 | 2017-04-17 | An antenna device for a radar sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710250046.2A CN106953157B (en) | 2017-04-17 | 2017-04-17 | An antenna device for a radar sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106953157A CN106953157A (en) | 2017-07-14 |
CN106953157B true CN106953157B (en) | 2023-06-27 |
Family
ID=59477150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710250046.2A Active CN106953157B (en) | 2017-04-17 | 2017-04-17 | An antenna device for a radar sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106953157B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018203117A1 (en) * | 2018-03-01 | 2019-09-05 | Robert Bosch Gmbh | Radar sensor system and method for operating a radar sensor system |
CN108196255A (en) * | 2018-03-23 | 2018-06-22 | 加特兰微电子科技(上海)有限公司 | Millimeter wave radar system for vehicle |
CN109267891A (en) * | 2018-10-30 | 2019-01-25 | 昆山赛诺泰克工业科技有限公司 | Electric tail gate control system and control method based on millimeter wave |
CN111090076A (en) * | 2020-01-22 | 2020-05-01 | 无锡威孚高科技集团股份有限公司 | Millimeter wave radar radio frequency front end circuit structure and manufacturing method thereof |
CN116053775A (en) * | 2023-01-28 | 2023-05-02 | 南京慧尔视智能科技有限公司 | Structure and design method of high-gain narrow-beam microstrip array antenna |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6052086A (en) * | 1996-09-18 | 2000-04-18 | Honda Giken Kogyo Kabushiki Kaisha | Array antenna, antenna device with the array antenna and antenna system employing the antenna device |
KR20100113347A (en) * | 2009-04-13 | 2010-10-21 | 한국과학기술원 | The series-fed array antenna for ultra high frequency band radar |
CN104054215A (en) * | 2011-12-08 | 2014-09-17 | 电气兴业株式会社 | Dual polarized antenna for sending and receiving separation |
CN104752842A (en) * | 2015-03-03 | 2015-07-01 | 林伟 | Wide-frequency antenna transceiver array |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100883954B1 (en) * | 2007-02-15 | 2009-02-18 | 주식회사 이엠따블유안테나 | Circularly polarized antenna, repeater antenna, repeater and mobile communication system using same |
JP5620757B2 (en) * | 2010-09-01 | 2014-11-05 | 株式会社豊田中央研究所 | Radar equipment |
CN202050053U (en) * | 2011-03-23 | 2011-11-23 | 四川省视频电子有限责任公司 | Waveguide excited fan-shaped wave beam planar array antenna |
CN105680160B (en) * | 2016-01-12 | 2018-07-27 | 电子科技大学 | Two unit broadband medium resonant aerials |
CN105703081A (en) * | 2016-01-13 | 2016-06-22 | 深圳华天信通科技有限公司 | Array antenna apparatus |
CN105811113A (en) * | 2016-05-05 | 2016-07-27 | 桂林电子科技大学 | K-wave band microstrip patch antenna array |
CN105914480B (en) * | 2016-06-15 | 2018-07-13 | 东南大学 | A kind of antenna structure and design method |
CN106450729A (en) * | 2016-11-01 | 2017-02-22 | 安徽四创电子股份有限公司 | Multi-frequency navigation terminal antenna |
CN206673089U (en) * | 2017-04-17 | 2017-11-24 | 湖南纳雷科技有限公司 | A kind of antenna assembly for radar sensor |
-
2017
- 2017-04-17 CN CN201710250046.2A patent/CN106953157B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6052086A (en) * | 1996-09-18 | 2000-04-18 | Honda Giken Kogyo Kabushiki Kaisha | Array antenna, antenna device with the array antenna and antenna system employing the antenna device |
KR20100113347A (en) * | 2009-04-13 | 2010-10-21 | 한국과학기술원 | The series-fed array antenna for ultra high frequency band radar |
CN104054215A (en) * | 2011-12-08 | 2014-09-17 | 电气兴业株式会社 | Dual polarized antenna for sending and receiving separation |
CN104752842A (en) * | 2015-03-03 | 2015-07-01 | 林伟 | Wide-frequency antenna transceiver array |
Non-Patent Citations (1)
Title |
---|
新型双层结构小型化无线电高度表天线;丁轲佳;熊小军;贺斐;吕善伟;;遥测遥控(02);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN106953157A (en) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106953157B (en) | An antenna device for a radar sensor | |
US11223112B2 (en) | Inverted microstrip travelling wave patch array antenna system | |
US10714817B2 (en) | Antenna device for a radar detector having at least two radiation directions, and motor vehicle having at least one radar detector | |
US11515624B2 (en) | Integrated cavity backed slot array antenna system | |
WO2021169926A1 (en) | Antenna and radar system | |
CN114976616B (en) | Antenna, antenna assembly, radar radio frequency front end and electronic equipment | |
CN110174649A (en) | Radio-frequency front-end transceiver, trailer-mounted radar receive-transmit system | |
CN109193177A (en) | A kind of vehicle-mounted 77GHz millimetre-wave radar antenna | |
JP2019174246A (en) | Radar equipment | |
WO2020113418A1 (en) | Millimeter wave antenna structure, microwave rotating radar and movable platform | |
WO2021072630A1 (en) | Antenna array, radar, and movable platform | |
CN109361061B (en) | Antenna with a shield | |
CN212934860U (en) | Array antenna for millimeter wave radar sensor | |
CN210379436U (en) | Radar array antenna | |
JP6087419B2 (en) | Array antenna and radar device | |
CN209526203U (en) | Broadband double-circle polarization micro-strip turns waveguide feed antenna system | |
US11264733B2 (en) | Wide-beam antenna | |
CN104931936A (en) | A double-wave-beam radar sensor | |
CN109768394A (en) | The method of microstrip antenna structure and electromagnetic radiation signal | |
CN112103667A (en) | Array antenna for automobile radar sensor | |
JP2013135345A (en) | Microstrip antenna, array antenna, and radar device | |
CN113437535B (en) | Antenna array, antenna system and electronic equipment | |
CN217036008U (en) | Antenna units, antenna arrays, radio devices and equipment | |
US11967765B1 (en) | Low side lobe level integrated cavity backed slot array antenna system | |
CN220934397U (en) | Wide-beam millimeter wave antenna and radar equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20181212 Address after: Room 115, 1st floor, Building No. 599, Gaojing Road, Qingpu District, Shanghai, 201700 Applicant after: SHANGHAI HANJIE TECHNOLOGY DEVELOPMENT CO.,LTD. Address before: 410205 B7 Lugu Enterprise Plaza, 27 Wenxuan Road, Changsha High-tech Development Zone, Hunan Province Applicant before: HUNAN NANORADAR TECHNOLOGY CO.,LTD. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: An antenna device for radar sensors Granted publication date: 20230627 Pledgee: Societe Generale Bank Co.,Ltd. Qingpu Branch of Shanghai Pledgor: SHANGHAI HANJIE TECHNOLOGY DEVELOPMENT CO.,LTD. Registration number: Y2024980013605 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20230627 Pledgee: Societe Generale Bank Co.,Ltd. Qingpu Branch of Shanghai Pledgor: SHANGHAI HANJIE TECHNOLOGY DEVELOPMENT CO.,LTD. Registration number: Y2024980013605 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: An antenna device for radar sensors Granted publication date: 20230627 Pledgee: China Merchants Bank Co.,Ltd. Shanghai Branch Pledgor: SHANGHAI HANJIE TECHNOLOGY DEVELOPMENT CO.,LTD. Registration number: Y2025980022027 |