CN106911357A - 信号传输方法、信号发送装置和信号接收装置 - Google Patents
信号传输方法、信号发送装置和信号接收装置 Download PDFInfo
- Publication number
- CN106911357A CN106911357A CN201510974171.9A CN201510974171A CN106911357A CN 106911357 A CN106911357 A CN 106911357A CN 201510974171 A CN201510974171 A CN 201510974171A CN 106911357 A CN106911357 A CN 106911357A
- Authority
- CN
- China
- Prior art keywords
- signal
- carrier
- module
- frequency
- roads
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 230000005236 sound signal Effects 0.000 claims description 57
- 230000005540 biological transmission Effects 0.000 claims description 37
- 230000003321 amplification Effects 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims description 5
- 230000005526 G1 to G0 transition Effects 0.000 claims description 2
- 230000008054 signal transmission Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 230000009514 concussion Effects 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010181 polygamy Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/44—Transmit/receive switching
- H04B1/46—Transmit/receive switching by voice-frequency signals; by pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7087—Carrier synchronisation aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03828—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/183—Multiresolution systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0008—Synchronisation information channels, e.g. clock distribution lines
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Road Paving Structures (AREA)
- Transmitters (AREA)
Abstract
本发明提供一种信号传输方法、信号发送装置和信号接收装置,其中,该方法包括:根据载波频率p倍频的时钟信号和等占空比的载波信号对m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号;对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号;将n路串行模块开关控制信号、n路载波频率p倍频的时钟信号和n路等占空比的载波信号发送给信号接收装置;其中,m=n*p,1<m<=224,且m为正整数,1<n<=28且n为于28的正整数,p为正整数。减少大量的布线资源,减少各载波信号与各模块开关控制信号之间的同频干扰。
Description
技术领域
本发明涉及通信技术,尤其涉及一种信号传输方法、信号发送装置和信号接收装置。
背景技术
广播发射台主要采用大功率中波发射机进行中波广播的大范围(比如全省范围内)的本地覆盖,目前大功率中波发射机由于技术实现方式的复杂性,只能实现单频广播,即使更换播出频率也需要昂贵地改造经费,在发射台站运维过程中,为了保障播音的不间断性,更需要配备备用发射机,而当前大功率中波发发射机这种单一频率播出的方式需要针对每一部发射机安装备机,工程投入和设备维护费用都是非常巨大的。
现有技术中,多频中波发射机由发送端和接收端构成,发送端包括了依次连接的射频接口板、缓冲放大器、预驱动放大器、驱动放大器、射频分配模块、音频处理模块、调制编码模块,接收端包括了224个射频功率模块,并且射频分配模块与224个射频功率模块连接,调制编码模块与224个射频功率模块连接。频率合成器发送的载波信号要经过射频接口板进行整形和放大,再由缓冲放大器、预驱动放大器、驱动放大器共四级放大处理,然后由射频分配模块进行载波分配得到224路载波信号,将一路载波信号发送给接收端的一个射频功率模块,每一路载波信号与之前的载波信号相同;同时,音频源发送的位宽为12比特的并行数字音频信号经过音频处理模块以及调制编码模块的进行处理的后,成为位宽为224比特的并行数字音频信号,并且调制编码模块将位宽为224比特的并行数字音频信号,分配为224路位宽为1比特的模块开关控制信号,然后将一路位宽为1比特的模块开关控制信号发送给接收端的一个射频功率模块;每一个射频功率模块根据一路位宽为1比特的模块开关控制信号,放大一路载波信号。
然而,现有技术中,由于发送端需要将224路载波信号以及224路的模块开关控制信号,通过发送端与接收端之间的连接电缆发送给接收端的射频功率模块,从而发送端与接收端之间需要大量的连接电缆,需要大量的布线资源,并且由于布线较多,各载波信号与各模块开关控制信号之间为同频信号,从而两类信号之间会产生同频干扰。
发明内容
本发明提供一种信号传输方法、信号发送装置和信号接收装置,用以解决现有技术中信号的发送端与接收端之间需要大量的连接电缆,需要大量的布线资源,并且由于布线较多,各载波信号与各模块开关控制信号之间为同频信号,从而两类信号之间会产生同频干扰的问题。
本发明的一方面是提供一种信号传输方法,包括:
接收频率合成器发送的载波信号,将所述载波信号进行倍频处理生成载波频率p倍频的时钟信号,并对所述载波信号进行整形处理生成与等占空比的载波信号,其中所述等占空比的载波信号与所述载波频率p倍频的时钟信号为固定相位关系;
接收音频源发送的并行数字音频信号,对所述并行数字音频信号进行载波同步和编码后,生成m路并行模块开关控制信号;
根据所述载波频率p倍频的时钟信号和所述等占空比的载波信号对所述m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号;
对所述载波频率p倍频的时钟信号和所述等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号;
将所述n路串行模块开关控制信号、所述n路载波频率p倍频的时钟信号和所述n路等占空比的载波信号发送给所述信号接收装置;
其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
本发明的另一方面是提供一种信号传输方法,包括:
接收信号发送装置发送的n路串行模块开关控制信号中的一路串行模块开关控制信号、n路载波频率p倍频的时钟信号中的一路载波频率p倍频的时钟信号以及n路等占空比的载波信号中的一路等占空比的载波信号;
根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,并对一路等占空比的载波信号进行驱动处理生成p路同相载波信号;
根据一路功率模块开关控制信号放大一路同相载波信号,将放大后的一路同相载波信号发送给射频合成网络;
其中,p=m/n,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
本发明的又一方面是提供一种信号发送装置,包括:
锁相环模块、调制编码模块、串行分配模块和分配驱动电路;
其中,所述调制编码模块与所述串行分配模块连接,并且所述锁相环模块与所述串行分配模块和所述分配驱动电路连接;
所述锁相环模块,用于接收频率合成器发送的载波信号,将所述载波信号进行倍频处理生成载波频率p倍频的时钟信号,并对所述载波信号进行整形处理生成等占空比的载波信号,将所述载波频率p倍频的时钟信号和所述等占空比的载波信号都发送给所述串行分配模块、所述分配驱动电路,其中所述等占空比的载波信号与所述载波频率p倍频的时钟信号为固定相位关系;
所述调制编码模块,用于接收音频源发送的并行数字音频信号,对所述并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,将所述m路并行模块开关控制信号发送给所述串行分配模块;
所述串行分配模块,用于接收所述调制编码模块发送的所述m路并行模块开关控制信号,并接收所述锁相环模块发送的所述载波频率p倍频的时钟信号和所述等占空比的载波信号,根据所述载波频率p倍频的时钟信号和所述等占空比的载波信号对所述m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号,将所述n路串行模块开关控制信号发送给信号接收装置;
所述分配驱动电路,用于接收所述锁相环模块发送的所述载波频率p倍频的时钟信号和所述等占空比的载波信号,对所述载波频率p倍频的时钟信号和所述等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号,将所述n路载波频率p倍频的时钟信号和所述n路等占空比的载波信号发送给所述信号接收装置;
其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
本发明的再一方面是提供一种信号接收装置,包括:
n个串并转换组,以及m个射频功率模块;
其中每个串并转换组与p个射频功率模块连接,其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数;
各所述串并转换组,用于接收信号发送装置中的串行分配模块发送的一路串行模块开关控制信号,并接收所述信号发送装置中的分配驱动电路发送的一路载波频率p倍频的时钟信号和一路等占空比的载波信号,根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,并对一路等占空比的载波信号进行驱动处理生成p路同相载波信号,将各路功率模块开关控制信号分别发送给p个射频功率模块中的各射频功率模块,并将各路同相载波信号分别发送给p个射频功率模块中的各射频功率模块;
各所述射频功率模块,用于接收各所述串并转换组发送的一路功率模块开关控制信号和一路同相载波信号,根据一路功率模块开关控制信号放大一路同相载波信号,将放大后的一路同相载波信号发送给射频合成网络。
本发明通过接收频率合成器发送的载波信号,将载波信号进行倍频处理生成载波频率p倍频的时钟信号,并对载波信号进行整形处理生成等占空比的载波信号,其中等占空比的载波信号与载波频率p倍频的时钟信号为固定相位关系;接收音频源发送的并行数字音频信号,对并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号;根据载波频率p倍频的时钟信号和等占空比的载波信号对m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号;对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号;将n路串行模块开关控制信号、n路载波频率p倍频的时钟信号和n路等占空比的载波信号发送给信号接收装置;其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。实现了将并行模块开关控制信号进行串并转换,生成路数更少的串行模块开关控制信号,同时生成了路数更少的载波信号,减少了信号发送装置和信号接收装置之间的连接电缆,减少了大量的布线资源,同时由于减少了布线,各载波信号与各模块开关控制信号之间的同频干扰较少;利用载波信号作为模块开关信号的帧同步信号,并经过同样的小信号硬件电路进行驱动保证载波信号与模块开关控制信号的严格同步;并且,不需要不需要调谐装置,节约了信号发送装置和接收装置的成本,并且在信号的传输过程中减小了射频干扰,采用高速信号传输,也避免了与其他信号之间的同频干扰;同时可以保证频率切换时,载波信号和模块开关控制信号能够保持严格的相位同步。本发明中载波信号的传输使用了小信号传输,省去了放大、缓冲放大器、预驱动放大器、驱动放大器四级驱动设备,将这些驱动环节化整为零,设置在信号接收终端,降低了单个环节的功率输出等级,因此省去了驱动环节的调谐设备以及这些设备带来的延时和震荡,进一步保证了信号传输过程中的相位同步,并易于实现发射机多频输出。
附图说明
图1为本发明实施例一提供的信号传输方法的流程图;
图2为本发明实施例二提供的信号传输方法的流程图;
图3为本发明实施例三提供的信号传输方法的流程图;
图4为本发明实施例四提供的信号发送装置的结构示意图;
图5为本发明实施例四提供的信号接收装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例一提供的信号传输方法的流程图,如图1所示,本实施例的方法包括:
步骤101、接收频率合成器发送的载波信号,将载波信号进行倍频处理生成载波频率p倍频的时钟信号,并对载波信号进行整形处理生成等占空比的载波信号,其中等占空比的载波信号与载波频率p倍频的时钟信号为固定相位关系。
在本实施例中,具体的,接收频率合成器发送的载波信号,然后将载波信号进行倍频处理,可以生成载波频率p倍频的时钟信号,其中p可以取值为8,从而生成的是载波频率8倍频的时钟信号;同时,可以将频率合成器发送的载波信号进行整形处理,生成等占空比的载波信号,等占空比的载波信号与频率合成器发送的载波信号之间同频、同相位,等占空比的载波信号与载波频率p倍频的时钟信号为固定相位关系。
步骤102、接收音频源发送的并行数字音频信号,对并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,其中m为大于1小于等于224的正整数。
在本实施例中,具体的,接收音频源发送的位宽为12比特(Bit,简称bit)的并行数字音频信号,对并行数字音频信号进行载波同步和调制编码后生成位宽为224bit的并行模块开关控制信号,从而可以得到m路并行模块开关控制信号,m取值为224。
步骤103、根据载波频率p倍频的时钟信号和等占空比的载波信号对m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号,其中,m=n*p,n为大于1小于等于28的正整数,p为正整数。
在本实施例中,具体的,根据步骤101中载波频率p倍频的时钟信号和等占空比的载波信号,对步骤102中的m路并行模块开关控制信号进行并行到串行转换处理,可以得到n路串行模块开关控制信号,并且m=n*p,n为大于1小于等于28的正整数,p为正整数;同时可以保证n路串行模块开关控制信号与载波信号同频。
步骤104、对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号。
在本实施例中,具体的,对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,从而可以将载波频率p倍频的时钟信号和等占空比的载波信号进行信号复制,生成了n路载波频率p倍频的时钟信号和n路等占空比的载波信号。其中,n路载波频率p倍频的时钟信号与之前的载波频率p倍频的时钟信号同相位,n路等占空比的载波信号与之前的等占空比的载波信号同相位。
步骤105、将n路串行模块开关控制信号、n路载波频率p倍频的时钟信号和n路等占空比的载波信号发送给信号接收装置。
在本实施例中,具体的,将以上步骤中生成的n路串行模块开关控制信号发送给信号接收装置,同时将n路载波频率p倍频的时钟信号发送给信号接收装置,将n路等占空比的载波信号发送给信号接收装置。其中发送的过程中,n路载波频率p倍频的时钟信号中的每一路,会作为n路串行模块开关控制信号中的每一路的位时钟信号和或位同步信号;n路等占空比的载波信号中的每一路,会作为n路串行模块开关控制信号中的每一路的帧同步信号。
本实施例通过根据载波频率p倍频的时钟信号和等占空比的载波信号对m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号,并且对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号,m=n*p,从而可以将减少了路数的n路串行模块开关控制信号、n路载波频率p倍频的时钟信号和n路等占空比的载波信号发送给信号接收装置,进而实现了将并行模块开关控制信号进行串并转换,生成路数更少的串行模块开关控制信号,同时生成了路数更少的载波信号,减少了信号发送装置和信号接收装置之间的连接电缆,减少了大量的布线资源,同时由于减少了布线,各载波信号与各模块开关控制信号之间的同频干扰较少;利用载波信号作为模块开关信号的帧同步信号,并经过同样的小信号硬件电路进行驱动保证载波信号与模块开关控制信号的严格同步;并且,不需要不需要调谐装置,节约了信号发送装置和接收装置的成本,并且在信号的传输过程中减小了射频干扰,采用高速信号传输,也避免了与其他信号之间的同频干扰。并且在信号处理过程中,根据载波信号对并行模块开关控制信号进行串并转换的处理,从而保证载波信号和模块开关控制信号能够保持严格的相位同步。本发明中载波信号的传输使用了小信号传输,省去了放大、缓冲放大器、预驱动放大器、驱动放大器四级驱动设备,将这些驱动环节化整为零,设置在信号接收终端,降低了单个环节的功率输出等级,因此省去了驱动环节的调谐设备以及这些设备带来的延时和震荡,进一步保证了信号传输过程中的相位同步,并易于实现发射机多频输出。
图2为本发明实施例二提供的信号传输方法的流程图,在实施例一的基础上,如图2所示,本实施例的方法,步骤102,包括:
步骤201、接收音频源发送的并行数字音频信号,并接收频率合成器发送的载波信号,根据载波信号对并行数字音频信号进行相位同步处理以将并行数字音频信号的相位调整到与载波信号的相位同步,生成相位同步处理后的并行数字音频信号。
在本实施例中,具体的,接收音频源发送的并行数字音频信号,同时接收频率合成器发送的载波信号,根据载波信号对并行数字音频信号进行相位同步处理,从而将并行数字音频信号抽样处理成为与载波信号相位同步的信号,可以生成相位同步处理后的并行数字音频信号,此过程可以通过载波相位同步寄存器来实现。
步骤202、对相位同步处理后的并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号。
在本实施例中,具体的,对步骤201中的经过相位同步处理后的并行数字音频信号进行载波同步和调制编码,生成m路并行模块开关控制信号。
本实施例通过根据载波信号,对音频源发送的并行数字音频信号进行相位同步处理,从而保证了并行数字音频信号以及根据并行数字音频信号生成的m路并行模块开关控制信号,可以与载波信号相位同步。
进一步的,在上述实施例的基础上,步骤101中在接收频率合成器发送的载波信号之后,还包括:
将载波信号进行倍频处理生成载波频率16倍频的时钟信号;
相应的,步骤202,具体包括:
根据载波频率16倍频的时钟信号对相位同步处理后的并行数字音频信号进行载波同步和编码,生成m路并行模块开关控制信号。
在本实施例中,具体的,接收到频率合成器发送的载波信号之后,对载波信号进行倍频处理,可以生成载波频率16倍频的时钟信号,从而可以将载波频率16倍频的时钟信号作为一个倍频,根据载波频率16倍频的时钟信号对相位同步处理后的并行数字音频信号进行载波同步和调制编码,以生成m路并行模块开关控制信号。从而可以将并行数字音频信号生成m路并行模块开关控制信号的过程的处理提高16倍。
图3为本发明实施例三提供的信号传输方法的流程图,如图1所示,本实施例的方法包括:
步骤301、接收信号发送装置发送的n路串行模块开关控制信号中的一路串行模块开关控制信号、n路载波频率p倍频的时钟信号中的一路载波频率p倍频的时钟信号以及n路等占空比的载波信号中的一路等占空比的载波信号,其中,p=m/n,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
在本实施例中,具体的,可以接收到信号发送装置发送n路串行模块开关控制信号,n路载波频率p倍频的时钟信号,n路等占空比的载波信号,具体的可以通过信号接收装置中的接收子装置分别接收n路串行模块开关控制信号中的一路串行模块开关控制信号、n路载波频率p倍频的时钟信号中的一路载波频率p倍频的时钟信号以及n路等占空比的载波信号中的一路等占空比的载波信号,p=m/n,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数。具体的,载波频率p倍频的时钟信号为载波频率8倍频的时钟信号,n可以取值为28,从而接收到的是28路串行模块开关控制信号、28路载波频率8倍频的时钟信号、28路等占空比的载波信号中的各自一路信号。
步骤302、根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,并对一路等占空比的载波信号进行驱动处理生成p路同相载波信号。
在本实施例中,具体的,根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号,针对一路串行模块开关控制信号进行串行到并行转换处理,可以生成p路功率模块开关控制信号,此处p依然可以取值为8,同时根据载波信号处理串行模块开关控制信号,可以保证串行模块开关控制信号与载波信号相位同步;同时将一路等占空比的载波信号进行驱动处理,从而可以生成p路同相载波信号,p路同相载波信号与等占空比的载波信号同频、同相位。
步骤303、根据一路功率模块开关控制信号放大一路同相载波信号,将放大后的一路同相载波信号发送给射频合成网络。
在本实施例中,具体的,根据一路功率模块开关控制信号去放大一路同相载波信号,然后将放大后的一路同相载波信号发送给射频合成网络。
本实施例通过接收信号发送装置发送的n路串行模块开关控制信号中的一路串行模块开关控制信号、n路载波频率p倍频的时钟信号中的一路载波频率p倍频的时钟信号以及n路等占空比的载波信号中的一路等占空比的载波信号,其中,p=m/n,从而接收到路数更少的n路串行模块开关控制信号、n路载波频率p倍频的时钟信号和n路等占空比的载波信号,然后再将一路串行模块开关控制信号和一路等占空比的载波信号分别转换为p路功率模块开关控制信号和p路同相载波信号,实现了信号的并串转换;从而可以减少信号发送装置和信号接收装置之间的连接电缆,减少了大量的布线资源,同时由于减少了布线,各载波信号与各模块开关控制信号之间的同频干扰较少;利用载波信号作为模块开关信号的帧同步信号,并经过同样的小信号硬件电路进行驱动保证载波信号与模块开关控制信号的严格同步;并且在信号的传输过程中减小了射频干扰,采用高速信号传输,也避免了与其他信号之间的同频干扰。并且在信号处理过程中,根据载波信号对串行模块开关控制信号进行串行到并行转换的处理,从而保证载波信号和串行模块开关控制信号能够保持严格的相位同步。本发明中载波信号的传输使用了小信号传输,省去了放大、缓冲放大器、预驱动放大器、驱动放大器四级驱动设备,将这些驱动环节化整为零,设置在信号接收终端,降低了单个环节的功率输出等级,因此省去了驱动环节的调谐设备以及这些设备带来的延时和震荡,进一步保证了信号传输过程中的相位同步,并易于实现发射机多频输出。
图4为本发明实施例四提供的信号发送装置的结构示意图,如图4所示,本实施例提供的信号发送装置,包括:
锁相环模块42、调制编码模块43、串行分配模块44和分配驱动电路45;
其中,调制编码模块43与串行分配模块44连接,并且锁相环模块42与串行分配模块44和分配驱动电路45连接;
锁相环模块42,用于接收频率合成器发送的载波信号,将载波信号进行倍频处理生成载波频率p倍频的时钟信号,并对载波信号进行整形处理生成等占空比的载波信号,将载波频率p倍频的时钟信号和等占空比的载波信号都发送给串行分配模块44、分配驱动电路45;
调制编码模块43,用于接收音频源发送的并行数字音频信号,对并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,将m路并行模块开关控制信号发送给串行分配模块44;
串行分配模块44,用于接收调制编码模块43发送的m路并行模块开关控制信号,并接收锁相环模块42发送的载波频率p倍频的时钟信号和等占空比的载波信号,根据载波频率p倍频的时钟信号和等占空比的载波信号对m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号,将n路串行模块开关控制信号发送给信号接收装置;
分配驱动电路45,用于接收锁相环模块42发送的载波频率p倍频的时钟信号和等占空比的载波信号,对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号,将n路载波频率p倍频的时钟信号和n路等占空比的载波信号发送给信号接收装置;
其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
还包括:载波相位同步寄存器41;其中,载波相位同步寄存器41与调制编码模块43连接;
载波相位同步寄存器41,用于接收音频源发送的并行数字音频信号,并接收频率合成器发送的载波信号,根据载波信号对并行数字音频信号进行相位同步处理以将并行数字音频信号的相位调整到与载波信号的相位同步,生成相位同步处理后的并行数字音频信号,将相位同步处理后的并行数字音频信号发送给调制编码模块43;
相应的,调制编码模块43,具体用于接收载波相位同步寄存器41发送的相位同步处理后的并行数字音频信号,对相位同步处理后的并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,将m路并行模块开关控制信号发送给串行分配模块44。
锁相环模块42,还用于:
将载波信号进行倍频处理生成载波频率16倍频的时钟信号,并将载波频率16倍频的时钟信号发送给调制编码模块43;
相应的,调制编码模块43,还用于:
接收锁相环模块42发送的载波频率16倍频的时钟信号;
相应的,对相位同步处理后的并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,包括:
根据载波频率16倍频的时钟信号对相位同步处理后的并行数字音频信号进行载波同步和编码,生成m路并行模块开关控制信号。
本实施例的信号发送装置可执行本发明实施例一和实施例二中提供的信号传输方法。
在本实施例中,具体的,信号发送装置包括了载波相位同步寄存器41、锁相环模块42、调制编码模块43、串行分配模块44和分配驱动电路45,载波相位同步寄存器41与调制编码模块43连接,调制编码模块43与串行分配模块44连接,并且锁相环模块42与串行分配模块44和分配驱动电路45连接。
载波相位同步寄存器41接收音频源发送的并行数字音频信号,同时接收频率合成器发送的载波信号,然后根据载波信号对并行数字音频信号进行相位同步处理,从而可以将并行数字音频信号的相位调整到与载波信号的相位同步,进而生成相位同步处理后的并行数字音频信号,再将相位同步处理后的并行数字音频信号发送给调制编码模块43。同时锁相环模块42接收频率合成器发送的载波信号,将载波信号进行倍频处理生成载波频率p倍频的时钟信号以及载波频率16倍频的时钟信号,同时对载波信号进行整形处理生成等占空比的载波信号,然后再将载波频率p倍频的时钟信号和等占空比的载波信号都发送给串行分配模块44、分配驱动电路45,并且将载波频率16倍频的时钟信号发送给调制编码模块43,p可以取值为8。
调制编码模块43接收载波相位同步寄存器41发送的相位同步处理后的并行数字音频信号,并且接收锁相环模块42发送的载波频率16倍频的时钟信号,然后根据载波频率16倍频的时钟信号对相位同步处理后的并行数字音频信号进行载波同步和调制编码,可以生成m路并行模块开关控制信号,然后将m路并行模块开关控制信号发送给串行分配模块44,m为224。
串行分配模块44接收调制编码模块43发送的m路并行模块开关控制信号,同时并接收锁相环模块42发送的载波频率p倍频的时钟信号和等占空比的载波信号;然后根据载波频率p倍频的时钟信号和等占空比的载波信号对m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号,再将n路串行模块开关控制信号发送给信号接收装置,n为28。
分配驱动电路45接收锁相环模块42发送的载波频率p倍频的时钟信号和等占空比的载波信号,然后对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号,然后将n路载波频率p倍频的时钟信号和n路等占空比的载波信号发送给信号接收装置。
本实施例通过根据载波频率p倍频的时钟信号和等占空比的载波信号对m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号,并且对载波频率p倍频的时钟信号和等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号,m=n*p,从而可以将减少了路数的n路串行模块开关控制信号、n路载波频率p倍频的时钟信号和n路等占空比的载波信号发送给信号接收装置,进而实现了将并行模块开关控制信号进行串并转换,生成路数更少的串行模块开关控制信号,同时生成了路数更少的载波信号,减少了信号发送装置和信号接收装置之间的连接电缆,减少了大量的布线资源,同时由于减少了布线,各载波信号与各模块开关控制信号之间的同频干扰较少;利用载波信号作为模块开关信号的帧同步信号,并经过同样的小信号硬件电路进行驱动保证载波信号与模块开关控制信号的严格同步;并且,不需要不需要调谐装置,节约了信号发送装置和接收装置的成本,并且在信号的传输过程中减小了射频干扰,采用高速信号传输,也避免了与其他信号之间的同频干扰。本发明中载波信号的传输使用了小信号传输,省去了放大、缓冲放大器、预驱动放大器、驱动放大器四级驱动设备,将这些驱动环节化整为零,设置在信号接收终端,降低了单个环节的功率输出等级,因此省去了驱动环节的调谐设备以及这些设备带来的延时和震荡,进一步保证了信号传输过程中的相位同步,并易于实现发射机多频输出。并且在信号处理过程中,根据载波信号对并行模块开关控制信号进行串并转换的处理,从而保证载波信号和模块开关控制信号能够保持严格的相位同步。同时可以将并行数字音频信号生成m路并行模块开关控制信号的过程的处理提高16倍。
图5为本发明实施例四提供的信号接收装置的结构示意图,如图5所示,本实施例提供的信号接收装置,包括:
n个串并转换组51,以及m个射频功率模块52;
其中每个串并转换组51与p个射频功率模块52连接,其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数;
各串并转换组51,用于接收信号发送装置中的串行分配模块发送的一路串行模块开关控制信号,并接收信号发送装置中的分配驱动电路发送的一路载波频率p倍频的时钟信号和一路等占空比的载波信号,根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,并对一路等占空比的载波信号进行驱动处理生成p路同相载波信号,将各路功率模块开关控制信号分别发送给p个射频功率模块52中的各射频功率模块52,并将各路同相载波信号分别发送给p个射频功率模块52中的各射频功率模块52;
各射频功率模块52,用于接收各串并转换组51发送的一路功率模块开关控制信号和一路同相载波信号,根据一路功率模块开关控制信号放大一路同相载波信号,将放大后的一路同相载波信号发送给射频合成网络。
各串并转换组51,包括:串并转换子模块511和载波分配子模块512;
其中,串并转换子模块511与信号发送装置中的串行分配模块、分配驱动电路连接,载波分配子模块512与信号发送装置中的分配驱动电路连接,串并转换子模块511以及载波分配子模块512与p个射频功率模块52连接;
串并转换子模块511,用于接收信号发送装置中的串行分配模块发送的一路串行模块开关控制信号,并接收信号发送装置中的分配驱动电路发送的一路载波频率p倍频的时钟信号和一路等占空比的载波信号,根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,将各路功率模块开关控制信号分别发送给p个射频功率模块52中的各射频功率模块52;
载波分配子模块512,用于接收信号发送装置中的分配驱动电路发送的一路等占空比的载波信号,对一路等占空比的载波信号进行驱动处理生成p路同相载波信号,将各路同相载波信号分别发送给p个射频功率模块52中的各射频功率模块52。
本实施例的信号发送装置可执行本发明实施例三中提供的信号传输方法,原理方法相同。
在本实施例中,具体的,信号接收装置包括了n个串并转换组51以及m个射频功率模块52,每个串并转换组51与p个射频功率模块52连接,其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。具体的,可以是28个串并转换组51以及224个射频功率模块52,一个串并转换组51与8个射频功率模块52连接。并且各串并转换组51,包括了一个串并转换子模块511和一个载波分配子模块512。串并转换子模块511与信号发送装置中的串行分配模块、分配驱动电路连接,载波分配子模块512与信号发送装置中的分配驱动电路连接,串并转换子模块511以及载波分配子模块512与p个射频功率模块52连接。
从而串并转换子模块511接收信号发送装置中的串行分配模块发送的n路串行模块开关控制信号中的一路串行模块开关控制信号,并接收信号发送装置中的分配驱动电路发送的n路载波频率p倍频的时钟信号中的一路载波频率p倍频的时钟信号以及n路等占空比的载波信号中的一路等占空比的载波信号,然后根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,将各路功率模块开关控制信号分别发送给p个射频功率模块52中的各射频功率模块52。载波分配子模块512接收信号发送装置中的分配驱动电路发送的n路等占空比的载波信号中的一路等占空比的载波信号,对一路等占空比的载波信号进行驱动处理生成p路同相载波信号,将各路同相载波信号分别发送给p个射频功率模块52中的各射频功率模块52,此时p取值也是8。
从而各个射频功率模块52可以收到接收各串并转换组51发送的一路功率模块开关控制信号和一路同相载波信号,然后根据一路功率模块开关控制信号放大一路同相载波信号,再将放大后的一路同相载波信号发送给射频合成网络。
本实施例通过接收信号发送装置发送的n路串行模块开关控制信号中的一路串行模块开关控制信号、n路载波频率p倍频的时钟信号中的一路载波频率p倍频的时钟信号以及n路等占空比的载波信号中的一路等占空比的载波信号,其中,p=m/n,从而接收到路数更少的n路串行模块开关控制信号、n路载波频率p倍频的时钟信号和n路等占空比的载波信号,然后再将一路串行模块开关控制信号和一路等占空比的载波信号分别转换为p路功率模块开关控制信号和p路同相载波信号,实现了信号的并串转换;从而可以减少信号发送装置和信号接收装置之间的连接电缆,减少了大量的布线资源,同时由于减少了布线,各载波信号与各模块开关控制信号之间的同频干扰较少;利用载波信号作为模块开关信号的帧同步信号,并经过同样的小信号硬件电路进行驱动保证载波信号与模块开关控制信号的严格同步;并且在信号的传输过程中减小了射频干扰,采用高速信号传输,也避免了与其他信号之间的同频干扰。并且在信号处理过程中,根据载波信号对串行模块开关控制信号进行串行到并行转换的处理,从而保证载波信号和串行模块开关控制信号能够保持严格的相位同步。本发明中载波信号的传输使用了小信号传输,省去了放大、缓冲放大器、预驱动放大器、驱动放大器四级驱动设备,将这些驱动环节化整为零,设置在信号接收终端,降低了单个环节的功率输出等级,因此省去了驱动环节的调谐设备以及这些设备带来的延时和震荡,进一步保证了信号传输过程中的相位同步,并易于实现发射机多频输出。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (9)
1.一种信号传输方法,其特征在于,包括:
接收频率合成器发送的载波信号,将所述载波信号进行倍频处理生成载波频率p倍频的时钟信号,并对所述载波信号进行整形处理生成等占空比的载波信号,其中所述等占空比的载波信号与所述载波频率p倍频的时钟信号为固定相位关系;
接收音频源发送的并行数字音频信号,对所述并行数字音频信号进行载波同步和编码后,生成m路并行模块开关控制信号;
根据所述载波频率p倍频的时钟信号和所述等占空比的载波信号对所述m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号;
对所述载波频率p倍频的时钟信号和所述等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号;
将所述n路串行模块开关控制信号、所述n路载波频率p倍频的时钟信号和所述n路等占空比的载波信号发送给所述信号接收装置;
其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
2.根据权利要求1所述的方法,其特征在于,所述接收音频源发送的并行数字音频信号,对所述并行数字音频信号进行载波同步和编码后,生成m路并行模块开关控制信号,包括:
接收所述音频源发送的并行数字音频信号,并接收所述频率合成器发送的所述载波信号,根据载波信号对所述并行数字音频信号进行相位同步处理以将所述并行数字音频信号的相位调整到与所述载波信号的相位同步,生成相位同步处理后的并行数字音频信号;
对相位同步处理后的并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号。
3.根据权利要求2所述的方法,其特征在于,在所述接收频率合成器发送的载波信号之后,还包括:
将所述载波信号进行倍频处理生成载波频率16倍频的时钟信号;
相应的,所述对相位同步处理后的并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,包括:
根据所述载波频率16倍频的时钟信号对相位同步处理后的并行数字音频信号进行载波同步和编码,生成所述m路并行模块开关控制信号。
4.一种信号传输方法,其特征在于,包括:
接收信号发送装置发送的n路串行模块开关控制信号中的一路串行模块开关控制信号、n路载波频率p倍频的时钟信号中的一路载波频率p倍频的时钟信号以及n路等占空比的载波信号中的一路等占空比的载波信号;
根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,并对一路等占空比的载波信号进行驱动处理生成p路同相载波信号;
根据一路功率模块开关控制信号放大一路同相载波信号,将放大后的一路同相载波信号发送给射频合成网络;
其中,p=m/n,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
5.一种信号发送装置,其特征在于,包括:
锁相环模块、调制编码模块、串行分配模块和分配驱动电路;
其中,所述调制编码模块与所述串行分配模块连接,并且所述锁相环模块与所述串行分配模块和所述分配驱动电路连接;
所述锁相环模块,用于接收频率合成器发送的载波信号,将所述载波信号进行倍频处理生成载波频率p倍频的时钟信号,并对所述载波信号进行整形处理生成等占空比的载波信号,将所述载波频率p倍频的时钟信号和所述等占空比的载波信号都发送给所述串行分配模块、所述分配驱动电路,其中所述等占空比的载波信号与所述载波频率p倍频的时钟信号为固定相位关系;
所述调制编码模块,用于接收音频源发送的并行数字音频信号,对所述并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,将所述m路并行模块开关控制信号发送给所述串行分配模块;
所述串行分配模块,用于接收所述调制编码模块发送的所述m路并行模块开关控制信号,并接收所述锁相环模块发送的所述载波频率p倍频的时钟信号和所述等占空比的载波信号,根据所述载波频率p倍频的时钟信号和所述等占空比的载波信号对所述m路并行模块开关控制信号进行并行到串行转换处理,得到n路串行模块开关控制信号,将所述n路串行模块开关控制信号发送给信号接收装置;
所述分配驱动电路,用于接收所述锁相环模块发送的所述载波频率p倍频的时钟信号和所述等占空比的载波信号,对所述载波频率p倍频的时钟信号和所述等占空比的载波信号进行驱动处理,生成n路载波频率p倍频的时钟信号和n路等占空比的载波信号,将所述n路载波频率p倍频的时钟信号和所述n路等占空比的载波信号发送给所述信号接收装置;
其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数。
6.根据权利要求5所述的装置,其特征在于,还包括:载波相位同步寄存器;
其中,所述载波相位同步寄存器与所述调制编码模块连接;
所述载波相位同步寄存器,用于接收所述音频源发送的并行数字音频信号,并接收所述频率合成器发送的所述载波信号,根据载波信号对所述并行数字音频信号进行相位同步处理以将所述并行数字音频信号的相位调整到与所述载波信号的相位同步,生成相位同步处理后的并行数字音频信号,将相位同步处理后的并行数字音频信号发送给所述调制编码模块;
相应的,所述调制编码模块,具体用于接收所述载波相位同步寄存器发送的相位同步处理后的并行数字音频信号,对相位同步处理后的并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,将所述m路并行模块开关控制信号发送给所述串行分配模块。
7.根据权利要求6所述的装置,其特征在于,所述锁相环模块,还用于:
将所述载波信号进行倍频处理生成载波频率16倍频的时钟信号,并将所述载波频率16倍频的时钟信号发送给所述调制编码模块;
相应的,所述调制编码模块,还用于:
接收所述锁相环模块发送的所述载波频率16倍频的时钟信号;
相应的,所述对相位同步处理后的并行数字音频信号进行载波同步和编码后生成m路并行模块开关控制信号,包括:
根据所述载波频率16倍频的时钟信号对相位同步处理后的并行数字音频信号进行载波同步和编码,生成所述m路并行模块开关控制信号。
8.一种信号接收装置,其特征在于,包括:
n个串并转换组,以及m个射频功率模块;
其中每个串并转换组与p个射频功率模块连接,其中,m=n*p,m为大于1小于等于224的正整数,n为大于1小于等于28的正整数,p为正整数;
各所述串并转换组,用于接收信号发送装置中的串行分配模块发送的一路串行模块开关控制信号,并接收所述信号发送装置中的分配驱动电路发送的一路载波频率p倍频的时钟信号和一路等占空比的载波信号,根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,并对一路等占空比的载波信号进行驱动处理生成p路同相载波信号,将各路功率模块开关控制信号分别发送给p个射频功率模块中的各射频功率模块,并将各路同相载波信号分别发送给p个射频功率模块中的各射频功率模块;
各所述射频功率模块,用于接收各所述串并转换组发送的一路功率模块开关控制信号和一路同相载波信号,根据一路功率模块开关控制信号放大一路同相载波信号,将放大后的一路同相载波信号发送给射频合成网络。
9.根据权利要求8所述的装置,其特征在于,各所述串并转换组,包括:串并转换子模块和载波分配子模块;
其中,所述串并转换子模块与所述信号发送装置中的串行分配模块、分配驱动电路连接,所述载波分配子模块与所述信号发送装置中的分配驱动电路连接,所述串并转换子模块以及所述载波分配子模块与p个射频功率模块连接;
所述串并转换子模块,用于接收所述信号发送装置中的串行分配模块发送的一路串行模块开关控制信号,并接收所述信号发送装置中的分配驱动电路发送的一路载波频率p倍频的时钟信号和一路等占空比的载波信号,根据一路载波频率p倍频的时钟信号和一路等占空比的载波信号对一路串行模块开关控制信号进行串行到并行转换处理生成p路功率模块开关控制信号,将各路功率模块开关控制信号分别发送给p个射频功率模块中的各射频功率模块;
所述载波分配子模块,用于接收所述信号发送装置中的分配驱动电路发送的一路等占空比的载波信号,对一路等占空比的载波信号进行驱动处理生成p路同相载波信号,将各路同相载波信号分别发送给p个射频功率模块中的各射频功率模块。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510974171.9A CN106911357B (zh) | 2015-12-22 | 2015-12-22 | 信号传输方法、信号发送装置和信号接收装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510974171.9A CN106911357B (zh) | 2015-12-22 | 2015-12-22 | 信号传输方法、信号发送装置和信号接收装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106911357A true CN106911357A (zh) | 2017-06-30 |
CN106911357B CN106911357B (zh) | 2020-03-24 |
Family
ID=59201055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510974171.9A Active CN106911357B (zh) | 2015-12-22 | 2015-12-22 | 信号传输方法、信号发送装置和信号接收装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106911357B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113630159A (zh) * | 2021-08-12 | 2021-11-09 | 北京电信规划设计院有限公司 | 基于射频电缆的多频率信号通信传输系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102413388A (zh) * | 2011-11-18 | 2012-04-11 | 电子科技大学 | 一种基于光码分复用的光纤无线RoF无源光网络实现方法 |
CN103916172A (zh) * | 2012-12-29 | 2014-07-09 | 重庆重邮信科通信技术有限公司 | 一种射频收发信机及射频收发方法 |
CN203734630U (zh) * | 2013-12-31 | 2014-07-23 | 国家广播电影电视总局五六一台 | 一种直接数字驱动功放模块 |
CN104092642A (zh) * | 2014-07-30 | 2014-10-08 | 东南大学 | 一种用于非相干解调电路中的载波相位同步方法及装置 |
CN205232220U (zh) * | 2015-12-22 | 2016-05-11 | 国家新闻出版广电总局无线电台管理局 | 信号发送装置和信号接收装置 |
-
2015
- 2015-12-22 CN CN201510974171.9A patent/CN106911357B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102413388A (zh) * | 2011-11-18 | 2012-04-11 | 电子科技大学 | 一种基于光码分复用的光纤无线RoF无源光网络实现方法 |
CN103916172A (zh) * | 2012-12-29 | 2014-07-09 | 重庆重邮信科通信技术有限公司 | 一种射频收发信机及射频收发方法 |
CN203734630U (zh) * | 2013-12-31 | 2014-07-23 | 国家广播电影电视总局五六一台 | 一种直接数字驱动功放模块 |
CN104092642A (zh) * | 2014-07-30 | 2014-10-08 | 东南大学 | 一种用于非相干解调电路中的载波相位同步方法及装置 |
CN205232220U (zh) * | 2015-12-22 | 2016-05-11 | 国家新闻出版广电总局无线电台管理局 | 信号发送装置和信号接收装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113630159A (zh) * | 2021-08-12 | 2021-11-09 | 北京电信规划设计院有限公司 | 基于射频电缆的多频率信号通信传输系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106911357B (zh) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102547778B (zh) | 一种扁平化网络架构的无线通信系统、方法及扩展装置 | |
CN101841935B (zh) | 一种单天线射频拉远单元 | |
US20240154702A1 (en) | Indoor distribution system and signal transmission method | |
CN102547716B (zh) | 一种扁平化网络架构的无线通信系统、方法及扩展装置 | |
CN100442686C (zh) | Cdma移动台设备和cdma发送方法 | |
CN106797355B (zh) | 基站与中继器之间的多通道i/q接口 | |
CN101931540B (zh) | 一种射频拉远单元 | |
US5231629A (en) | Full-duplex communication system | |
US5710990A (en) | Transmitter which adjusts peak-to-average power of a multicarrier signal by switching between a group of channels and a phase-adjusted group of channels | |
CN1276133A (zh) | 基站收发信机的改进方法和装置 | |
CN101938285B (zh) | 利用乒乓操作实现rru数据接口的方法和装置 | |
CN101136811A (zh) | Ofdm发射信号处理装置、方法及射频远端单元 | |
JPH05504248A (ja) | 周波数ホッピングを可能にするための相互接続および処理システム | |
CN107332574A (zh) | 一种大功率罗兰c脉冲发射机及其波形调制方法 | |
CN102217412A (zh) | 通过同轴线传输cpri信号的方法及装置 | |
EP4106209A1 (en) | Methods and systems for communicating data and control information over a serial link | |
CN205232220U (zh) | 信号发送装置和信号接收装置 | |
CN1092429C (zh) | 基站 | |
EP3993277B1 (en) | Methods and systems for communicating data and control information over a serial link | |
CN106911357A (zh) | 信号传输方法、信号发送装置和信号接收装置 | |
CN109981514B (zh) | 一种基于局域网的小区dmb单频网实现方法 | |
CN104753658B (zh) | 一种同时同频全双工系统中的数据传输方法和装置 | |
CN102291741B (zh) | 移动终端跨频段无线资源管理一致性测试系统及其方法 | |
CN115549702B (zh) | 一种甚低频发信机及发信方法 | |
CN204859167U (zh) | 一种便携式短波通信电台 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |