CN106949457B - Supercritical boiler platen superheater overtemperature control system and method - Google Patents
Supercritical boiler platen superheater overtemperature control system and method Download PDFInfo
- Publication number
- CN106949457B CN106949457B CN201710326532.8A CN201710326532A CN106949457B CN 106949457 B CN106949457 B CN 106949457B CN 201710326532 A CN201710326532 A CN 201710326532A CN 106949457 B CN106949457 B CN 106949457B
- Authority
- CN
- China
- Prior art keywords
- module
- level
- temperature
- superheater
- wall temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000012544 monitoring process Methods 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000007921 spray Substances 0.000 claims abstract description 17
- 238000004891 communication Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 11
- 238000013021 overheating Methods 0.000 claims description 11
- 238000009529 body temperature measurement Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 239000003546 flue gas Substances 0.000 claims description 7
- 239000000498 cooling water Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims 1
- 238000012806 monitoring device Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 238000012423 maintenance Methods 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract 3
- 238000005516 engineering process Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012954 risk control Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
- F22G5/20—Controlling superheat temperature by combined controlling procedures
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
技术领域technical field
本发明涉及火电站自动控制技术领域,具体涉及一种超临界锅炉屏式过热器超温控制系统及方法。The invention relates to the technical field of automatic control of thermal power plants, in particular to a supercritical boiler screen superheater overtemperature control system and method.
背景技术Background technique
自上世纪90年代起,我国先后从美国、俄罗斯、日本引进了一批超临界机组,并逐步成为我国大功率火电机组的主体,至2011年底,我国成为超超临界火电机组最多的国家,也标志着我国电力工业进入“超超临界时代”。然而,超(超)临界机组因其汽水参数高,更加接近材料的许用极限,极易在快速变工况等非稳态过程中引起锅炉燃烧不稳定或动态热流量的失衡,导致高温受热面的超温,引起大量锅炉受热面爆管等严重事故和问题,给电力生产安全性和稳定性带来重大影响,成为困扰发电行业的一大难题:Since the 1990s, my country has successively introduced a number of supercritical units from the United States, Russia, and Japan, and has gradually become the main body of my country's high-power thermal power units. By the end of 2011, my country has become the country with the most ultra-supercritical thermal power units. It marks that my country's power industry has entered the "ultra-supercritical era". However, the ultra (super) critical unit, due to its high steam-water parameters, is closer to the allowable limit of the material, and it is easy to cause unstable combustion of the boiler or imbalance of dynamic heat flow in the unsteady process such as fast changing working conditions, resulting in high temperature heating The over-temperature of the surface has caused a large number of serious accidents and problems such as the explosion of the heating surface of the boiler, which has a significant impact on the safety and stability of power production, and has become a major problem that plagues the power generation industry:
首先,超临界锅炉屏式过热器内的工质温度和压力很高,且布置在炉膛出口烟温最高的区域,同时接受炉膛内的燃烧辐射换热和高温烟气对流换热,工作条件非常恶劣,受热面管壁温度逼近金属材料的极限使用温度,极易因系统扰动或工况变化造成金属管壁超温,威胁设备安全。First of all, the temperature and pressure of the working fluid in the supercritical boiler panel superheater are very high, and they are arranged in the area with the highest flue gas temperature at the furnace outlet. Harsh, the temperature of the pipe wall of the heating surface is close to the limit service temperature of the metal material.
第二,尽管常规运行条件下屏式过热器出口汽温通过汽温调节和交叉混合后保持平均出口汽温在额定水平,但由于炉膛烟温分布和受热面管内流动的分布不均,尤其在动态过程中,局部受热面的管内外参数存在偏差,在一定条件下极易造成受热面的局部过热超温,甚至引起加速氧化和爆管。Second, although the outlet steam temperature of the screen superheater is maintained at the rated level after the steam temperature adjustment and cross-mixing under normal operating conditions, due to the uneven distribution of the furnace flue gas temperature and the flow in the heating surface tube, especially in the In the dynamic process, there are deviations in the internal and external parameters of the local heating surface. Under certain conditions, it is easy to cause local overheating and overtemperature on the heating surface, and even cause accelerated oxidation and tube burst.
