CN106950446A - The abnormal quick detection of power network based on PCA and localization method - Google Patents
The abnormal quick detection of power network based on PCA and localization method Download PDFInfo
- Publication number
- CN106950446A CN106950446A CN201710174199.3A CN201710174199A CN106950446A CN 106950446 A CN106950446 A CN 106950446A CN 201710174199 A CN201710174199 A CN 201710174199A CN 106950446 A CN106950446 A CN 106950446A
- Authority
- CN
- China
- Prior art keywords
- matrix
- abnormal
- power grid
- location
- principal component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 29
- 238000001514 detection method Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000004807 localization Effects 0.000 title 1
- 239000011159 matrix material Substances 0.000 claims abstract description 40
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000012847 principal component analysis method Methods 0.000 claims abstract description 7
- 238000000513 principal component analysis Methods 0.000 claims description 17
- 230000005856 abnormality Effects 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 5
- 239000000284 extract Substances 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 101100499229 Mus musculus Dhrsx gene Proteins 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/086—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Locating Faults (AREA)
Abstract
一种基于主成分分析法的电网异常快速检测与定位方法,对电网随机矩阵进行降维,提取主成分,根据主成分强弱进行电网异常判定,根据异常点的位置信息进行异常定位。本发明利用主成分分析法实现电网异常检测和异常定位,为后续处理和切除提供信息支持,在处理大规模数据时有明显的优势。
A fast detection and location method for power grid anomalies based on principal component analysis method, which reduces the dimension of the random matrix of the power grid, extracts the principal components, judges the power grid anomalies according to the strength of the principal components, and performs abnormal location according to the location information of the anomalies. The invention utilizes the principal component analysis method to realize abnormal detection and abnormal location of the power grid, provides information support for subsequent processing and removal, and has obvious advantages in processing large-scale data.
Description
技术领域technical field
本发明涉及电网异常检测技术领域,尤其涉及一种基于主成分分析法的电网异常快速检测与定位方法。The invention relates to the technical field of grid anomaly detection, in particular to a method for quickly detecting and locating grid anomalies based on principal component analysis.
背景技术Background technique
目前电网异常检测采用的神经网络、专家系统等算法,存在着鲁棒性能不够、受限于电网结构等缺陷,并且随着我国电网规模越来越大、电网结构越来越复杂,电网的数据规模也越来越大,这些算法的不足也更明显的体现出来。At present, the neural network, expert system and other algorithms used in power grid anomaly detection have defects such as insufficient robustness and limited power grid structure. The scale is getting bigger and bigger, and the shortcomings of these algorithms are more obvious.
发明内容Contents of the invention
本发明提供一种基于主成分分析法的电网异常快速检测与定位方法,利用主成分分析法实现电网异常检测和异常定位,为后续处理和切除提供信息支持,在处理大规模数据时有明显的优势。The present invention provides a fast detection and positioning method for power grid anomalies based on principal component analysis, which uses principal component analysis to realize power grid anomaly detection and abnormal positioning, provides information support for subsequent processing and removal, and has obvious advantages when processing large-scale data. Advantage.
为了达到上述目的,本发明提供一种基于主成分分析法的电网异常快速检测与定位方法,包含以下步骤:In order to achieve the above object, the present invention provides a method for rapid detection and location of power grid abnormalities based on principal component analysis, which includes the following steps:
步骤S1、对电网随机矩阵进行降维,提取主成分;Step S1, performing dimensionality reduction on the random matrix of the power grid, and extracting principal components;
步骤S2、根据主成分强弱进行电网异常判定;Step S2, judging the abnormality of the power grid according to the strength of the principal components;
步骤S3、根据异常点的位置信息进行异常定位。Step S3, perform abnormal location according to the location information of the abnormal point.
所述的步骤S1中,提取主成分的方法具体包含:In the step S1, the method for extracting principal components specifically includes:
步骤S1.1、利用电网PMU(同步相量测量装置)采集的p维随机变量X=(X1,X2,…XP)'构成的n个三相电流样本xi=(xi1,xi2,…,xip)',构成n×p维样本矩阵X=(xij)n×p;Step S1.1, using n three - phase current samples x i = ( xi1 , x i2 ,...,x ip )', forming an n×p dimensional sample matrix X=(x ij ) n×p ;
步骤S1.2、进行标准化处理:i=1,2,…,n,j=1,2,…,p,得标准化矩阵其中,var是方差;Step S1.2, carry out standardized processing: i=1,2,...,n, j=1,2,...,p, get standardized matrix Among them, var is the variance;
步骤S1.3、计算标准化矩阵Z的样本相关系数矩阵 Step S1.3, calculating the sample correlation coefficient matrix of the normalization matrix Z
步骤S1.4、计算样本相关系数矩阵R的特征值λ1≥λ2≥…≥λp;Step S1.4, calculating the eigenvalue λ 1 ≥λ 2 ≥...≥λ p of the sample correlation coefficient matrix R;
步骤S1.5、计算主成分Yi=ui'X,i=1,2,…,p,或Y=UX;Step S1.5, calculating principal components Y i =u i 'X, i=1, 2,...,p, or Y=UX;
其中,正交矩阵 是特征单位特征向量。Among them, the orthogonal matrix is the characteristic unit eigenvector.
所述的步骤S2中,当第一主成分的数值变化超过5%时,即判定异常发生。In the step S2, when the value of the first principal component changes by more than 5%, it is determined that an abnormality has occurred.
所述的步骤S3中,进行异常定位的方法具体包含:In the step S3, the method for abnormal location specifically includes:
步骤S3.1、选取前M个主成分进行矩阵重构,生成正交矩阵U;Step S3.1, selecting the first M principal components for matrix reconstruction to generate an orthogonal matrix U;
步骤S3.2、选取正交矩阵U中系数绝对值最大的前N个采样点;Step S3.2, selecting the first N sampling points with the largest coefficient absolute value in the orthogonal matrix U;
步骤S3.3、确定该N个采样点在配电网中的位置,完成异常定位。Step S3.3, determining the positions of the N sampling points in the distribution network, and completing abnormal location.
所述的步骤S3中,N≤M。In the step S3, N≤M.
本发明利用主成分分析法实现电网异常检测和异常定位,为后续处理和切除提供信息支持,在处理大规模数据时有明显的优势。The invention utilizes the principal component analysis method to realize abnormal detection and abnormal location of the power grid, provides information support for subsequent processing and removal, and has obvious advantages in processing large-scale data.
附图说明Description of drawings
图1是主成分分析数据概念图。Figure 1 is a conceptual diagram of principal component analysis data.
图2是主成分算法效果图。Figure 2 is the effect diagram of the principal component algorithm.
图3是本发明提供的一种基于主成分分析法的电网异常快速检测与定位方法的流程图。Fig. 3 is a flow chart of a fast detection and location method for power grid abnormality based on principal component analysis method provided by the present invention.
图4是电路PSCAD仿真示意图。Figure 4 is a schematic diagram of circuit PSCAD simulation.
图5是图4的系统模型图。FIG. 5 is a system model diagram of FIG. 4 .
图6是图5中的短路故障模块。Fig. 6 is the short circuit fault module in Fig. 5 .
图7是图5中的谐波注入模块。Fig. 7 is the harmonic injection module in Fig. 5 .
具体实施方式detailed description
以下根据图1~图7,具体说明本发明的较佳实施例。A preferred embodiment of the present invention will be specifically described below with reference to FIGS. 1 to 7 .
主成分分析(Principal Component Analysis,PCA)是研究如何将多指标问题转化为较少的综合指标的一种统计方法,即“降维”。它将高维空间的问题转化到低维空间中,使得处理问题简单化、直观化。转化后的综合指标之间互不相关,但能涵盖原有高维数据中的大部分信息。主成分分析被视为最重要的多元统计方法,在社会经济、企业管理、地质探测、生物医疗等各个方面有着广泛应用。常被用于综合评价、数据压缩与降噪、信号处理、模式识别等领域。Principal Component Analysis (PCA) is a statistical method to study how to transform multi-indicator problems into fewer comprehensive indicators, that is, "dimensionality reduction". It transforms the problem of high-dimensional space into low-dimensional space, making the processing problem simple and intuitive. The transformed comprehensive indicators are not correlated with each other, but can cover most of the information in the original high-dimensional data. Principal component analysis is regarded as the most important multivariate statistical method, and it is widely used in various aspects such as social economy, enterprise management, geological exploration, and biomedicine. It is often used in comprehensive evaluation, data compression and noise reduction, signal processing, pattern recognition and other fields.
图1为二维空间中的一组数据,主成分分析的目的是通过计算找出主成分的轴的大致方向,如图2所示。对于高维数据也有相同的算法,所谓主轴,定义为所有数据在该轴的投影的方差最大。Figure 1 is a set of data in a two-dimensional space. The purpose of principal component analysis is to find out the general direction of the axis of the principal component through calculation, as shown in Figure 2. There is the same algorithm for high-dimensional data, the so-called main axis, which is defined as the largest variance of the projection of all data on this axis.
令为正定矩阵且为给定相量,则对任意非零向量有:make is a positive definite matrix and is a given phasor, then for any non-zero vector have:
且当x=cB-1d时达到最大值,其中c为任意非零常数。And the maximum value is reached when x=cB -1 d, where c is any non-zero constant.
令为正定阵,且特征值满足λ1≥λ2≥…≥λp≥0,且相应单位向量分别为e1,e2,…,ep,则make is a positive definite matrix, and its eigenvalues satisfy λ 1 ≥λ 2 ≥…≥λ p ≥0, and the corresponding unit vectors are e 1 , e 2 ,…,e p , then
且and
以上表明对于到原点距离为单位长度的一切点x,λ1和λp分别为二次型x'Bx的最大值和最小值。当选择x使得垂直于先选择的特征向量时,B的其它特征值也对应于相应的最大值。The above shows that for all points x whose distance to the origin is unit length, λ 1 and λ p are the maximum and minimum values of the quadratic form x'Bx respectively. When x is chosen such that it is perpendicular to the first chosen eigenvector, the other eigenvalues of B also correspond to the corresponding maxima.
设X=(X1,X2,…XP)'为p维随机向量,它的第i主成分分量可表示成Yi=ui'X,i=1,2,…,p,其中ui是正交矩阵U的第i列向量,并满足如下条件:Let X=(X 1 ,X 2 ,...X P )' be a p-dimensional random vector, and its i-th principal component can be expressed as Y i =u i 'X, i=1,2,...,p, where u i is the ith column vector of the orthogonal matrix U, and satisfies the following conditions:
Y1是X1,X2,…XP的线性组合中方差最大者;Y 1 is the linear combination of X 1 , X 2 ,...X P with the largest variance;
Yk是与Y1,…,Yk-1不相关的X1,X2,…XP的线性组合中方差最大者,k=2,3,…,p。Y k is the one with the largest variance among linear combinations of X 1 , X 2 , .
则有如下三个性质:It has the following three properties:
性质1、设Σ是随机向量X=(X1,X2,…XP)'的协方差矩阵,其特征值-特征向量对其中λ1≥λ2≥…≥λp≥0,则第i个主成分为:Yi=ei'X=er1X1+er2X2+…+erpXp,i=1,2,…,p,且方差var(Yi)=ei'Σei=λi,协方差cov(Yl,Yk)=el'Σek=0;Property 1. Let Σ be the covariance matrix of the random vector X=(X 1 ,X 2 ,…X P )', and its eigenvalue-eigenvector pair Where λ 1 ≥λ 2 ≥...≥λ p ≥0, then the i-th principal component is: Y i =e i 'X=e r1 X 1 +e r2 X 2 +...+e rp X p , i=1 ,2,...,p, and variance var(Y i )=e i 'Σe i =λ i , covariance cov(Y l ,Y k )=e l 'Σe k =0;
性质2、设随机向量X=(X1,X2,…XP)'有协方差矩阵Σ,其特征值-特征向量对(λ1,e1),(λ2,e2),…,(λp,ep),其中λ1≥λ2≥…≥λp≥0,Yk是主成分,则 Property 2. Let the random vector X=(X 1 ,X 2 ,…X P )’ have a covariance matrix Σ, and its eigenvalue-eigenvector pairs (λ 1 ,e 1 ),(λ 2 ,e 2 ),… ,(λ p ,e p ), where λ 1 ≥λ 2 ≥…≥λ p ≥0, Y k is the principal component, then
在主成分分析中,第k主成分的贡献率定义为前k个主成分的累计方差贡献率定义为 In principal component analysis, the contribution rate of the kth principal component is defined as The cumulative variance contribution rate of the first k principal components is defined as
性质3、如果Yi=ei'X,i=1,2,…,p是从协方差矩阵Σ中得到的主成分,则是成分Yk和变量Xi之间的相关系数,亦将其称为Xi在Yk中的负荷量。Property 3. If Y i = e i 'X, i = 1, 2, ..., p is the principal component obtained from the covariance matrix Σ, then is the correlation coefficient between component Y k and variable Xi , also known as the loading of Xi in Y k .
如图3所示,本发明提供一种基于主成分分析法的电网异常快速检测与定位方法,包含以下步骤:As shown in Figure 3, the present invention provides a fast detection and location method for grid abnormalities based on principal component analysis, including the following steps:
步骤S1、对电网随机矩阵进行降维,提取主成分;Step S1, performing dimensionality reduction on the random matrix of the power grid, and extracting principal components;
步骤S2、根据主成分强弱进行电网异常判定;Step S2, judging the abnormality of the power grid according to the strength of the principal components;
步骤S3、根据异常点的位置信息进行异常定位。Step S3, perform abnormal location according to the location information of the abnormal point.
所述的步骤S1中,提取主成分的方法具体包含:In the step S1, the method for extracting principal components specifically includes:
步骤S1.1、利用电网PMU(同步相量测量装置)采集的p维随机变量X=(X1,X2,…XP)'构成的n个三相电流样本xi=(xi1,xi2,…,xip)',构成n×p维样本矩阵X=(xij)n×p;Step S1.1, using n three - phase current samples x i = ( xi1 , x i2 ,...,x ip )', forming an n×p dimensional sample matrix X=(x ij ) n×p ;
步骤S1.2、进行标准化处理:i=1,2,…,n,j=1,2,…,p,得标准化矩阵其中,var是方差;Step S1.2, carry out standardized processing: i=1,2,...,n, j=1,2,...,p, get standardized matrix Among them, var is the variance;
步骤S1.3、计算标准化矩阵Z的样本相关系数矩阵 Step S1.3, calculating the sample correlation coefficient matrix of the normalization matrix Z
步骤S1.4、计算样本相关系数矩阵R的特征值λ1≥λ2≥…≥λp;Step S1.4, calculating the eigenvalue λ 1 ≥λ 2 ≥...≥λ p of the sample correlation coefficient matrix R;
步骤S1.5、计算主成分Yi=ui'X,i=1,2,…,p,或Y=UX;Step S1.5, calculating principal components Y i =u i 'X, i=1, 2,...,p, or Y=UX;
其中,正交矩阵 是特征单位特征向量。Among them, the orthogonal matrix is the characteristic unit eigenvector.
在本发明的一个实施例中,可以利用matlab软件中的可用函数[coeff,score,latent]=pca(X)进行主成分分析,其中,X为输入的n×p维样本矩阵,coeff为协方差矩阵,score为变量x在主成分中的线性表达,latent为coeff的特征根,按从大到小排列,本函数已自动进行标准化处理。In one embodiment of the present invention, the available function [coeff, score, latent]=pca(X) in the matlab software can be used to carry out principal component analysis, wherein X is an input n×p dimensional sample matrix, and coeff is a coeff Variance matrix, score is the linear expression of the variable x in the principal components, latent is the characteristic root of coeff, arranged in descending order, this function has been automatically standardized.
所述的步骤S2中,当第一主成分的数值变化超过5%时,即判定异常发生。In the step S2, when the value of the first principal component changes by more than 5%, it is determined that an abnormality has occurred.
所述的步骤S3中,当异常发生时,标准化后的矩阵的主要特征为异常分量,因此根据这个异常分量在配电网中的位置,可以实现配电网中的异常监测和定位。In the step S3, when an abnormality occurs, the main feature of the standardized matrix is the abnormal component, so according to the position of the abnormal component in the distribution network, the monitoring and positioning of the abnormality in the distribution network can be realized.
