[go: up one dir, main page]

CN106940279A - A kind of method for evaluating shale reservoir preservation absorption tolerance - Google Patents

A kind of method for evaluating shale reservoir preservation absorption tolerance Download PDF

Info

Publication number
CN106940279A
CN106940279A CN201710350135.4A CN201710350135A CN106940279A CN 106940279 A CN106940279 A CN 106940279A CN 201710350135 A CN201710350135 A CN 201710350135A CN 106940279 A CN106940279 A CN 106940279A
Authority
CN
China
Prior art keywords
ijk
illite
chlorite
kaolinite
feldspar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710350135.4A
Other languages
Chinese (zh)
Other versions
CN106940279B (en
Inventor
陈方文
丁雪
卢双舫
薛海涛
李吉君
王民
王伟明
黄文彪
肖佃师
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201710350135.4A priority Critical patent/CN106940279B/en
Publication of CN106940279A publication Critical patent/CN106940279A/en
Application granted granted Critical
Publication of CN106940279B publication Critical patent/CN106940279B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/02Analysing materials by measuring the pressure or volume of a gas or vapour by absorption, adsorption, or combustion of components and measurement of the change in pressure or volume of the remainder
    • G01N7/04Analysing materials by measuring the pressure or volume of a gas or vapour by absorption, adsorption, or combustion of components and measurement of the change in pressure or volume of the remainder by absorption or adsorption alone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种评价泥页岩储层赋存吸附气量的方法,属于石油勘探开发技术领域。该方法可以评价不同温度、压力下泥页岩储层赋存吸附态页岩气量,弥补目前现场岩心解析和等温吸附实验费用昂贵的问题。该方法的步骤为:1)通过多尺度氩离子抛光‑扫描电镜成像方法分析单位质量泥页岩样品中不同孔径孔隙内各组分所覆盖面积;2)分子模拟构建一系列不同孔径的各种组分覆盖孔隙内表面的单孔隙模型;3)分子模拟计算在不同温度、压力条件下各种矿物单孔隙模型内表面吸附态甲烷的厚度和密度;4)结合泥页岩样品中不同孔径孔隙内各组分所覆盖表面积和不同温度、压力下各种矿物单孔隙模型内表面吸附态甲烷厚度、密度,计算相应温度、压力条件下泥页岩储层赋存吸附气量。

The invention discloses a method for evaluating the amount of gas absorbed in shale reservoirs, which belongs to the technical field of petroleum exploration and development. This method can evaluate the amount of adsorbed shale gas in shale reservoirs at different temperatures and pressures, and can make up for the expensive problems of on-site core analysis and isothermal adsorption experiments. The steps of the method are as follows: 1) Analyze the coverage area of each component in the pores of different pore sizes in the unit mass shale sample by multi-scale argon ion polishing-scanning electron microscope imaging method; 2) Molecular simulation constructs a series of various 3) Molecular simulation calculation of the thickness and density of adsorbed methane on the inner surface of various mineral single pore models under different temperature and pressure conditions; 4) Combining pores with different pore sizes in shale samples The surface area covered by each component and the thickness and density of adsorbed methane on the inner surface of various mineral single-pore models under different temperatures and pressures are used to calculate the amount of adsorbed gas in shale reservoirs under corresponding temperature and pressure conditions.

Description

一种评价泥页岩储层赋存吸附气量的方法A method for evaluating the amount of adsorbed gas in shale reservoirs

技术领域technical field

本发明涉及一种评价泥页岩储层赋存吸附气量的方法,属于石油勘探开发技术领域。The invention relates to a method for evaluating the amount of absorbed gas stored in mud shale reservoirs, and belongs to the technical field of petroleum exploration and development.