第三,国内电力市场化条件下火电机组的运行环境造成我国火电机组普遍存在煤质的波动以及电网要求的频繁大幅度调频调峰,这些都加剧了超临界锅炉调节控制的难度,大量现场经验表明,壁温超温以动态过程的短期超温为主,除设计和安装条件外,上述因素是造成受热面金属壁温超温的最直接原因。Third, the operating environment of thermal power units under the condition of domestic power marketization has caused the fluctuation of coal quality in thermal power units in my country and the frequent and large frequency regulation and peak regulation required by the power grid, which aggravates the difficulty of regulation and control of supercritical boilers. A lot of field experience It is shown that the over-temperature of the wall temperature is mainly caused by the short-term over-temperature of the dynamic process. In addition to the design and installation conditions, the above factors are the most direct causes of the over-temperature of the metal wall of the heating surface.
第四,随着国内电厂对超临界锅炉壁温超温重视的提高,普遍增设大量的壁温监测测点,部分机组安装的壁温测点达到数千个,但基本仅能实现超温的事后报警,无法实现对如此大量壁温测点的有效分析和实时处理,实现超温预警和预防,尚无有效的自动控制手段可采用。Fourth, as domestic power plants pay more attention to supercritical boiler wall temperature over-temperature, a large number of wall temperature monitoring and measurement points are generally added. Some units have installed thousands of wall temperature measurement points, but they can basically only achieve over-temperature monitoring. After the alarm, it is impossible to achieve effective analysis and real-time processing of such a large number of wall temperature measurement points, and to achieve over-temperature early warning and prevention. There is no effective automatic control method available.
目前相关技术现状如下:The current status of related technologies is as follows:
1.壁温监测技术现状1. Current status of wall temperature monitoring technology
目前,超(超)临界锅炉壁温监测主要有三种技术:At present, there are three main technologies for monitoring the wall temperature of ultra (super) critical boilers:
(1)直接测量技术(1) Direct measurement technology
锅炉内部壁温测量存在很大的困难,一般将铠装热电偶或瓷套管热电偶电焊到受热面金属管壁的方法来测量壁温,但由于炉内含尘高温烟气冲刷、受热面摆动及受热面屏区烟气温度较高等原因,这些测点对接触效果的安装要求较高从而测量精度较低,同时恶劣的环境导致测点容易损坏。超(超)临界锅炉炉内壁温测量与亚临界锅炉相比由于其汽水参数更高,测量和维护难度更大。It is very difficult to measure the internal wall temperature of the boiler. Generally, the method of welding the armored thermocouple or the porcelain sleeve thermocouple to the metal tube wall of the heating surface is used to measure the wall temperature. Due to the reasons such as swing and the high temperature of flue gas in the heating surface screen area, these measuring points have higher requirements on the installation of the contact effect, resulting in lower measurement accuracy. At the same time, the harsh environment causes the measuring points to be easily damaged. Compared with subcritical boilers, the inner wall temperature measurement of supercritical boilers is more difficult to measure and maintain because of its higher soda parameters.
由于以上问题,直接在向火侧管壁重点或鳍片端部这些危险点安装测点并基于这些测点进行长期监测和控制可靠性较低,也因此,现有直接壁温测量仅供报警提示,再由运行人员进行相关判断和处置。Due to the above problems, it is relatively unreliable to install measuring points directly at the critical points of the fire-side pipe wall or the end of the fins and perform long-term monitoring and control based on these measuring points. Therefore, the existing direct wall temperature measurement is only for alarm prompts. , and then the operators will make relevant judgments and disposals.