进行异常定位的方法具体包含:The methods for abnormal location specifically include:
步骤S3.1、选取前M(在本算例中,M取10)个主成分进行矩阵重构,生成正交矩阵U;Step S3.1. Select the first M (in this example, M is 10) principal components for matrix reconstruction to generate an orthogonal matrix U;
步骤S3.2、选取正交矩阵U中系数绝对值最大的前N(在本算例中,N取8)个采样点,其中,N≤M;Step S3.2, select the first N (in this example, N is 8) sampling points with the largest coefficient absolute value in the orthogonal matrix U, where N≤M;
步骤S3.3、确定该N个采样点在配电网中的位置,完成异常定位。Step S3.3, determining the positions of the N sampling points in the distribution network, and completing abnormal location.
在本发明的一个具体实施例中,结合我国配电网的实际情况,搭建如图4所示的PSCAD电路图,具体的系统模型如图5所示,模拟短路异常和谐波异常,完成数据的采集,其中,短路故障模块如图6所示,谐波注入模块如图7所示。In a specific embodiment of the present invention, in combination with the actual situation of my country's distribution network, a PSCAD circuit diagram as shown in Figure 4 is built, and the specific system model is shown in Figure 5, which simulates short-circuit anomalies and harmonic anomalies, and completes data analysis. Acquisition, wherein, the short-circuit fault module is shown in Figure 6, and the harmonic injection module is shown in Figure 7.
以下表格选择了探测到异常前5个时间间隔到探测后8个时间间隔,总计13个随机矩阵进行主成分分析的结果。取M=10,N=10,表格中的第一列为前M个主成分的累计方差贡献率,表格中的后10列为系数绝对值最大的N个PMU观测点。可以看到异常发生后主成分明显增大,即探测到异常。这说明异常发生是一个暂态过程。异常检测前选定的观测点比较随机,而异常检测后选定的PMU观测点则相对锁定。这些锁定的点即为定位点。以上实例说明了本算法在电力系统异常检测和定位上应用的有效性。The following table selects the results of principal component analysis for a total of 13 random matrices from the 5 time intervals before the detection of the anomaly to the 8 time intervals after the detection. Take M=10, N=10, the first column in the table is the cumulative variance contribution rate of the first M principal components, and the last 10 columns in the table are the N PMU observation points with the largest absolute value of the coefficient. It can be seen that the principal component increases significantly after the anomaly occurs, that is, the anomaly is detected. This shows that exception occurrence is a transient process. The selected observation points before anomaly detection are relatively random, while the selected PMU observation points after anomaly detection are relatively locked. These locked points are anchor points. The above examples illustrate the effectiveness of this algorithm in the application of power system anomaly detection and location.
短路1线路183异常Short circuit 1 line 183 abnormal
短路2线路54异常Short circuit 2 line 54 abnormal
谐波1、2线路201异常Harmonic 1, 2 line 201 is abnormal
通过上述的案例分析表明,利用主成分分析法可以明确实现异常检测,进行异常的定位,锁定异常发生位置,为后续处理和切除提供信息支持。主成分分析法利用降维的思想,在处理大规模数据时有明显的优势。The above case analysis shows that the use of principal component analysis can clearly realize abnormal detection, locate abnormalities, lock the location of abnormalities, and provide information support for subsequent processing and removal. Principal component analysis has obvious advantages when dealing with large-scale data by using the idea of dimensionality reduction.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the foregoing disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710174199.3A CN106950446A (en) | 2017-03-22 | 2017-03-22 | The abnormal quick detection of power network based on PCA and localization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710174199.3A CN106950446A (en) | 2017-03-22 | 2017-03-22 | The abnormal quick detection of power network based on PCA and localization method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106950446A true CN106950446A (en) | 2017-07-14 |
Family
ID=59472826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710174199.3A Pending CN106950446A (en) | 2017-03-22 | 2017-03-22 | The abnormal quick detection of power network based on PCA and localization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106950446A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107733541A (en) * | 2017-11-29 | 2018-02-23 | 广东工业大学 | Method, apparatus, equipment and the computer-readable recording medium of frequency spectrum perception |
CN108828405A (en) * | 2018-06-06 | 2018-11-16 | 西南交通大学 | A kind of electric transmission line fault detection method based on random matrix |
CN108919755A (en) * | 2018-06-11 | 2018-11-30 | 宁波大学 | A kind of distributed fault detection method based on muti-piece Nonlinear and crossing relational model |
CN110673060A (en) * | 2019-09-25 | 2020-01-10 | 山东大学 | Fault diagnosis method for distribution network based on synchrophasor measurement and random matrix theory |
CN110807518A (en) * | 2019-11-06 | 2020-02-18 | 国网山东省电力公司威海供电公司 | An Outlier Detection Method for Power Grid Data |
CN111316323A (en) * | 2019-01-31 | 2020-06-19 | 深圳市瑞立视多媒体科技有限公司 | Abnormal value processing method and device for three-dimensional trajectory data |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096021A (en) * | 2010-12-08 | 2011-06-15 | 西南交通大学 | Traveling wave natural frequency-based power transmission network failure networking positioning and distance measurement method |
CN102590683A (en) * | 2012-02-27 | 2012-07-18 | 浙江大学 | Online diagnosing and early warning method for current-carrying faults of power equipment |
TW201303319A (en) * | 2011-07-06 | 2013-01-16 | Univ Nat Taiwan | Method and system for fault detection, identification and location in high-voltage power transmission networks |
CN103472362A (en) * | 2013-09-23 | 2013-12-25 | 华北电力大学(保定) | Method for extracting embedded fault features in WAMS information of electric power system |
CN104977505A (en) * | 2015-06-25 | 2015-10-14 | 国家电网公司 | Power grid disturbance source positioning method based on integrated oscillators |
CN105699804A (en) * | 2016-01-22 | 2016-06-22 | 吉林大学 | Big data fault detection and positioning method for power distribution network |
CN106324405A (en) * | 2016-09-07 | 2017-01-11 | 南京工程学院 | Transformer fault diagnosis method based on improved principal component analysis |
CN106447202A (en) * | 2016-09-29 | 2017-02-22 | 国网山东省电力公司 | Power equipment state evaluation method based on data mining and principal component analysis |
CN105279315B (en) * | 2015-09-29 | 2018-11-27 | 昆明理工大学 | A kind of transformer online monitoring information fusion analysis method based on correlation analysis and mahalanobis distance |
-
2017
- 2017-03-22 CN CN201710174199.3A patent/CN106950446A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096021A (en) * | 2010-12-08 | 2011-06-15 | 西南交通大学 | Traveling wave natural frequency-based power transmission network failure networking positioning and distance measurement method |
TW201303319A (en) * | 2011-07-06 | 2013-01-16 | Univ Nat Taiwan | Method and system for fault detection, identification and location in high-voltage power transmission networks |
CN102590683A (en) * | 2012-02-27 | 2012-07-18 | 浙江大学 | Online diagnosing and early warning method for current-carrying faults of power equipment |
CN103472362A (en) * | 2013-09-23 | 2013-12-25 | 华北电力大学(保定) | Method for extracting embedded fault features in WAMS information of electric power system |
CN104977505A (en) * | 2015-06-25 | 2015-10-14 | 国家电网公司 | Power grid disturbance source positioning method based on integrated oscillators |
CN105279315B (en) * | 2015-09-29 | 2018-11-27 | 昆明理工大学 | A kind of transformer online monitoring information fusion analysis method based on correlation analysis and mahalanobis distance |
CN105699804A (en) * | 2016-01-22 | 2016-06-22 | 吉林大学 | Big data fault detection and positioning method for power distribution network |
CN106324405A (en) * | 2016-09-07 | 2017-01-11 | 南京工程学院 | Transformer fault diagnosis method based on improved principal component analysis |
CN106447202A (en) * | 2016-09-29 | 2017-02-22 | 国网山东省电力公司 | Power equipment state evaluation method based on data mining and principal component analysis |
Non-Patent Citations (1)
Title |
---|
杨东方 等: "《数学模型在生态学的应用及研究(7)》", 31 January 2010, 海军出版社 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107733541A (en) * | 2017-11-29 | 2018-02-23 | 广东工业大学 | Method, apparatus, equipment and the computer-readable recording medium of frequency spectrum perception |
CN107733541B (en) * | 2017-11-29 | 2021-07-06 | 广东工业大学 | Spectrum sensing method, apparatus, device, and computer-readable storage medium |
CN108828405A (en) * | 2018-06-06 | 2018-11-16 | 西南交通大学 | A kind of electric transmission line fault detection method based on random matrix |
CN108828405B (en) * | 2018-06-06 | 2020-05-12 | 西南交通大学 | Power transmission line fault detection method based on random matrix |
CN108919755A (en) * | 2018-06-11 | 2018-11-30 | 宁波大学 | A kind of distributed fault detection method based on muti-piece Nonlinear and crossing relational model |
CN108919755B (en) * | 2018-06-11 | 2020-06-16 | 宁波大学 | A Distributed Fault Detection Method Based on Multi-block Nonlinear Cross-Relational Model |
CN111316323A (en) * | 2019-01-31 | 2020-06-19 | 深圳市瑞立视多媒体科技有限公司 | Abnormal value processing method and device for three-dimensional trajectory data |
WO2020155025A1 (en) * | 2019-01-31 | 2020-08-06 | 深圳市瑞立视多媒体科技有限公司 | Method and device for handling exception value of three-dimensional trajectory data |
CN110673060A (en) * | 2019-09-25 | 2020-01-10 | 山东大学 | Fault diagnosis method for distribution network based on synchrophasor measurement and random matrix theory |
CN110807518A (en) * | 2019-11-06 | 2020-02-18 | 国网山东省电力公司威海供电公司 | An Outlier Detection Method for Power Grid Data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106950446A (en) | The abnormal quick detection of power network based on PCA and localization method | |
CN105320727B (en) | Method for detecting anomalies in real-time sequences | |
CN105975443B (en) | Lasso-based network abnormal behavior detection method and system | |
Tang et al. | Sparse classification of rotating machinery faults based on compressive sensing strategy | |
CN106204335A (en) | A kind of electricity price performs abnormality judgment method, Apparatus and system | |
CN102324007B (en) | Anomaly Detection Method Based on Data Mining | |
CN110137944B (en) | A Method for Locating Voltage Stability Disturbance Sources Based on Random Matrix Theory | |
CN111679158A (en) | Distribution network fault identification method based on similarity of synchronous measurement data | |
CN110208647B (en) | A method for locating single-phase-to-ground faults in distribution network based on random matrix | |
CN110162746A (en) | A health warning and fault diagnosis method based on multi-parameter fusion similarity | |
Marinucci et al. | High-frequency asymptotics for Lipschitz–Killing curvatures of excursion sets on the sphere | |
CN115015683A (en) | Cable production performance test method, device, equipment and storage medium | |
CN111007351A (en) | Distribution network anomaly detection method based on high-dimensional random matrix characteristic root detection | |
CN109612726A (en) | A Multiple Ultra-Order Analysis Method for Vibration Signal Feature Extraction | |
Li et al. | Variable selection for fixed effects varying coefficient models | |
Bourguin et al. | Gaussian approximation of nonlinear statistics on the sphere | |
Hagh et al. | Improving bad data detection in state estimation of power systems | |
CN110363141B (en) | Method for diagnosing a fault in a gas pressure regulator | |
CN117031294A (en) | Battery multi-fault detection method, device and storage medium | |
CN104050070B (en) | High-dimensional flow data changing point detection method in distributed system | |
Chen et al. | Application of EMD-AR and MTS for hydraulic pump fault diagnosis | |
Cao et al. | A random matrix theoretical approach to early event detection using experimental data | |
CN114118208A (en) | Transformer fault judgment method and device based on multivariate information and electronic equipment | |
Zeng et al. | Online process monitoring using recursive mutual information-based variable selection and dissimilarity analysis with no prior information | |
Zhang et al. | Improved locally linear embedding based method for nonlinear system fault detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170714 |