背景技术Background technique

页岩气是主体以吸附和游离状态赋存于具有生烃能力的泥岩及页岩等地层中的天然气聚集,吸附作用是页岩气赋存的重要机理之一。目前国内外学者普遍认为泥页岩中吸附气含量至少占泥页岩总含气量的40%,吸附气对页岩气资源量的贡献具有举足轻重作用。泥页岩吸附态页岩气量直接影响着泥页岩储层含气量,是计算页岩气资源量、优选有利区和制定页岩气井开发方案的重要评价参数。分析泥页岩吸附气量的实验方法主要是借鉴研究煤层气的等温吸附实验。等温吸附实验是引用GB/T 9560-2004煤的高压等温吸附试验方法,评价泥页岩吸附页岩气的能力。等温吸附实验是将一定粒度(60-80目)的页岩样品置于密封容器中,测定其在相同温度、不同压力条件下达到吸附平衡时所吸附的甲烷等试验气体的体积;然后根据Langmuir单分子层吸附理论,通过理论计算出表征泥页岩对甲烷等试验气体吸附特性的兰氏体积VL,兰氏压力PL以及等温吸附曲线。除了等温吸附实验外,页岩气勘探研究方面还采用岩心现场解析实验和测井解释等定量评价泥页岩储层赋存吸附气量。但是,等温吸附实验、岩心现场解析实验和测井解释等三种方法的分析费用相对比较昂贵,前两种方法需要在钻井时进行取心操作,测井解释评价泥页岩吸附页岩气能力方法的核心技术垄断在斯伦贝谢等跨国公司手中。Shale gas is the accumulation of natural gas mainly in the formation of mudstone and shale with hydrocarbon generation capacity in the state of adsorption and free. Adsorption is one of the important mechanisms of shale gas occurrence. At present, scholars at home and abroad generally believe that the content of adsorbed gas in mud shale accounts for at least 40% of the total gas content of mud shale, and the contribution of adsorbed gas to shale gas resources plays a decisive role. The amount of shale gas adsorbed in shale directly affects the gas content of shale reservoirs, and is an important evaluation parameter for calculating shale gas resources, optimizing favorable areas, and formulating shale gas well development plans. The experimental method for analyzing the amount of gas adsorbed by mud shale is mainly based on the isothermal adsorption experiment of coalbed methane. The isothermal adsorption test refers to the high-pressure isothermal adsorption test method of GB/T 9560-2004 coal to evaluate the ability of shale to adsorb shale gas. The isothermal adsorption experiment is to place a shale sample with a certain particle size (60-80 mesh) in a sealed container, and measure the volume of the test gas such as methane adsorbed when it reaches adsorption equilibrium under the same temperature and different pressure conditions; then according to Langmuir Based on the monomolecular layer adsorption theory, the Langer volume V L , the Langer pressure PL and the isothermal adsorption curve that characterize the adsorption characteristics of shale to methane and other test gases are calculated theoretically. In addition to isothermal adsorption experiments, shale gas exploration research also uses core field analysis experiments and logging interpretation to quantitatively evaluate the amount of adsorbed gas in shale reservoirs. However, the analysis costs of the three methods of isothermal adsorption experiment, core analysis experiment and logging interpretation are relatively expensive. The first two methods require coring during drilling, and logging interpretation evaluates the ability of shale to absorb shale gas. The core technology of the method is monopolized by multinational companies such as Schlumberger.

为此,本发明通过多尺度氩离子抛光-扫描电镜成像方法确定单位质量泥页岩样品中不同孔径孔隙内各组分所覆盖面积,结合分子模拟计算在不同温度、压力条件下各种组分的单孔隙模型内表面吸附态甲烷的厚度和密度,评价不同温度、压力条件下泥页岩储层赋存吸附气量的方法。该方法易于操作、费用低廉。For this reason, the present invention determines the coverage area of each component in the pores of different pore sizes in a unit mass of mud shale sample through the multi-scale argon ion polishing-scanning electron microscope imaging method, and combines molecular simulation to calculate the various components under different temperature and pressure conditions. The thickness and density of adsorbed methane on the inner surface of the single pore model, and the method for evaluating the amount of adsorbed gas in shale reservoirs under different temperature and pressure conditions. The method is easy to operate and low in cost.

发明内容Contents of the invention

本发明的目的是:提供一种评价泥页岩储层赋存吸附气量的方法,实现对不同温度、压力条件下泥页岩储层赋存吸附气量的定量评价。克服现有技术、方法操作复杂和费用高昂的缺点。The purpose of the present invention is to provide a method for evaluating the gas adsorption capacity of mud shale reservoirs, so as to realize the quantitative evaluation of the gas adsorption capacity of mud shale reservoirs under different temperature and pressure conditions. The disadvantages of the prior art and method, which are complex in operation and high in cost, are overcome.

本发明采用的技术方案是:评价泥页岩储层赋存吸附气量的方法,其特征在于:The technical scheme adopted in the present invention is: a method for evaluating the amount of gas absorbed in shale reservoirs, characterized in that:

步骤1:通过多尺度氩离子抛光-扫描电镜成像方法分析单位质量泥页岩样品中有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿覆盖不同孔径的孔隙内表面面积S有机质i、S伊蒙混层i、S蒙脱石i、S绿泥石i、S高岭石i、S石英i、S长石i、S方解石i、S白云石i、S黄铁矿i,各种组分覆盖不同孔径的孔隙内表面面积的单位为nm2/g,i=1、2、3、…、n,为孔径的编号,无量纲参数;Step 1: Analyze organic matter, illite, illite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, Dolomite and pyrite cover the inner surface area of pores with different pore sizes S organic matter i , S illitemite i , S montmorillonite i , S chlorite i , S kaolinite i , S quartz i , S feldspar i , S calcite i , S dolomite i , S pyrite i , the unit of inner surface area of pores covered by various components of different pore diameters is nm 2 /g, i=1, 2, 3,..., n, is the pore diameter The number of , a dimensionless parameter;

步骤2:利用分子模拟技术,构建孔径为Di而且分别由有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿覆盖孔隙内表面的单孔隙模型,孔径的单位为nm,i=1、2、3、…、n,为孔径的编号,无量纲参数;Step 2: Using molecular simulation technology, construct pore diameters of D i and respectively composed of organic matter, illite, illite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite A single pore model covering the inner surface of the pore, the unit of the pore diameter is nm, i=1, 2, 3, ..., n, is the number of the pore diameter, a dimensionless parameter;

步骤3:在温度为Tj、压力为Pk条件下,分子模拟计算分别由有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿覆盖不同孔径的孔隙内表面的单孔隙模型所赋存吸附态甲烷的厚度h有机质ijk、h伊利石ijk、h伊蒙混层ijk、h蒙脱石ijk、h绿泥石ijk、h高岭石ijk、h石英ijk、h长石ijk、h方解石ijk、h白云石ijk、h黄铁矿ijk和吸附态甲烷的密度ρ有机质ijk、ρ伊利石ijk、ρ伊蒙混层ijk、ρ蒙脱石ijk、ρ绿泥石ijk、ρ高岭石ijk、ρ石英ijk、ρ长石ijk、ρ方解石ijk、ρ白云石ijk、ρ黄铁矿ijk,温度的单位为K,压力的单位为MPa,吸附态甲烷的厚度单位为nm,吸附态甲烷的密度单位为g/nm3,i=1、2、3、…、n,为孔径的编号,无量纲参数,j=1、2、3、…、m,为温度的编号,无量纲参数,k=1、2、3、…、x,为压力的编号,无量纲参数;Step 3: Under the conditions of temperature T j and pressure P k , molecular simulation calculations are made of organic matter, illite, illite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite The thickness of adsorbed methane in the single pore model of rock and pyrite covering the inner surface of pores with different pore sizes h organic matter ijk , h illite ijk , h illite mixed layer ijk , h montmorillonite ijk , h chlorite ijk , h kaolinite ijk , h quartz ijk , h feldspar ijk , h calcite ijk , h dolomite ijk , h pyrite ijk and the density of adsorbed methane ρ organic matter ijk , ρ illite ijk , ρ illite mixed layer ijk , ρ montmorillonite ijk , ρ chlorite ijk , ρ kaolinite ijk , ρ quartz ijk , ρ feldspar ijk , ρ calcite ijk , ρ dolomite ijk , ρ pyrite ijk , temperature in K, pressure The unit of is MPa, the unit of thickness of adsorbed methane is nm, the unit of density of adsorbed methane is g/nm 3 , i=1, 2, 3,..., n, is the number of pore diameter, dimensionless parameter, j=1 .

步骤4:利用步骤1和步骤3的结果,按照下列公式计算在温度为Tj、压力为Pk条件下泥页岩样品赋存吸附气含量Step 4: Using the results of Step 1 and Step 3, calculate the adsorbed gas content of the shale sample under the conditions of temperature T j and pressure P k according to the following formula

式中,Qij为在温度为Tj、压力为Pk条件下泥页岩样品赋存吸附气含量,单位为m3/t,M为甲烷的分子量16.04,无量纲参数,S有机质i、S伊利石i、S伊蒙混层i、S蒙脱石i、S绿泥石i、S高岭石i、S石英i、S长石i、S方解石i、S白云石i、S黄铁矿i分别为单位质量泥页岩样品中孔径编号为i的孔隙内表面有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿所覆盖的面积,单位为nm2/g,h有机质ijk、h伊利石ijk、h伊蒙混层ijk、h蒙脱石ijk、h绿泥石ijk、h高岭石ijk、h石英ijk、h长石ijk、h方解石ijk、h白云石ijk、h黄铁矿ijk分别为温度为Tj、压力为Pk条件下分子模拟所构建的孔径编号为i的有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿单孔隙模型内表面赋存吸附态甲烷的厚度,单位为nm,ρ有机质ijk、ρ伊利石ijk、ρ伊蒙混层ijk、ρ蒙脱石ijk、ρ绿泥石ijk、ρ高岭石ijk、ρ石英ijk、ρ长石ijk、ρ方解石ijk、ρ白云石ijk、ρ黄铁矿ijk分别为温度为Tj、压力为Pk条件下分子模拟所构建的孔径编号为i的有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿单孔隙模型内表面赋存吸附态甲烷的密度,单位为g/nm3,i=1、2、3、…、n,为孔径的编号,无量纲参数,j=1、2、3、…、m,为温度的编号,无量纲参数,k=1、2、3、…、x,为压力的编号,无量纲参数;In the formula, Q ij is the content of adsorbed gas in shale samples under the conditions of temperature T j and pressure P k , the unit is m 3 /t, M is the molecular weight of methane 16.04, dimensionless parameters, S organic matter i , S illite i , S illite i , S montmorillonite i , S chlorite i , S kaolinite i , S quartz i , S feldspar i , S calcite i , S dolomite i , S pyrite i Mineral i is organic matter, illite, illite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, The area covered by pyrite, the unit is nm 2 /g, h organic matter ijk , h illite ijk , h illite mixed layer ijk , h montmorillonite ijk , h chlorite ijk , h kaolinite ijk , h quartz ijk , h feldspar ijk , h calcite ijk , h dolomite ijk , and h pyrite ijk are the organic matter, illite, and illite with pore size number i constructed by molecular simulation under the conditions of temperature T j and pressure P k respectively. Thickness of adsorbed methane on the inner surface of smectite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite single-pore model, unit is nm, ρ organic matter ijk , ρ Illite ijk , ρ illite mixed layer ijk , ρ montmorillonite ijk , ρ chlorite ijk , ρ kaolinite ijk , ρ quartz ijk , ρ feldspar ijk , ρ calcite ijk , ρ dolomite ijk , ρ pyrite ijk are organic matter, illite , illite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, The density of adsorbed methane on the inner surface of calcite, dolomite, and pyrite single-pore models, the unit is g/nm 3 , i=1, 2, 3, ..., n, is the number of the pore diameter, a dimensionless parameter, j =1, 2, 3, ..., m, is the number of temperature, a dimensionless parameter, k=1, 2, 3, ..., x, is the number of pressure, a dimensionless parameter;

本发明的有益效果:本发明评价泥页岩储层赋存吸附气量的方法,实现了对不同温度、压力条件下泥页岩储层赋存吸附气量的定量评价,而且该评价方法易于操作、费用低廉,所评价的不同温度、压力条件下泥页岩储层赋存吸附气量是页岩气勘探和开发中所必需的重要参数。Beneficial effects of the present invention: the present invention evaluates the method for the occurrence and adsorption of gas in shale reservoirs, realizes the quantitative evaluation of the occurrence and adsorption of gas in shale reservoirs under different temperature and pressure conditions, and the evaluation method is easy to operate, The cost is low, and the amount of adsorbed gas in shale reservoirs evaluated under different temperature and pressure conditions is an important parameter necessary for shale gas exploration and development.

附图说明Description of drawings

图1是本发明的流程图。Fig. 1 is a flow chart of the present invention.

具体实施方式:detailed description:

实施例1:如图1所述,一种评价泥页岩储层赋存吸附气量的方法,含有以下步骤;Embodiment 1: As shown in Figure 1, a method for evaluating the amount of adsorbed gas stored in a mud shale reservoir comprises the following steps;

步骤1:通过多尺度氩离子抛光-扫描电镜成像方法分析单位质量泥页岩样品中有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿覆盖不同孔径的孔隙内表面面积S有机质i、S伊蒙混层i、S蒙脱石i、S绿泥石i、S高岭石i、S石英i、S长石i、S方解石i、S白云石i、S黄铁矿i,各种组分覆盖不同孔径的孔隙内表面面积的单位为nm2/g,i=1、2、3、…、n,为孔径的编号,无量纲参数,在该实施例中n=8,分析的结果见表1。Step 1: Analyze organic matter, illite, illite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, Dolomite and pyrite cover the inner surface area of pores with different pore sizes S organic matter i , S illitemite i , S montmorillonite i , S chlorite i , S kaolinite i , S quartz i , S feldspar i , S calcite i , S dolomite i , S pyrite i , the unit of inner surface area of pores covered by various components of different pore diameters is nm 2 /g, i=1, 2, 3,..., n, is the pore diameter The numbering, dimensionless parameter, n=8 in this embodiment, the result of analysis is shown in Table 1.

表1Table 1

步骤2:利用分子模拟技术,构建孔径为Di而且分别由有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿覆盖孔隙内表面的单孔隙模型,孔径的单位为nm,i=1、2、3、…、n,为孔径的编号,无量纲参数;Step 2: Using molecular simulation technology, construct pore diameters of D i and respectively composed of organic matter, illite, illite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite A single pore model covering the inner surface of the pore, the unit of the pore diameter is nm, i=1, 2, 3, ..., n, is the number of the pore diameter, a dimensionless parameter;

步骤3:在温度为330K、压力为20MPa条件下,分子模拟计算分别由有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿覆盖不同孔径的孔隙内表面的单孔隙模型所赋存吸附态甲烷的厚度h有机质ijk、h伊利石ijk、h伊蒙混层ijk、h蒙脱石ijk、h绿泥石ijk、h高岭石ijk、h石英ijk、h长石ijk、h方解石ijk、h白云石ijk、h黄铁矿ijk和吸附态甲烷的密度ρ有机质ijk、ρ伊利石ijk、ρ伊蒙混层ijk、ρ蒙脱石ijk、ρ绿泥石ijk、ρ高岭石ijk、ρ石英ijk、ρ长石ijk、ρ方解石ijk、ρ白云石ijk、ρ黄铁矿ijk,温度的单位为K,压力的单位为MPa,吸附态甲烷的厚度单位为nm,吸附态甲烷的密度单位为g/nm3,i=1、2、3、…、n,为孔径的编号,无量纲参数,在该实施例中n=8,j=1,为温度的编号,无量纲参数,k=1,为压力的编号,无量纲参数,分子模拟计算的各种组分覆盖不同孔径的孔隙内表面的单孔隙模型所赋存吸附态甲烷的厚度结果见表2,分子模拟计算的各种组分覆盖不同孔径的孔隙内表面的单孔隙模型所赋存吸附态甲烷的密度结果见表3。Step 3: Under the conditions of temperature of 330K and pressure of 20MPa, molecular simulation calculations are made of organic matter, illite, illite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, The thickness of adsorbed methane in the single pore model of pyrite covering the inner surface of pores with different pore sizes h organic matter ijk , h illite ijk , h illite mixed layer ijk , h montmorillonite ijk , h chlorite ijk , h kaolinite ijk , hquartz ijk , h feldspar ijk , h calcite ijk , h dolomite ijk , h pyrite ijk and the density of adsorbed methane ρorganic matter ijk , ρilite ijk , ρilite mixed layer ijk , ρ Montmorillonite ijk , ρchlorite ijk , ρkaolinite ijk, ρquartz ijk , ρfeldspar ijk , ρcalcite ijk , ρdolomite ijk , ρpyrite ijk , the unit of temperature is K, and the unit of pressure is MPa, the thickness unit of adsorbed methane is nm, the density unit of adsorbed methane is g/nm 3 , i=1, 2, 3, ..., n, is the serial number of the aperture, a dimensionless parameter, in this embodiment n=8, j=1, is the number of temperature, a dimensionless parameter, k=1, is the number of pressure, a dimensionless parameter, calculated by the single pore model of various components covering the inner surface of pores with different pore diameters calculated by molecular simulation The results of the thickness of the adsorbed methane are shown in Table 2, and the density results of the adsorbed methane in the single-pore model with various components covering the inner surface of pores with different pore sizes calculated by molecular simulation are shown in Table 3.

表2Table 2

表3 table 3

步骤4:利用步骤1和步骤3的结果,按照下列公式计算在温度为330K、压力为20MPa条件下泥页岩样品赋存吸附气含量为2.41m3/t。Step 4: Using the results of Step 1 and Step 3, calculate the adsorbed gas content of the shale sample as 2.41m 3 /t under the conditions of temperature 330K and pressure 20MPa according to the following formula.

式中,Qij为在温度为Tj、压力为Pk条件下泥页岩样品赋存吸附气含量,单位为m3/t,M为甲烷的分子量16.04,无量纲参数,S有机质i、S伊利石i、S伊蒙混层i、S蒙脱石i、S绿泥石i、S高岭石i、S石英i、S长石i、S方解石i、S白云石i、S黄铁矿i分别为单位质量泥页岩样品中孔径编号为i的孔隙内表面有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿所覆盖的面积,单位为nm2/g,h有机质ijk、h伊利石ijk、h伊蒙混层ijk、h蒙脱石ijk、h绿泥石ijk、h高岭石ijk、h石英ijk、h长石ijk、h方解石ijk、h白云石ijk、h黄铁矿ijk分别为温度为Tj、压力为Pk条件下分子模拟所构建的孔径编号为i的有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿单孔隙模型内表面赋存吸附态甲烷的厚度,单位为nm,ρ有机质ijk、ρ伊利石ijk、ρ伊蒙混层ijk、ρ蒙脱石ijk、ρ绿泥石ijk、ρ高岭石ijk、ρ石英ijk、ρ长石ijk、ρ方解石ijk、ρ白云石ijk、ρ黄铁矿ijk分别为温度为Tj、压力为Pk条件下分子模拟所构建的孔径编号为i的有机质、伊利石、伊蒙混层、蒙脱石、绿泥石、高岭石、石英、长石、方解石、白云石、黄铁矿单孔隙模型内表面赋存吸附态甲烷的密度,单位为g/nm3,在此实施例中i=1、2、3、…、n,为孔径的编号,无量纲参数,n=8,j=1,为温度的编号,无量纲参数,k=1,为压力的编号,无量纲参数。In the formula, Q ij is the content of adsorbed gas in shale samples under the conditions of temperature T j and pressure P k , the unit is m 3 /t, M is the molecular weight of methane 16.04, dimensionless parameters, S organic matter i , S illite i , S illite i , S montmorillonite i , S chlorite i , S kaolinite i , S quartz i , S feldspar i , S calcite i , S dolomite i , S pyrite i Mineral i is organic matter, illite, illite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, The area covered by pyrite, the unit is nm 2 /g, h organic matter ijk , h illite ijk , h illite mixed layer ijk , h montmorillonite ijk , h chlorite ijk , h kaolinite ijk , h quartz ijk , h feldspar ijk , h calcite ijk , h dolomite ijk , and h pyrite ijk are the organic matter, illite, and illite with pore size number i constructed by molecular simulation under the conditions of temperature T j and pressure P k respectively. Thickness of adsorbed methane on the inner surface of smectite, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite single-pore model, unit is nm, ρ organic matter ijk , ρ Illite ijk , ρ illite mixed layer ijk , ρ montmorillonite ijk , ρ chlorite ijk , ρ kaolinite ijk , ρ quartz ijk , ρ feldspar ijk , ρ calcite ijk , ρ dolomite ijk , ρ pyrite ijk are organic matter, illite , illite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, The density of adsorbed methane on the inner surface of calcite, dolomite, and pyrite single-pore models, in units of g/nm 3 , in this embodiment, i=1, 2, 3,..., n is the number of the pore diameter, Dimensionless parameter, n=8, j=1, is the number of temperature, dimensionless parameter, k=1, is the number of pressure, and is a dimensionless parameter.

Claims (1)

1. a kind of method for evaluating shale reservoir preservation absorption tolerance, it is characterised in that:
Step 1:By organic in multiple dimensioned argon ion polishing-ESEM imaging method unit of analysis quality mud shale sample Matter, illite, illite/smectite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite covering are not With the internal pore surface area S in apertureOrganic matter i、SIllite/smectite mixed layer i、SMontmorillonite i、SChlorite i、SKaolinite i、SQuartzy i、SFeldspar i、SCalcite i、SDolomite i、 SPyrite i, the unit of the internal pore surface area of various component covering different pore sizes is nm2/ g, i=1,2,3 ..., n, be aperture Numbering, dimensionless group;
Step 2:Using Molecular Simulation Technique, structure aperture is DiAnd it is de- by organic matter, illite, illite/smectite mixed layer, illiteracy respectively Stone, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite cover single pore model of internal pore surface, hole The unit in footpath be nm, i=1,2,3 ..., n, be the numbering in aperture, dimensionless group;
Step 3:It is T in temperaturej, pressure be PkUnder the conditions of, molecular simulation calculate respectively by organic matter, illite, illite/smectite mixed layer, Montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite cover the internal pore surface of different pore size The thickness h of single hole gap model preservation ADSORPTION STATE methaneOrganic matter ijk、hIllite ijk、hIllite/smectite mixed layer ijk、hMontmorillonite ijk、hChlorite ijk、hKaolinite ijk、 hQuartzy ijk、hFeldspar ijk、hCalcite ijk、hDolomite ijk、hPyrite ijkWith the density p of ADSORPTION STATE methaneOrganic matter ijk、ρIllite ijk、ρIllite/smectite mixed layer ijk、 ρMontmorillonite ijk、ρChlorite ijk、ρKaolinite ijk、ρQuartzy ijk、ρFeldspar ijk、ρCalcite ijk、ρDolomite ijk、ρPyrite ijk, the unit of temperature is K, the list of pressure Position is MPa, and the thickness unit of ADSORPTION STATE methane is nm, and the density unit of ADSORPTION STATE methane is g/nm3, i=1,2,3 ..., n, be The numbering in aperture, dimensionless group, j=1,2,3 ..., m, be the numbering of temperature, dimensionless group, k=1,2,3 ..., x, for pressure The numbering of power, dimensionless group;
Step 4:Using step 1 and the result of step 3, it is T to calculate according to the following formula in temperaturej, pressure be PkUnder the conditions of mud page Rock sample product preservation adsorbed gas content
In formula, QijTo be T in temperaturej, pressure be PkUnder the conditions of mud shale sample preservation adsorbed gas content, unit is m3/ t, M are The molecular weight 16.04 of methane, dimensionless group, SOrganic matter i、SIllite i、SIllite/smectite mixed layer i、SMontmorillonite i、SChlorite i、SKaolinite i、SQuartzy i、SFeldspar i、 SCalcite i、SDolomite i、SPyrite iRespectively in unit mass mud shale sample aperture numbering be i internal pore surface organic matter, Erie The area that stone, illite/smectite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite are covered, Unit is nm2/ g, hOrganic matter ijk、hIllite ijk、hIllite/smectite mixed layer ijk、hMontmorillonite ijk、hChlorite ijk、hKaolinite ijk、hQuartzy ijk、hFeldspar ijk、hCalcite ijk、 hDolomite ijk、hPyrite ijkRespectively temperature is Tj, pressure be PkUnder the conditions of aperture numbering constructed by molecular simulation be i organic matter, Illite, illite/smectite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, calcite, dolomite, pyrite list pore model The thickness of inner surface preservation ADSORPTION STATE methane, unit is nm, ρOrganic matter ijk、ρIllite ijk、ρIllite/smectite mixed layer ijk、ρMontmorillonite ijk、ρChlorite ijk、 ρKaolinite ijk、ρQuartzy ijk、ρFeldspar ijk、ρCalcite ijk、ρDolomite ijk、ρPyrite ijkRespectively temperature is Tj, pressure be PkUnder the conditions of molecular simulation institute Structure aperture numbering be i organic matter, illite, illite/smectite mixed layer, montmorillonite, chlorite, kaolinite, quartz, feldspar, Fang Xie Stone, dolomite, the density of pyrite single hole gap mold inner surfaces preservation ADSORPTION STATE methane, unit is g/nm3, i=1,2,3 ..., N, is the numbering in aperture, dimensionless group, j=1,2,3 ..., m, be the numbering of temperature, dimensionless group, k=1,2,3 ..., x, For the numbering of pressure, dimensionless group.
CN201710350135.4A 2017-05-18 2017-05-18 A method of evaluation shale reservoir preservation absorption tolerance Active CN106940279B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710350135.4A CN106940279B (en) 2017-05-18 2017-05-18 A method of evaluation shale reservoir preservation absorption tolerance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710350135.4A CN106940279B (en) 2017-05-18 2017-05-18 A method of evaluation shale reservoir preservation absorption tolerance

Publications (2)

Publication Number Publication Date
CN106940279A true CN106940279A (en) 2017-07-11
CN106940279B CN106940279B (en) 2019-05-21

Family

ID=59464959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710350135.4A Active CN106940279B (en) 2017-05-18 2017-05-18 A method of evaluation shale reservoir preservation absorption tolerance

Country Status (1)

Country Link
CN (1) CN106940279B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007838A (en) * 2017-11-28 2018-05-08 西安石油大学 A kind of method of definite coal methane adsorption hole and free pore diameter boundary value
CN109342288A (en) * 2018-11-02 2019-02-15 中国石油天然气股份有限公司 Characterization method of shale reservoir pore space
CN109540764A (en) * 2018-12-13 2019-03-29 中国石油大学(华东) A method of evaluation shale reservoir organic matter, clay and the contributed hole preservation ADSORPTION STATE methane thickness and density of other mineral
CN110018293A (en) * 2019-05-05 2019-07-16 西安石油大学 It is a kind of to consider the water-sensitive multiphase coupled methane air content calculation method of shale clay
CN110715879A (en) * 2019-10-23 2020-01-21 成都理工大学 Evaluation method of gas adsorption in micropores of highly evolved shale reservoirs based on gas-water distribution
CN110849844A (en) * 2019-11-21 2020-02-28 中国石油大学(华东) Method for measuring thickness of adsorbed methane in pure mineral nanoscale cylindrical tube
CN111007233A (en) * 2019-12-25 2020-04-14 西南石油大学 Method for analyzing movement behavior of methane-carbon dioxide in micro pores of shale
CN112304843A (en) * 2020-10-12 2021-02-02 四川省科源工程技术测试中心 Quantitative characterization method for shale gas adsorption capacity in shale
CN113670960A (en) * 2021-07-23 2021-11-19 西南石油大学 Real shale gas adsorption capacity prediction method based on molecular simulation
CN118335236A (en) * 2024-06-13 2024-07-12 四川省科源工程技术测试中心有限责任公司 Shale adsorption gas content prediction method based on organic matter occurrence state

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912958B (en) * 2020-08-24 2021-04-16 东北石油大学 Method for detecting adsorption and free oil amount in shale inorganic mineral enriched oil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512838A (en) * 2013-09-18 2014-01-15 中国石油大学(华东) Method for determining contribution of pores with different apertures in shale reservoir stratum to porosity
CN104458489A (en) * 2014-12-03 2015-03-25 中国石油大学(北京) Method and device for predicating adsorption gas content of mud shale
CN106568922A (en) * 2016-10-19 2017-04-19 中国石油天然气股份有限公司 Method for calculating shale adsorbed gas content under formation temperature and pressure conditions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512838A (en) * 2013-09-18 2014-01-15 中国石油大学(华东) Method for determining contribution of pores with different apertures in shale reservoir stratum to porosity
CN104458489A (en) * 2014-12-03 2015-03-25 中国石油大学(北京) Method and device for predicating adsorption gas content of mud shale
CN106568922A (en) * 2016-10-19 2017-04-19 中国石油天然气股份有限公司 Method for calculating shale adsorbed gas content under formation temperature and pressure conditions

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FANG ZENG ET AL.: "A Study on Quantitative Characterization of Adsorption Capacity of Shale", 《ADVANCED MATERIALS RESEARCH》 *
焦淑静等: "页岩孔隙结构扫描电镜分析方法研究", 《电子显微学报》 *
王羽等: "应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征", 《岩矿测试》 *
郭怀志等: "页岩吸附模型及吸附气含气量计算方法进展", 《地球物理学进展》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007838B (en) * 2017-11-28 2020-07-31 西安石油大学 A Method for Determining the Limit Values of Coal Methane Adsorption Pore and Free Pore Diameters
CN108007838A (en) * 2017-11-28 2018-05-08 西安石油大学 A kind of method of definite coal methane adsorption hole and free pore diameter boundary value
CN109342288A (en) * 2018-11-02 2019-02-15 中国石油天然气股份有限公司 Characterization method of shale reservoir pore space
CN109540764A (en) * 2018-12-13 2019-03-29 中国石油大学(华东) A method of evaluation shale reservoir organic matter, clay and the contributed hole preservation ADSORPTION STATE methane thickness and density of other mineral
CN110018293A (en) * 2019-05-05 2019-07-16 西安石油大学 It is a kind of to consider the water-sensitive multiphase coupled methane air content calculation method of shale clay
CN110018293B (en) * 2019-05-05 2021-09-21 西安石油大学 Shale clay multiphase coupling methane gas content calculation method considering water sensitivity
CN110715879A (en) * 2019-10-23 2020-01-21 成都理工大学 Evaluation method of gas adsorption in micropores of highly evolved shale reservoirs based on gas-water distribution
CN110715879B (en) * 2019-10-23 2021-03-12 成都理工大学 Evaluation method of gas adsorption in micropores of highly evolved shale reservoirs based on gas-water distribution
CN110849844A (en) * 2019-11-21 2020-02-28 中国石油大学(华东) Method for measuring thickness of adsorbed methane in pure mineral nanoscale cylindrical tube
CN111007233B (en) * 2019-12-25 2022-03-11 西南石油大学 A method for analyzing methane-carbon dioxide movement behavior in microscopic pores of shale
CN111007233A (en) * 2019-12-25 2020-04-14 西南石油大学 Method for analyzing movement behavior of methane-carbon dioxide in micro pores of shale
CN112304843A (en) * 2020-10-12 2021-02-02 四川省科源工程技术测试中心 Quantitative characterization method for shale gas adsorption capacity in shale
CN113670960B (en) * 2021-07-23 2021-12-28 西南石油大学 A real shale gas adsorption prediction method based on molecular simulation
CN113670960A (en) * 2021-07-23 2021-11-19 西南石油大学 Real shale gas adsorption capacity prediction method based on molecular simulation
CN118335236A (en) * 2024-06-13 2024-07-12 四川省科源工程技术测试中心有限责任公司 Shale adsorption gas content prediction method based on organic matter occurrence state
CN118335236B (en) * 2024-06-13 2024-08-23 四川省科源工程技术测试中心有限责任公司 Shale adsorption gas content prediction method based on organic matter occurrence state

Also Published As

Publication number Publication date
CN106940279B (en) 2019-05-21

Similar Documents

Publication Publication Date Title
CN106940279A (en) A kind of method for evaluating shale reservoir preservation absorption tolerance
Alafnan et al. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations
Zhang et al. Flow mechanism and simulation approaches for shale gas reservoirs: A review
CN103411848B (en) Method used for evaluating shale gas adsorption capacity of shale
CN108982287B (en) Method and device for determining free adsorption ratio of shale gas reservoir
Yu et al. Evaluation of gas adsorption in Marcellus Shale
CN107422100B (en) A method for calculating the content of adsorbed gas in shale gas reservoirs
Kim et al. Impact of total organic carbon and specific surface area on the adsorption capacity in Horn River shale
Cao et al. Combined impact of flow regimes and effective stress on the evolution of shale apparent permeability
Zhang et al. The relationships among stress, effective porosity and permeability of coal considering the distribution of natural fractures: theoretical and experimental analyses
Zhang et al. Adsorption and selectivity of CH4/CO2 in functional group rich organic shales
Zeng et al. Shale gas reservoir modeling and production evaluation considering complex gas transport mechanisms and dispersed distribution of kerogen
WO2020119021A1 (en) Method for evaluating thickness and density of adsorbed methane occurring in pores contributed by organic matter, clay and other minerals in shale reservoir
Wang et al. Gas sorption and non-Darcy flow in shale reservoirs
Shar et al. Could shale gas meet energy deficit: its current status and future prospects
Haghshenas et al. Multi-porosity, multi-permeability models for shale gas reservoirs
CN107560994B (en) Aperture location mode in a kind of evaluation mud shale organic matter, clay and other mineral
Aljamaan et al. In-depth experimental investigation of shale physical and transport properties
Guo et al. A logging calculation method for shale adsorbed gas content and its application
Huang et al. Apparent permeability model for shale gas reservoirs considering multiple transport mechanisms
Wang et al. Experimental investigation of reservoir fluid interlayer crossflow through fracture during the drainage stage of coal measure gas well
Sigal et al. The laboratory measurement of the gas-storage capacity of organic shales
Song et al. Molecular simulation on competitive adsorption mechanism of CH 4/CO 2 on shale kerogen
Guo et al. Pressure transient and rate decline analysis for hydraulic fractured vertical wells with finite conductivity in shale gas reservoirs
Chen et al. Molecular simulation of competitive adsorption of hydrogen and methane: Analysis of hydrogen storage feasibility in depleted shale gas reservoirs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Chen Fangwen

Inventor after: Xiao Dianshi

Inventor after: Zhao Hongqin

Inventor after: Ding Xue

Inventor after: Lu Shuangfang

Inventor after: Xue Haitao

Inventor after: Li Jijun

Inventor after: Wang Min

Inventor after: Wang Weiming

Inventor after: Huang Wenbiao

Inventor before: Chen Fangwen

Inventor before: Ding Xue

Inventor before: Lu Shuangfang

Inventor before: Xue Haitao

Inventor before: Li Jijun

Inventor before: Wang Min

Inventor before: Wang Weiming

Inventor before: Huang Wenbiao

Inventor before: Xiao Dianshi