(2)间接测量法(2) Indirect measurement method
锅炉壁温间接测量法在电厂应用较多的是管子内壁氧化层厚度法,这种方法具有定量精确、快速无损等优点,但是需要在停炉期间对管子内壁氧化层厚度进行精确测量,进而推算出锅炉壁温的平均水平和近似分布。这类方法的局限也是十分明显的,首先无法利用该方法进行在线的实时监测,对超(超)临界锅炉的在线预警及超温预防意义不大;其次,该方法严重依赖细致的管壁氧化层厚度测量,复杂度和费用都很高。The indirect measurement method of boiler wall temperature is mostly used in power plants to measure the thickness of the oxide layer on the inner wall of the tube. This method has the advantages of quantitative accuracy, rapid non-destructiveness, etc., but it is necessary to accurately measure the thickness of the oxide layer on the inner wall of the tube during the shutdown period, and then calculate Average level and approximate distribution of boiler wall temperature. The limitations of this type of method are also very obvious. First, this method cannot be used for online real-time monitoring, and it is of little significance for online early warning and over-temperature prevention of ultra (super) critical boilers; second, this method relies heavily on careful tube wall oxidation. Layer thickness measurement is complex and expensive.
(3)在线软测量方法(3) Online soft measurement method
所谓软测量就是根据预先确定的模型,通过其它参数,根据模型算法计算出被测参数目标的方法。随着计算机技术的发展,针对生产过程中不可测变量或难以准确测量变量的测量及其实施性问题,软测量技术体现出独特的优势。软测量的核心问题是其模型的建立,也即建立待估计变量与其它直接测量变量间的关联模型。The so-called soft measurement is a method of calculating the target of the measured parameter according to the model algorithm through other parameters according to the predetermined model. With the development of computer technology, soft sensor technology shows unique advantages for the measurement and implementation of unmeasurable variables or variables that are difficult to measure accurately in the production process. The core problem of soft measurement is the establishment of its model, that is, the establishment of the correlation model between the variable to be estimated and other directly measured variables.
软测量建模的方法多种多样,且各种方法互有交叉和融合,因此很难有妥当而全面的分类方法。目前,软测量建模方法一般包括:机理建模、回归分析、状态估计、模式识别、人工神经网络、模糊数学、支持向量机、过程层析、相关分析、非线性系统信息处理技术等。基于这些方法的软测量技术具有各自的优缺点和适用范围,部分方法在软测量领域已有许多成功的应用,但在锅炉壁温软测量方面除机理建模和回归分析等常规方法外,大部分仍不成熟。There are various methods of soft-sensor modeling, and various methods intersect and merge with each other, so it is difficult to have a proper and comprehensive classification method. At present, soft sensing modeling methods generally include: mechanism modeling, regression analysis, state estimation, pattern recognition, artificial neural network, fuzzy mathematics, support vector machine, process tomography, correlation analysis, nonlinear system information processing technology, etc. Soft sensing technologies based on these methods have their own advantages, disadvantages and applicable scope. Some methods have been successfully applied in the field of soft sensing. Some are still immature.
2.壁温预测预警技术现状2. Status Quo of Wall Temperature Prediction and Early Warning Technology
目前超温主要采用安装于高温受热面上的大量测温探头进行监测和报警,壁温测量结果超过预设的报警上限,即给运行人员报警提示,由运行人员进行相关处置。但目前问题在于如此大量的壁温测点,难以依靠人工进行有效的分析和监测,只能做到超温后的报警处置,难以实现超温的预测和预警,尚无法有效利用大量壁温测点,实现壁温超温的有效缓解和预防。At present, the over-temperature is mainly monitored and alarmed by a large number of temperature measuring probes installed on the high-temperature heating surface. The wall temperature measurement result exceeds the preset alarm upper limit, that is, an alarm prompt is given to the operator, and the operator will deal with it. However, the current problem is that with such a large number of wall temperature measurement points, it is difficult to rely on manual analysis and monitoring, and only alarm handling after over-temperature can be achieved, and it is difficult to achieve over-temperature prediction and early warning. To achieve effective mitigation and prevention of wall temperature over-temperature.
综上所述,基于电站锅炉屏式过热器壁温测点,开发其壁温超温控制系统及方法,对提高锅炉设备的安全性和高温受热部件寿命、减少超温甚至爆管等问题或事故的发生都具有重要的作用。To sum up, based on the wall temperature measurement points of the panel superheater of the power station boiler, the development of its wall temperature over-temperature control system and method is helpful for improving the safety of boiler equipment and the life of high-temperature heated components, reducing over-temperature and even tube bursting and other problems or problems. Accidents play an important role.
发明内容SUMMARY OF THE INVENTION
为了解决上述现有技术存在的问题,本发明的目的在于提供一种超临界锅炉屏式过热器超温控制系统及方法,对提高火电厂的运行可靠性,延长关键设备寿命,降低维护维修成本都具有重要的意义。In order to solve the problems existing in the above-mentioned prior art, the purpose of the present invention is to provide a supercritical boiler panel superheater overtemperature control system and method, which can improve the operation reliability of thermal power plants, prolong the life of key equipment, and reduce maintenance and repair costs. are of great significance.
为达到以上目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种超临界锅炉屏式过热器超温控制系统,包括安装于屏式过热器1管壁上的壁温传感器2、接收壁温传感器2信号的就地测量装置3、与就地测量装置3进行通讯连接的电站分散控制系统DCS4、与就地测量装置3连接的对各壁温传感器2进行监测的第一级监控回路和第二级监控回路、由电站分散控制系统DCS 4控制的与第一级监控回路连接的燃尽风挡板13和与第二级监控回路连接的减温喷水调门14;所述第一级监控回路包括一级限速模块5、一级限幅模块6、与一级限速模块5和一级限幅模块6连接的一级或运算模块7、与一级或运算模块7连接的一级输出脉冲模块8,第二级监控回路包括二级限速模块9、二级限幅模块10、与二级限速模块9和二级限幅模块10连接的二级或运算模块11、与二级或运算模块11连接的二级输出脉冲模块12。A supercritical boiler panel superheater overtemperature control system, comprising a
就地测量装置3检测安装于屏式过热器1各金属管壁的壁温传感器2的测温信号,一方面通过通讯方式将各壁温传感器2的温度发送给电站分散控制系统DCS 4用于显示和超温出现后的报警;另一方面通过一级限速模块5、一级限幅模块6、二级限速模块9、二级限幅模块10对各壁温传感器2的输出进行检测。The on-site measuring
所述屏式过热器1位于超临界锅炉炉膛顶部,由若干根细长盘旋的金属管组成。屏式过热器1的金属管内流动的是过热蒸汽,管外接受高温烟气与燃尽风的混合对流换热以及炉膛内燃烧火焰的辐射换热,从而实现对过热蒸汽的加热。当超临界锅炉工况发生变化时,屏式过热器1接收的外部热量和内部过热蒸汽吸收的热量出现不平衡,导致屏式过热器1金属管壁温度的变化,直至达到新的平衡态后,屏式过热器1的金属管壁温度趋于新的平衡点。当该动态过程的工况波动、管外烟气温度与流动分布不均和(或)管内蒸汽流动不均匀产生了较大的不平衡后,屏式过热器1有可能出现个别或局部管壁温度超温,严重情况下可能出现大面积管壁超温。现有技术条件下,当安装于屏式过热器1管壁上的壁温传感器2所安装处管壁温度超过材料对应的超温报警值后,与就地测量装置3相连的DCS系统4会根据各壁温传感器信号与超温报警值进行比较后发出壁温超温报警提示,以提示运行人员处理。The
本发明一种超临界锅炉屏式过热器超温控制系统及方法自动对屏式过热器1安装的大量壁温传感器2的输出信号进行自动监控。监控回路共分两级,两级监控回路分别通过一级限速模块5和二级限速模块9及一级限幅模块6和二级限幅模块10捕获大量壁温传感器2中的最高温度和最快升温速度,当任一壁温传感器2的输出温度或升温速度超过各级设置的限幅即由一级或运算模块7和二级或运算模块11输出至一级级脉冲输出模块8和二级脉冲输出模块12生成控制指令信号增量,进行降温控制;其中由于燃尽风量对屏式过热器1的壁温影响较轻微,对发电机组系统运行稳定性和经济性的影响也较柔和,相对而言,减温喷水量的变化对屏式过热器1的壁温变化和发电机组系统运行稳定性与经济性的影响较明显,因此,一级监控回路设置的限幅幅值较低,控制输出叠加于燃尽风挡板13控制指令上,通过增大燃机风量进行屏式过热器1的降温;二级监控回路设置的限幅幅值较高,控制输出叠加于减温喷水调门14上,通过增大减温喷水量,进行屏式过热器1的降温;较轻微的超温风险会触发一级监控回路,通过增大燃机风量实现屏式过热器超温的控制,较严重的超温风险会同时触发一级和二级监控回路,通过增大燃机风量和减温喷水量,共同实现屏式过热器超温的控制;这样可在屏式过热器1出现超温之前,自动预判发生超温的风险,综合利用增大燃机风量和减温喷水量的方式,实现主动降低屏过超温风险的目标,从而避免屏过超温的发生,维护屏式过热器1金属管的安全。A supercritical boiler panel superheater overtemperature control system and method of the present invention automatically monitors the output signals of a large number of
与现有技术相比,本发明的特点如下:Compared with the prior art, the characteristics of the present invention are as follows:
(1)现有技术对安装于锅炉屏式过热器上的大量壁温测点无法实现有效的监控管理,只能实现壁温超温后的报警,运行人员仅能做出事后响应,不可能有精力对壁温进行全面监控。(1) The existing technology cannot achieve effective monitoring and management for a large number of wall temperature measuring points installed on the boiler screen superheater, and can only realize the alarm after the wall temperature exceeds the temperature, and the operator can only make a post-event response, which is impossible Have the energy to fully monitor the wall temperature.
(2)在现有火电站系统硬件结构基础上,无需复杂的硬件设备改造,只需增加一级与二级监控回路即可实现对锅炉屏式过热器壁温的监测与控制,实现有效降低屏过壁温超温风险的目的。(2) On the basis of the hardware structure of the existing thermal power station system, there is no need for complex hardware equipment transformation, and the monitoring and control of the wall temperature of the boiler screen superheater can be realized only by adding the primary and secondary monitoring loops to achieve effective reduction. The purpose of shielding the risk of over-temperature over the wall temperature.
(3)现有技术采用燃尽风门挡板用于燃烧的控制,开大燃尽风门可用于降低不完全燃烧损失,减少飞灰含碳量,降低NOx生成,但过量的燃尽风会降低燃烧效率。本发明在判断出现超温风险时,短时间内借助低温燃尽风的作用,实现了辅助降低屏过壁温的目的,进一步丰富了燃尽风挡板的自动控制功能。(3) The prior art adopts the burnout damper baffle for the control of combustion, and opening the large burnout damper can be used to reduce the loss of incomplete combustion, reduce the carbon content of fly ash, and reduce the generation of NOx, but the excessive burnout wind will reduce the combustion efficiency. When judging the risk of over-temperature, the invention realizes the purpose of assisting the reduction of the wall temperature of the screen with the help of the low-temperature burn-out wind in a short period of time, and further enriches the automatic control function of the burn-out wind baffle.
(4)现有技术采用过热器减温喷水用于紧急情况下降低过热器内过热蒸汽的温度,避免过热蒸汽出现超温超压,威胁过热器的安全。本发明在判断出现超温风险时,短时间内借助减温喷水的冷却作用,实现了辅助降低屏过壁温的目的,进一步丰富了锅炉过热器减温喷水的自动控制功能。(4) In the prior art, the superheater desuperheating water spray is used to reduce the temperature of the superheated steam in the superheater in an emergency, so as to avoid the overtemperature and overpressure of the superheated steam, which threatens the safety of the superheater. When judging the risk of over-temperature, the invention realizes the purpose of assisting the reduction of the wall temperature of the screen by means of the cooling effect of the desuperheating water spray in a short time, and further enriches the automatic control function of the desuperheating water spray of the boiler superheater.
(5)由于燃尽风作用较温和,且对机组效率影响较小,因此作为超温风险控制的常规手段;而减温喷水作用较强且对机组效率影响较大,因此作为超温风险较强时同时使用。通过两级控制作用可同时兼顾对机组安全稳定性和经济性的影响,实现对容易发生壁温超温的屏式过热器的超温自动保护,对超临界机组面临的屏过壁温超温问题的解决具有重要的意义。(5) Because the effect of the over-burning wind is mild and has little effect on the unit efficiency, it is used as a conventional means of over-temperature risk control; while the desuperheating water spray has a strong effect and has a greater impact on the unit efficiency, so it is used as an over-temperature risk. Use both when strong. Through the two-stage control function, the influence on the safety, stability and economy of the unit can be taken into account at the same time, and the over-temperature automatic protection of the screen superheater which is prone to over-temperature of the wall temperature can be realized. The solution of the problem is of great significance.
附图说明Description of drawings
图1是本发明系统结构示意图。FIG. 1 is a schematic diagram of the system structure of the present invention.
具体实施方式Detailed ways
以下结合附图及具体实施例,对本发明作进一步的详细描述。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
一种超临界锅炉屏式过热器超温控制系统,包括安装于屏式过热器1管壁上的壁温传感器2、接收壁温传感器2信号的就地测量装置3、与就地测量装置3进行通讯连接的电站分散控制系统DCS4、对各壁温传感器2进行监测的一级限速模块5、一级限幅模块6、一级或运算模块7、一级输出脉冲模块8、二级限速模块9、二级限幅模块10、二级或运算模块11、二级输出脉冲模块12、由电站分散控制系统DCS4控制的燃尽风挡板13和减温喷水调门14。A supercritical boiler panel superheater overtemperature control system, comprising a
屏式过热器1各金属管壁温度变化过程中,就地测量装置3检测安装于屏式过热器1各金属管壁的壁温传感器2的测温信号,一方面通过通讯方式将各壁温传感器2的温度发送给DCS系统4用于显示和超温出现后的报警;另一方面通过一级限速模块5、一级限幅模块6、二级限速模块9、二级限幅模块10对各壁温传感器2的输出进行检测。During the temperature change of each metal tube wall of the
当任一壁温传感器2的温度尚未出现超温,但超过一次限幅模块6设置的较低限制幅值如495℃或任一壁温传感器2的温度变化率超过一级限速模块5设置的较低限速值如10℃/min时,一级或运算模块7输出为真,并触发电站分散控制系统DCS4内的一级输出脉冲模块8,在燃尽风挡板13原有控制指令的基础上叠加一级输出脉冲模块8输出的降温控制脉冲,控制与电站分散控制系统DCS4相连的燃尽风挡板13进一步开大,提高炉膛顶部的燃尽风流量,从而降低流过屏式过热器1的烟气温度,缓解甚至避免屏式过热器1出现超温。When the temperature of any
当任一壁温传感器2的温度进一步升高,虽尚未出现超温,但超过二次限幅模块10设置的较高限制幅值如500℃或任一壁温传感器2的温度变化率超过二级限速模块9设置的较高限速值如20℃/min时,二级或运算模块11输出为真,并触发电站分散控制系统DCS4内的二级输出脉冲模块12,在减温喷水调门14原有控制指令的基础上叠加二级输出脉冲模块12输出的降温控制脉冲,控制与电站分散控制系统DCS4相连的减温喷水调门14进一步开大,增加进入屏式过热器1的减温喷水,从而快速降低屏式过热器1内的过热蒸汽温度,快速缓解甚至避免屏式过热器1出现超温。When the temperature of any
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710326532.8A CN106949457B (en) | 2017-05-10 | 2017-05-10 | Supercritical boiler platen superheater overtemperature control system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710326532.8A CN106949457B (en) | 2017-05-10 | 2017-05-10 | Supercritical boiler platen superheater overtemperature control system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106949457A CN106949457A (en) | 2017-07-14 |
CN106949457B true CN106949457B (en) | 2022-09-23 |
Family
ID=59478308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710326532.8A Active CN106949457B (en) | 2017-05-10 | 2017-05-10 | Supercritical boiler platen superheater overtemperature control system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106949457B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110173682A (en) * | 2019-06-18 | 2019-08-27 | 中国华能集团有限公司 | A kind of Gas-steam Combined Cycle high-pressure superheater overtemperture control system and method |
CN112097243B (en) * | 2020-10-15 | 2024-10-29 | 西安热工研究院有限公司 | Wall temperature prediction-based coal-fired unit high-temperature superheater overtemperature control system and method |
CN112097244B (en) * | 2020-10-15 | 2025-01-24 | 西安热工研究院有限公司 | Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction |
CN113883492B (en) * | 2021-09-06 | 2024-02-09 | 国能河北沧东发电有限责任公司 | Boiler steam temperature control method and electronic equipment |
CN114413247A (en) * | 2022-01-14 | 2022-04-29 | 西安热工研究院有限公司 | Boiler combustion heating surface overtemperature monitoring and active inhibition system |
CN115978520A (en) * | 2023-02-20 | 2023-04-18 | 华电电力科学研究院有限公司 | Intelligent control system and control method for counter-combustion boiler for deep peak regulation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB559956A (en) * | 1941-10-10 | 1944-03-13 | Babcock & Wilcox Ltd | Improvements in attemperating apparatus for controlling the temperature of steam or other vapour |
GB688282A (en) * | 1949-05-02 | 1953-03-04 | Vitkovice Zelezarny | Method of and plant for regulating the temperature of the superheated steam in steamboilers |
US2966896A (en) * | 1958-03-12 | 1961-01-03 | Sulzer Ag | Method and apparatus for controlling the outlet temperatures of superheaters and reheaters of a steam generating plant |
CN102494325A (en) * | 2011-12-19 | 2012-06-13 | 上海望特能源科技有限公司 | Method for monitoring intra-furnace dynamic wall temperature in high-temperature tube system of power station boiler |
CN103277784A (en) * | 2013-05-23 | 2013-09-04 | 国家电网公司 | Supercritical coal-fired unit platen superheater metal wall temperature early-warning optimal control method |
CN105090932A (en) * | 2014-07-08 | 2015-11-25 | 辽宁东科电力有限公司 | Superheater metal wall temperature control method for thermal power unit |
CN106382615A (en) * | 2016-08-25 | 2017-02-08 | 西安西热控制技术有限公司 | Verification system and method for ultra-supercritical unit multi-time reheat steam temperature control strategy |
CN106439770A (en) * | 2016-09-20 | 2017-02-22 | 广东电网有限责任公司电力科学研究院 | Control method for steam temperature of meager coal boiler of 1045MW ultra supercritical unit |
CN206803122U (en) * | 2017-05-10 | 2017-12-26 | 西安西热控制技术有限公司 | A kind of super critical boiler pendant superheater overtemperture control system |
-
2017
- 2017-05-10 CN CN201710326532.8A patent/CN106949457B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB559956A (en) * | 1941-10-10 | 1944-03-13 | Babcock & Wilcox Ltd | Improvements in attemperating apparatus for controlling the temperature of steam or other vapour |
GB688282A (en) * | 1949-05-02 | 1953-03-04 | Vitkovice Zelezarny | Method of and plant for regulating the temperature of the superheated steam in steamboilers |
US2966896A (en) * | 1958-03-12 | 1961-01-03 | Sulzer Ag | Method and apparatus for controlling the outlet temperatures of superheaters and reheaters of a steam generating plant |
CN102494325A (en) * | 2011-12-19 | 2012-06-13 | 上海望特能源科技有限公司 | Method for monitoring intra-furnace dynamic wall temperature in high-temperature tube system of power station boiler |
CN103277784A (en) * | 2013-05-23 | 2013-09-04 | 国家电网公司 | Supercritical coal-fired unit platen superheater metal wall temperature early-warning optimal control method |
CN105090932A (en) * | 2014-07-08 | 2015-11-25 | 辽宁东科电力有限公司 | Superheater metal wall temperature control method for thermal power unit |
CN106382615A (en) * | 2016-08-25 | 2017-02-08 | 西安西热控制技术有限公司 | Verification system and method for ultra-supercritical unit multi-time reheat steam temperature control strategy |
CN106439770A (en) * | 2016-09-20 | 2017-02-22 | 广东电网有限责任公司电力科学研究院 | Control method for steam temperature of meager coal boiler of 1045MW ultra supercritical unit |
CN206803122U (en) * | 2017-05-10 | 2017-12-26 | 西安西热控制技术有限公司 | A kind of super critical boiler pendant superheater overtemperture control system |
Non-Patent Citations (1)
Title |
---|
600MW超临界机组汽温控制策略研究;方廷璋等;《电站系统工程》;20090715(第04期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN106949457A (en) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106949457B (en) | Supercritical boiler platen superheater overtemperature control system and method | |
CN103759277B (en) | Coal-fired power station boiler intelligent ash blowing closed loop control method, device and system | |
CN106642059B (en) | A kind of station boiler high-temperature surface security on-line monitoring method | |
CN101839795B (en) | System and method for diagnosing leakage of pressure-bearing pipe of boiler | |
CN103277784B (en) | Supercritical coal-fired units pendant superheater tube wall temperature early warning optimal control method | |
CN103309314B (en) | Supercritical coal-fired units high temperature superheater tube wall temperature early warning optimal control method | |
CN112859780B (en) | Thermal power plant intelligent combustion control method based on cloud data and cloud computing | |
CN206803122U (en) | A kind of super critical boiler pendant superheater overtemperture control system | |
CN102734783A (en) | Method for calibrating monitoring data parameters of heat-absorbing surfaces at each level of supercritical boiler of power station | |
CN107101194A (en) | Steam Temperature Control of Boilers | |
CN112097232A (en) | Water-cooled wall over-temperature control system and method for coal-fired units based on wall temperature prediction | |
CN118466427A (en) | A deep learning combustion optimization control method and system based on burner working conditions | |
CN102563692A (en) | Early-warning adjustment system and early-warning adjustment method for preventing detonation of large-scale power station pulverized-fuel boiler furnace | |
CN213362403U (en) | Coal-fired unit water-cooled wall overtemperature control system based on wall temperature prediction | |
Zhang et al. | A dynamic heat transfer model to estimate the flue gas temperature in the horizontal flue of the coal-fired utility boiler | |
CN105090932A (en) | Superheater metal wall temperature control method for thermal power unit | |
CN112097243B (en) | Wall temperature prediction-based coal-fired unit high-temperature superheater overtemperature control system and method | |
CN208154444U (en) | A kind of gas fired-boiler is for thermal control system | |
CN113587075B (en) | Control method for slowing down generation and falling of oxide skin in heating pipe of power station unit | |
CN109635341A (en) | A kind of pressure containing part life-span prediction method of three flue double reheat boiler of tail portion | |
CN118009301B (en) | Intelligent control method, control system and storage medium for boiler | |
CN203771372U (en) | Device for detecting generation rate of oxide skin on heating surface of high-temperature steam side of thermodynamic system | |
CN211902835U (en) | Screen type superheater spray water desuperheating system | |
CN210107362U (en) | Gas-steam combined cycle high pressure superheater overtemperature control system | |
CN112097244B (en) | Over-temperature control system and method for platen superheater of coal-fired unit based on wall temperature prediction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |