CN106920863B - A kind of back surface processing method of antimony selenide thin-film solar cells - Google Patents
A kind of back surface processing method of antimony selenide thin-film solar cells Download PDFInfo
- Publication number
- CN106920863B CN106920863B CN201710169743.5A CN201710169743A CN106920863B CN 106920863 B CN106920863 B CN 106920863B CN 201710169743 A CN201710169743 A CN 201710169743A CN 106920863 B CN106920863 B CN 106920863B
- Authority
- CN
- China
- Prior art keywords
- antimony selenide
- film solar
- carbon disulfide
- solar cells
- selenide thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OQRNKLRIQBVZHK-UHFFFAOYSA-N selanylideneantimony Chemical compound [Sb]=[Se] OQRNKLRIQBVZHK-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 239000010409 thin film Substances 0.000 title claims abstract description 80
- 238000003672 processing method Methods 0.000 title claims 11
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 claims abstract description 141
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 239000010408 film Substances 0.000 claims description 41
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000011787 zinc oxide Substances 0.000 claims description 15
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 claims description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 239000005864 Sulphur Substances 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005036 potential barrier Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 13
- 239000003292 glue Substances 0.000 description 11
- 238000002207 thermal evaporation Methods 0.000 description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 239000010931 gold Substances 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000011669 selenium Substances 0.000 description 6
- 239000003599 detergent Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000005118 spray pyrolysis Methods 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GNZJTRGEKSBAAS-UHFFFAOYSA-N selanylideneantimony;selenium Chemical compound [Se].[Sb]=[Se].[Sb]=[Se] GNZJTRGEKSBAAS-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明属于薄膜太阳能电池制备领域,具体公开了一种硒化锑薄膜太阳能电池的背表面处理方法,该方法是使用含有二硫化碳的液体接触处理硒化锑薄膜太阳能电池中硒化锑薄膜层的表面,并以经处理后的硒化锑薄膜层的表面作为硒化锑薄膜太阳能电池的背表面。本发明通过对硒化锑薄膜太阳能电池中硒化锑薄膜层的背表面进行处理改进,有效降低了硒化锑薄膜太阳能电池的背接触势垒,达到了提高器件的填充因子的效果,进而提高了硒化锑薄膜太阳能电池的光电转换效率。
The invention belongs to the field of preparation of thin-film solar cells, and specifically discloses a method for treating the back surface of an antimony selenide thin-film solar cell. The method uses a liquid containing carbon disulfide to contact the surface of an antimony selenide thin-film layer in an antimony selenide thin-film solar cell. , and the surface of the treated antimony selenide thin film layer is used as the back surface of the antimony selenide thin film solar cell. The present invention effectively reduces the back contact potential barrier of the antimony selenide thin film solar cell by improving the back surface of the antimony selenide thin film layer in the antimony selenide thin film solar cell, thereby achieving the effect of improving the fill factor of the device, and further improving the Photoelectric conversion efficiency of antimony selenide thin film solar cells.
Description
技术领域technical field
本发明属于光电材料及薄膜太阳能电池制备领域,具体涉及一种对硒化锑薄膜背表面进行处理以提高硒化锑薄膜太阳能电池器件性能的方法。The invention belongs to the field of photoelectric materials and thin-film solar cell preparation, and in particular relates to a method for processing the back surface of an antimony selenide thin film to improve the performance of an antimony selenide thin film solar cell device.
背景技术Background technique
硒化锑(Sb2Se3)属于Ⅴ-Ⅵ族带状化合物半导体,其禁带宽度约1.2eV,正好位于理想太阳能电池的带隙范围内,且有吸光系数大,载流子迁移率高,储存量丰富和对环境无污染等优点,所以其作为一种新型薄膜太阳能电池材料近年来受到广大科研人员的关注。Antimony selenide (Sb 2 Se 3 ) belongs to group V-VI band compound semiconductors. Its forbidden band width is about 1.2eV, which is just in the band gap range of ideal solar cells, and has a large absorption coefficient and high carrier mobility. , rich storage capacity and no pollution to the environment, so it has attracted the attention of researchers as a new thin-film solar cell material in recent years.
太阳能电池的光电转换效率为PCE=Voc*Jsc*FF,其中FF为太阳能电池的填充因子,是影响太阳能电池光电转换效率的关键参数之一。本发明中提到的方法可以降低硒化锑薄膜太阳能电池的背接触势垒,以达到提高器件的填充因子的目的,从而提高器件的光电转换效率。The photoelectric conversion efficiency of the solar cell is PCE=Voc*Jsc*FF, where FF is the fill factor of the solar cell, which is one of the key parameters affecting the photoelectric conversion efficiency of the solar cell. The method mentioned in the invention can reduce the back contact potential barrier of the antimony selenide thin film solar cell, so as to achieve the purpose of increasing the filling factor of the device, thereby improving the photoelectric conversion efficiency of the device.
发明内容Contents of the invention
针对现有技术的以上改进需求,本发明的目的在于提供一种硒化锑薄膜太阳能电池的背表面处理方法,其中通过对硒化锑薄膜太阳能电池中硒化锑薄膜层的背表面(即,远离该太阳能电池受光面的硒化锑薄膜表面)进行处理改进,有效降低了硒化锑薄膜太阳能电池的背接触势垒,达到了提高器件的填充因子的效果,进而提高了硒化锑薄膜太阳能电池的光电转换效率。For above improvement needs of prior art, the object of the present invention is to provide a kind of back surface treatment method of antimony selenide thin film solar cell, wherein by the back surface of antimony selenide thin film layer in the antimony selenide thin film solar cell (that is, The antimony selenide thin film surface away from the light-receiving surface of the solar cell) is improved, which effectively reduces the back contact barrier of the antimony selenide thin film solar cell, achieves the effect of improving the fill factor of the device, and then improves the antimony selenide thin film solar energy. The photoelectric conversion efficiency of the battery.
为实现上述目的,按照本发明的一个方面,提供了一种硒化锑薄膜太阳能电池的背表面处理方法,其特征在于,该方法使用含有二硫化碳的液体接触处理硒化锑薄膜太阳能电池中硒化锑薄膜层的表面,并以经处理后的硒化锑薄膜层的表面作为硒化锑薄膜太阳能电池的背表面。In order to achieve the above object, according to one aspect of the present invention, a kind of back surface treatment method of antimony selenide thin film solar cell is provided, it is characterized in that, the method uses the liquid contact treatment that contains carbon disulfide to treat selenization in antimony selenide thin film solar cell The surface of the antimony thin film layer, and the surface of the treated antimony selenide thin film layer is used as the back surface of the antimony selenide thin film solar cell.
作为本发明的进一步优选,所述使用含有二硫化碳的液体接触处理硒化锑薄膜层的表面,是将所述含有二硫化碳的液体滴加在所述硒化锑薄膜层的表面上,静置处理一段时间后再移除该含有二硫化碳的液体。As a further preference of the present invention, the use of the liquid containing carbon disulfide to contact the surface of the antimony selenide thin film layer is to add the liquid containing carbon disulfide dropwise on the surface of the antimony selenide thin film layer, and let it stand for a period of treatment. After a period of time, the carbon disulfide-containing liquid is removed.
作为本发明的进一步优选,所述移除含有二硫化碳的液体是利用匀胶机甩干,该匀胶机优选采用每分钟1000-3000转,甩干时间为30-50s。As a further preference of the present invention, the removal of the liquid containing carbon disulfide is done by drying with a homogenizer, the homogenizer preferably adopts 1000-3000 revolutions per minute, and the drying time is 30-50s.
作为本发明的进一步优选,在移除该含有二硫化碳的液体后,还使用去离子水清洗所述硒化锑薄膜层的表面,所述去离子水同样是利用匀胶机甩干,该匀胶机优选采用每分钟1000-3000转,甩干时间为30-50s。As a further preference of the present invention, after removing the liquid containing carbon disulfide, also use deionized water to clean the surface of the antimony selenide thin film layer, and the deionized water is also to be dried by using a homogenizer, and the homogenizer The machine preferably adopts 1000-3000 revolutions per minute, and the drying time is 30-50s.
作为本发明的进一步优选,所述使用含有二硫化碳的液体接触处理硒化锑薄膜层的表面,是在20℃~30℃下进行的。As a further preference of the present invention, the contact treatment of the surface of the antimony selenide thin film layer with a liquid containing carbon disulfide is carried out at 20°C to 30°C.
作为本发明的进一步优选,所述含有二硫化碳的液体为纯二硫化碳液体,所述纯二硫化碳液体静置接触该硒化锑薄膜层的时间为10s~30s。As a further preference of the present invention, the liquid containing carbon disulfide is pure carbon disulfide liquid, and the time for the pure carbon disulfide liquid to stand in contact with the antimony selenide thin film layer is 10s-30s.
作为本发明的进一步优选,所述含有二硫化碳的液体为二硫化碳溶液,该二硫化碳溶液中溶质二硫化碳的体积百分比为50%-100%,溶剂为有机溶剂;所述二硫化碳溶液静置接触该硒化锑薄膜层的时间为10s-10min;优选的,所述有机溶剂为乙醇、乙醚中的至少一种。As a further preference of the present invention, the liquid containing carbon disulfide is a carbon disulfide solution, the volume percentage of the solute carbon disulfide in the carbon disulfide solution is 50%-100%, and the solvent is an organic solvent; the carbon disulfide solution is left standing to contact the antimony selenide film The layering time is 10s-10min; preferably, the organic solvent is at least one of ethanol and ether.
按照本发明的另一方面,提供了一种硒化锑薄膜太阳能电池的制备方法,其特征在于,包括以下步骤:According to another aspect of the present invention, a kind of preparation method of antimony selenide thin-film solar cell is provided, it is characterized in that, comprises the following steps:
以透明导电玻璃作为基片,在该基片上沉积n型半导体缓冲层;接着,在该n型半导体缓冲层上制备硒化锑薄膜层;然后,使用含有二硫化碳的液体接触处理所述硒化锑薄膜层的表面;接着,在经处理后的硒化锑薄膜层的表面上制备电极,从而形成硒化锑薄膜太阳能电池。Using transparent conductive glass as a substrate, depositing an n-type semiconductor buffer layer on the substrate; then, preparing an antimony selenide film layer on the n-type semiconductor buffer layer; then, using a liquid containing carbon disulfide to contact the antimony selenide the surface of the thin film layer; then, preparing an electrode on the surface of the treated antimony selenide thin film layer, thereby forming an antimony selenide thin film solar cell.
作为本发明的进一步优选,所述n型半导体缓冲层为硫化镉、氧化锌或二氧化钛。As a further preferred embodiment of the present invention, the n-type semiconductor buffer layer is cadmium sulfide, zinc oxide or titanium dioxide.
作为本发明的进一步优选,所述透明导电玻璃为ITO或FTO。As a further preference of the present invention, the transparent conductive glass is ITO or FTO.
通过本发明所构思的以上技术方案,与现有技术相比,由于采用含有二硫化碳的液体接触处理硒化锑薄膜太阳能电池中硒化锑薄膜层的表面,并将经处理后的硒化锑薄膜层的表面作为硒化锑薄膜太阳能电池的背表面,能够降低硒化锑薄膜太阳能电池的背接触势垒,提高器件的填充因子,从而提高硒化锑薄膜太阳能电池器件的光电转换效率。Through the above technical scheme conceived by the present invention, compared with the prior art, since the surface of the antimony selenide thin film layer in the antimony selenide thin film solar cell is treated with a liquid containing carbon disulfide, and the treated antimony selenide thin film The surface of the layer is used as the back surface of the antimony selenide thin film solar cell, which can reduce the back contact barrier of the antimony selenide thin film solar cell, improve the fill factor of the device, and thereby improve the photoelectric conversion efficiency of the antimony selenide thin film solar cell device.
本发明在处理硒化锑薄膜背表面过程中发现,会有一些固体浮在液体表面上,猜测二硫化碳可能会对硒化锑薄膜背表面上的硒单质有一定的溶解,而正是因为这些硒单质的祛除以及表面漂浮物的祛除,使得背接触势垒降低。The present invention finds in the process of processing the back surface of the antimony selenide film that some solids will float on the liquid surface. It is guessed that carbon disulfide may dissolve the simple selenium on the back surface of the antimony selenide film to a certain extent, and it is precisely because of these selenium The elimination of elemental substances and the removal of floating substances on the surface reduces the back contact barrier.
附图说明Description of drawings
图1为本发明实施例3多次重复后得到的FTO/ZnO/Sb2Se3/Au太阳能电池器件的填充因子统计图;Fig. 1 is the filling factor statistical diagram of the FTO/ZnO/Sb2Se3/Au solar cell device obtained after repeated repetitions of Example 3 of the present invention;
图2为本发明实施例3多次重复后得到的FTO/ZnO/Sb2Se3/Au太阳能电池器件的串联电阻及并联电阻统计图;其中,图2a对应串联电阻,图2b对应并联电阻:Fig. 2 is the series resistance and the parallel resistance statistical diagram of the FTO/ZnO/Sb2Se3/Au solar cell device obtained after repeated repetitions of Example 3 of the present invention; wherein, Fig. 2a corresponds to the series resistance, and Fig. 2b corresponds to the parallel resistance:
图3为本发明实施例3得到的二硫化碳处理的硒化锑薄膜背表面与对比例1得到的不经过二硫化碳背表面处理的硒化锑薄膜太阳能电池的X射线光电子能谱(XPS),其中,图3a为不经过二硫化碳背表面处理的硒化锑薄膜表面,图3b为经过二硫化碳处理后的硒化锑薄膜表面;图3a、图3b中由左至右分布的四个波峰其所在曲线均分别对应Se03d3/2、Se03d5/2、Se2-3d3/2、Se2-3d5/2;Fig. 3 is the X-ray photoelectron spectrum (XPS) of the antimony selenide thin film solar cell that the antimony selenide film back surface that the carbon disulfide treatment that the embodiment of the present invention obtains 3 obtains and comparative example 1 does not process the back surface solar cell, wherein, Figure 3a is the surface of the antimony selenide film without carbon disulfide back surface treatment, and Figure 3b is the surface of the antimony selenide film after carbon disulfide treatment; the four peaks distributed from left to right in Figure 3a and Figure 3b have their curves respectively Corresponding to Se 0 3d 3/2 , Se 0 3d 5/2 , Se 2- 3d 3/2 , Se 2- 3d 5/2 ;
图4为本发明实施例制得的太阳能电池器件的电流电压曲线。Fig. 4 is the current-voltage curve of the solar cell device prepared in the embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.
本发明中硒化锑薄膜太阳能电池的背表面处理方法,是使用二硫化碳对硒化锑薄膜太阳能电池的背表面处理;即,将二硫化碳液体滴在硒化锑薄膜太阳能电池的背表面,静置一段时间T;然后将电池置于匀胶机上甩干,接着再使用去离子水清洗并甩干。The method for treating the back surface of the antimony selenide thin film solar cell in the present invention is to use carbon disulfide to treat the back surface of the antimony selenide thin film solar cell; that is, drop the carbon disulfide liquid on the back surface of the antimony selenide thin film solar cell, and let it stand for a while Time T; then place the battery on a glue homogenizer to dry it, then wash it with deionized water and dry it.
相应的硒化锑薄膜太阳能电池的制备方法,可以包括如下步骤:The preparation method of the corresponding antimony selenide thin film solar cell may comprise the following steps:
1)清洗ITO或者FTO基片;1) Clean the ITO or FTO substrate;
2)将n型缓冲层(如硫化镉、氧化锌、二氧化钛等)沉积在基底上;2) Depositing an n-type buffer layer (such as cadmium sulfide, zinc oxide, titanium dioxide, etc.) on the substrate;
3)用快速热蒸发法等方法制备硒化锑薄膜;3) Prepare antimony selenide thin films by methods such as rapid thermal evaporation;
4)使用二硫化碳对硒化锑薄膜进行背表面处理:在常温(如20℃~30℃)下将二硫化碳液体滴在硒化锑薄膜的表面(例如可覆盖该硒化锑薄膜的全部表面),静置10-30s,然后用匀胶机以转速为每分钟1000-3000转,时间为30-50s甩干,最后用去离子水清洗表面,并用匀胶机以转速为每分钟1000-3000转,时间为30-50s甩干;4) Use carbon disulfide to treat the back surface of the antimony selenide film: drop carbon disulfide liquid on the surface of the antimony selenide film (for example, it can cover the entire surface of the antimony selenide film) at normal temperature (such as 20 ° C ~ 30 ° C), Stand still for 10-30s, then use a glue homogenizer at a speed of 1000-3000 rpm, dry it for 30-50s, and finally clean the surface with deionized water, and use a glue homogenizer at a speed of 1000-3000 revolutions per minute , the time is 30-50s to dry;
优选的,二硫化碳在硒化锑薄膜表面静置30s。Preferably, the carbon disulfide is left standing on the surface of the antimony selenide thin film for 30s.
优选的,匀胶机设置为每分钟3000转,时间为30s。Preferably, the homogenizer is set at 3000 revolutions per minute, and the time is 30s.
5)在处理后的硒化锑薄膜上镀上电极,即得到背表面经处理的硒化锑薄膜太阳能电池;优选的,可进一步对该太阳能电池进行标准太阳光下电流-电压测试。5) Electrodes are plated on the treated antimony selenide thin film to obtain a treated antimony selenide thin film solar cell on the back surface; preferably, the solar cell can be further subjected to a current-voltage test under standard sunlight.
以下为具体实施例:The following are specific examples:
实施例1Example 1
具体步骤如下:Specific steps are as follows:
1)将FTO导电基底依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;1) Soak the FTO conductive substrate sequentially with detergent, acetone, isopropanol, ethanol and deionized water for 30 minutes, and then dry it with nitrogen;
2)将FTO导电基底置于热台上,使用喷雾热解法沉积上一层大约60nm的氧化锌薄膜;2) The FTO conductive substrate is placed on a hot stage, and a layer of zinc oxide film of about 60 nm is deposited by spray pyrolysis;
3)使用快速热蒸发法在制备的氧化锌薄膜上沉积一层大约500nm的硒化锑薄膜;3) Deposit a layer of antimony selenide film of about 500nm on the prepared zinc oxide film by rapid thermal evaporation;
4)将纯二硫化碳滴在制备好的硒化锑薄膜上,静置10s,用匀胶机以转速为每分钟1000转,时间为50s甩干,最后用去离子水清洗表面,并用匀胶机以转速为每分钟1000转,时间为50s甩干;4) Drop pure carbon disulfide on the prepared antimony selenide film, let it stand for 10s, use a glue spreader to rotate at a speed of 1000 rpm, and dry it for 50s, and finally clean the surface with deionized water, and use a glue spreader to dry it. Dry at 1000 revolutions per minute for 50 seconds;
5)用热蒸发沉积60nm金电极,获得硒化锑薄膜太阳能电池,并对其进行标准太阳光下电流-电压测试,器件性能表及电流电压曲线分别如表1和图4所示。5) A 60nm gold electrode was deposited by thermal evaporation to obtain an antimony selenide thin-film solar cell, and a current-voltage test was performed on it under standard sunlight. The device performance table and current-voltage curve are shown in Table 1 and Figure 4, respectively.
实施例2:Example 2:
具体步骤如下:Specific steps are as follows:
1)将FTO导电基底依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;1) Soak the FTO conductive substrate sequentially with detergent, acetone, isopropanol, ethanol and deionized water for 30 minutes, and then dry it with nitrogen;
2)将FTO导电基底置于热台上,使用喷雾热解法沉积上一层大约60nm的氧化锌薄膜;2) The FTO conductive substrate is placed on a hot stage, and a layer of zinc oxide film of about 60 nm is deposited by spray pyrolysis;
3)使用快速热蒸发法在制备的氧化锌薄膜上沉积一层大约500nm的硒化锑薄膜;3) Deposit a layer of antimony selenide film of about 500nm on the prepared zinc oxide film by rapid thermal evaporation;
4)将纯二硫化碳滴在制备好的硒化锑薄膜上,静置20s,用匀胶机以转速为每分钟2000转,时间为40s甩干,最后用去离子水清洗表面,并用匀胶机以转速为每分钟2000转,时间为40s甩干;4) Drop pure carbon disulfide on the prepared antimony selenide film, let it stand for 20s, and dry it with a glue spreader at a speed of 2000 rpm for 40s, and finally clean the surface with deionized water, and use a glue spreader to dry it. Dry at 2000 revolutions per minute at a speed of 40 seconds;
5)用热蒸发沉积60nm金电极,获得硒化锑薄膜太阳能电池,并对其进行标准太阳光下电流-电压测试,器件性能表及电流电压曲线分别如表1和图4所示。5) A 60nm gold electrode was deposited by thermal evaporation to obtain an antimony selenide thin-film solar cell, and a current-voltage test was performed on it under standard sunlight. The device performance table and current-voltage curve are shown in Table 1 and Figure 4, respectively.
实施例3:Example 3:
具体步骤如下:Specific steps are as follows:
1)将FTO导电基底依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;1) Soak the FTO conductive substrate sequentially with detergent, acetone, isopropanol, ethanol and deionized water for 30 minutes, and then dry it with nitrogen;
2)将FTO导电基底置于热台上,使用喷雾热解法沉积上一层大约60nm的氧化锌薄膜;2) The FTO conductive substrate is placed on a hot stage, and a layer of zinc oxide film of about 60 nm is deposited by spray pyrolysis;
3)使用快速热蒸发法在制备的氧化锌薄膜上沉积一层大约500nm的硒化锑薄膜;3) Deposit a layer of antimony selenide film of about 500nm on the prepared zinc oxide film by rapid thermal evaporation;
4)将纯二硫化碳滴在制备好的硒化锑薄膜上,静置30s,用匀胶机以转速为每分钟3000转,时间为30s甩干,最后用去离子水清洗表面,并用匀胶机以转速为每分钟3000转,时间为30s甩干;4) Drop pure carbon disulfide on the prepared antimony selenide film, let it stand for 30s, and dry it with a glue spreader at a speed of 3000 rpm for 30s, and finally clean the surface with deionized water, and use a glue spreader to dry it. Dry at a speed of 3000 revolutions per minute and a drying time of 30s;
5)用热蒸发沉积60nm金电极,获得硒化锑薄膜太阳能电池,并对其进行标准太阳光下电流-电压测试,器件性能表及电流电压曲线分别如表1和图4所示。5) A 60nm gold electrode was deposited by thermal evaporation to obtain an antimony selenide thin-film solar cell, and a current-voltage test was performed on it under standard sunlight. The device performance table and current-voltage curve are shown in Table 1 and Figure 4, respectively.
实施例4Example 4
具体步骤如下:Specific steps are as follows:
1)将FTO导电基底依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;1) Soak the FTO conductive substrate sequentially with detergent, acetone, isopropanol, ethanol and deionized water for 30 minutes, and then dry it with nitrogen;
2)将FTO导电基底置于热台上,使用喷雾热解法沉积上一层大约60nm的氧化锌薄膜;2) The FTO conductive substrate is placed on a hot stage, and a layer of zinc oxide film of about 60 nm is deposited by spray pyrolysis;
3)使用快速热蒸发法在制备的氧化锌薄膜上沉积一层大约500nm的硒化锑薄膜;3) Deposit a layer of antimony selenide film of about 500nm on the prepared zinc oxide film by rapid thermal evaporation;
4)将体积百分浓度为50%二硫化碳的乙醇溶液滴在制备好的硒化锑薄膜上,静置10min,用匀胶机以转速为每分钟3000转,时间为30s甩干,最后用去离子水清洗表面,并用匀胶机以转速为每分钟3000转,时间为30s甩干;4) Drop the ethanol solution with a volume percentage concentration of 50% carbon disulfide on the prepared antimony selenide film, let it stand for 10 minutes, and dry it with a glue homogenizer at a speed of 3000 rpm for 30 seconds, and finally use it Clean the surface with ionized water, and dry it with a homogenizer at a speed of 3000 rpm for 30s;
5)用热蒸发沉积60nm金电极,获得硒化锑薄膜太阳能电池。5) A 60nm gold electrode was deposited by thermal evaporation to obtain an antimony selenide thin film solar cell.
实施例5Example 5
具体步骤如下:Specific steps are as follows:
1)将FTO导电基底依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;1) Soak the FTO conductive substrate sequentially with detergent, acetone, isopropanol, ethanol and deionized water for 30 minutes, and then dry it with nitrogen;
2)将FTO导电基底置于热台上,使用喷雾热解法沉积上一层大约60nm的氧化锌薄膜;2) The FTO conductive substrate is placed on a hot stage, and a layer of zinc oxide film of about 60 nm is deposited by spray pyrolysis;
3)使用快速热蒸发法在制备的氧化锌薄膜上沉积一层大约500nm的硒化锑薄膜;3) Deposit a layer of antimony selenide film of about 500nm on the prepared zinc oxide film by rapid thermal evaporation;
4)将体积百分浓度为50%二硫化碳的乙醇溶液滴在制备好的硒化锑薄膜上,静置10s,用匀胶机以转速为每分钟3000转,时间为30s甩干,最后用去离子水清洗表面,并用匀胶机以转速为每分钟3000转,时间为30s甩干;4) Drop the ethanol solution with a volume percentage concentration of 50% carbon disulfide on the prepared antimony selenide film, let it stand for 10 seconds, use a glue homogenizer with a speed of 3000 revolutions per minute, and dry it for 30 seconds, and finally use it Clean the surface with ionized water, and dry it with a homogenizer at a speed of 3000 rpm for 30s;
5)用热蒸发沉积60nm金电极,获得硒化锑薄膜太阳能电池。5) A 60nm gold electrode was deposited by thermal evaporation to obtain an antimony selenide thin film solar cell.
对比例1(即,不经过二硫化碳背表面处理的硒化锑薄膜太阳能电池)Comparative example 1 (that is, antimony selenide thin film solar cell without carbon disulfide back surface treatment)
该对比例1除未经二硫化碳背表面处理,其他步骤与实施例1相同。In this comparative example 1, except that the back surface of the carbon disulfide is not treated, other steps are the same as in Example 1.
表1实施例制得的太阳能电池的性能表The performance table of the solar cell that the embodiment of table 1 makes
对比例2Comparative example 2
该对比例2除用纯的肼溶液代替二硫化碳外,其他步骤与实施例3相同。In this comparative example 2, other steps are the same as in Example 3 except that pure hydrazine solution is used instead of carbon disulfide.
对比例3Comparative example 3
该对比例3除用纯的醋酸代替二硫化碳外,其他步骤与实施例3相同。This comparative example 3 is except replacing carbon disulfide with pure acetic acid, other steps are identical with embodiment 3.
表2对比例2、3制得的太阳能电池的性能表The performance table of the solar cell that table 2 comparative example 2,3 makes
从上述表2可以看出,对比例2、对比例3制得的太阳能电池其填充因子FF与对比例1不经过二硫化碳背表面处理的太阳能电池相近,太阳能电池的光电转换效率未见明显提高。It can be seen from the above Table 2 that the fill factor FF of the solar cells prepared in Comparative Example 2 and Comparative Example 3 is similar to that of the solar cells in Comparative Example 1 without carbon disulfide back surface treatment, and the photoelectric conversion efficiency of the solar cells has not been significantly improved.
除上述实施例中所采用的具有上述特定结构的硒化锑薄膜太阳能电池外,本发明针对的硒化锑薄膜太阳能电池也可采用现有技术中其他硒化锑薄膜太阳能电池工艺制备,相应的,制备得到硒化锑薄膜太阳能电池也能够具有不同的层结构,只要这些硒化锑薄膜太阳能电池的背表面经本发明中的处理方法处理即可。例如,在该硒化锑薄膜层的背表面进行处理后,可以先在该背表面上继续沉积其他半导体层,最后再沉积金电极,从而形成具有另外一种结构的硒化锑薄膜太阳能电池(当然,电极也可以使用其他材料)。In addition to the antimony selenide thin film solar cell with the above-mentioned specific structure adopted in the above embodiments, the antimony selenide thin film solar cell targeted by the present invention can also be prepared by other antimony selenide thin film solar cell processes in the prior art, corresponding , the prepared antimony selenide thin film solar cells can also have different layer structures, as long as the back surfaces of these antimony selenide thin film solar cells are treated by the treatment method in the present invention. For example, after the back surface of the antimony selenide thin film layer is processed, other semiconductor layers can be deposited on the back surface first, and finally gold electrodes are deposited to form an antimony selenide thin film solar cell with another structure ( Of course, other materials can also be used for the electrodes).
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710169743.5A CN106920863B (en) | 2017-03-21 | 2017-03-21 | A kind of back surface processing method of antimony selenide thin-film solar cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710169743.5A CN106920863B (en) | 2017-03-21 | 2017-03-21 | A kind of back surface processing method of antimony selenide thin-film solar cells |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106920863A CN106920863A (en) | 2017-07-04 |
CN106920863B true CN106920863B (en) | 2018-05-11 |
Family
ID=59460578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710169743.5A Active CN106920863B (en) | 2017-03-21 | 2017-03-21 | A kind of back surface processing method of antimony selenide thin-film solar cells |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106920863B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110429145A (en) * | 2019-08-09 | 2019-11-08 | 暨南大学 | A kind of antimony selenide thin film solar cell and preparation method thereof |
CN112201699A (en) * | 2020-09-25 | 2021-01-08 | 暨南大学 | A kind of antimony selenide solar cell with back contact structure and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106098820A (en) * | 2016-08-23 | 2016-11-09 | 湖南师范大学 | A kind of novel antimony selenide thin-film solar cells and preparation method thereof |
CN106129143A (en) * | 2016-07-01 | 2016-11-16 | 武汉光电工业技术研究院有限公司 | A kind of high orientation antimony selenide thin film and preparation method thereof |
-
2017
- 2017-03-21 CN CN201710169743.5A patent/CN106920863B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106129143A (en) * | 2016-07-01 | 2016-11-16 | 武汉光电工业技术研究院有限公司 | A kind of high orientation antimony selenide thin film and preparation method thereof |
CN106098820A (en) * | 2016-08-23 | 2016-11-09 | 湖南师范大学 | A kind of novel antimony selenide thin-film solar cells and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106920863A (en) | 2017-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5775886B2 (en) | Method for producing nanostructured inorganic-organic heterojunction solar cell | |
CN106129143B (en) | A highly oriented antimony selenide thin film and its preparation method | |
CN106129251A (en) | A kind of structure of flexible perovskite battery and preparation method thereof | |
JP2013526003A (en) | All-solid heterojunction solar cell | |
CN105609641A (en) | Perovskite solar cell and preparation method thereof | |
CN110518127B (en) | Perovskite solar cell based on surfactant passivation and preparation method | |
CN111883659A (en) | Efficient ternary organic solar cell prepared based on step-by-step deposition method | |
CN109980090A (en) | A kind of efficient ternary organic photovoltaic cell and preparation method thereof | |
CN106340587A (en) | Perovskite film preparation method and perovskite solar cell | |
CN106784332A (en) | A kind of PEDOT:PSS‑MoO3The preparation method of/silicon nanowire array organic inorganic hybridization solar cell | |
CN102509769B (en) | Thin-film photoelectric conversion devices based on hybridization of Ag2S flake nanocrystal arrays and P3HT prepared at low temperature | |
CN104051580B (en) | Silicon solar cell and manufacturing method thereof | |
CN107946384A (en) | A kind of silicon PEDOT:PSS hybrid solar cells and preparation method thereof | |
CN111883662B (en) | A kind of organic solar cell based on spin annealing process and preparation method thereof | |
CN108539023B (en) | Perovskite type solar cell based on diboron compound modification and preparation method thereof | |
CN106920863B (en) | A kind of back surface processing method of antimony selenide thin-film solar cells | |
CN115117247B (en) | A perovskite solar cell and a method for preparing the same | |
CN109037456A (en) | A kind of preparation method of zero sluggish efficiently perovskite solar battery | |
CN109851571B (en) | Conjugated organic small molecule interface modification material, preparation method and organic solar cell formed by conjugated organic small molecule interface modification material | |
CN108695435B (en) | Organic solar cell based on ultrasonic annealing process and preparation method thereof | |
CN108878594B (en) | A silicon heterojunction photovoltaic cell and its manufacturing method | |
CN108511606B (en) | The perovskite preparation method of solar battery and product of a kind of high short circuit current, high transformation efficiency | |
Dematage et al. | Employment of CuI on Sb2S3 extremely thin absorber solar cell: N719 molecules as a dual role of a recombination blocking agent and an efficient hole shuttle | |
CN105514281A (en) | After-treatment method for inorganic nanopillar array electron transfer layer of polymer solar cell | |
CN105552221B (en) | Electrical storage and preparation method thereof based on single layer molybdenum disulfide nano-composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |