CN106905551A - A kind of counter opal structure temperature-sensitive material and preparation method thereof - Google Patents
A kind of counter opal structure temperature-sensitive material and preparation method thereof Download PDFInfo
- Publication number
- CN106905551A CN106905551A CN201710070396.0A CN201710070396A CN106905551A CN 106905551 A CN106905551 A CN 106905551A CN 201710070396 A CN201710070396 A CN 201710070396A CN 106905551 A CN106905551 A CN 106905551A
- Authority
- CN
- China
- Prior art keywords
- temperature
- irgacure
- counter opal
- opal structure
- cholesteryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000000463 material Substances 0.000 title claims description 32
- 239000004038 photonic crystal Substances 0.000 claims abstract description 42
- 239000011022 opal Substances 0.000 claims abstract description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 78
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 61
- 239000000178 monomer Substances 0.000 claims description 41
- 239000000377 silicon dioxide Substances 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 23
- 235000012239 silicon dioxide Nutrition 0.000 claims description 23
- 229920006254 polymer film Polymers 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 17
- 239000011521 glass Substances 0.000 claims description 16
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 12
- UVZUFUGNHDDLRQ-LLHZKFLPSA-N cholesteryl benzoate Chemical compound O([C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)C(=O)C1=CC=CC=C1 UVZUFUGNHDDLRQ-LLHZKFLPSA-N 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 12
- WCLNGBQPTVENHV-MKQVXYPISA-N cholesteryl nonanoate Chemical compound C([C@@H]12)C[C@]3(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@H]3[C@@H]1CC=C1[C@]2(C)CC[C@H](OC(=O)CCCCCCCC)C1 WCLNGBQPTVENHV-MKQVXYPISA-N 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 9
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 claims description 8
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 claims description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical class CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 239000004973 liquid crystal related substance Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 claims description 6
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 claims description 6
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 6
- -1 alkenyl carbonate Chemical compound 0.000 claims description 6
- 239000004005 microsphere Substances 0.000 claims description 5
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 claims description 4
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 claims description 4
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical group CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 claims description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 4
- 238000005538 encapsulation Methods 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 4
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 claims description 4
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 3
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 3
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 claims description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 3
- FIOCEWASVZHBTK-UHFFFAOYSA-N 2-[2-(2-oxo-2-phenylacetyl)oxyethoxy]ethyl 2-oxo-2-phenylacetate Chemical compound C=1C=CC=CC=1C(=O)C(=O)OCCOCCOC(=O)C(=O)C1=CC=CC=C1 FIOCEWASVZHBTK-UHFFFAOYSA-N 0.000 claims description 2
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 claims description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 claims description 2
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 claims description 2
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 238000004062 sedimentation Methods 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims 9
- 230000036413 temperature sense Effects 0.000 claims 7
- 239000002253 acid Substances 0.000 claims 3
- 150000001336 alkenes Chemical class 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 3
- 150000002148 esters Chemical class 0.000 claims 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims 3
- OTVRYZXVVMZHHW-FNOPAARDSA-N (8s,9s,10r,13r,14s,17r)-3-chloro-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthrene Chemical compound C1C=C2CC(Cl)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 OTVRYZXVVMZHHW-FNOPAARDSA-N 0.000 claims 2
- AMKBITCLNBJPEW-UHFFFAOYSA-N C(O)(O)=O.C(CCCCCCC)CC1=CC=CC=C1 Chemical compound C(O)(O)=O.C(CCCCCCC)CC1=CC=CC=C1 AMKBITCLNBJPEW-UHFFFAOYSA-N 0.000 claims 2
- 235000012000 cholesterol Nutrition 0.000 claims 2
- 239000013078 crystal Substances 0.000 claims 2
- 239000003921 oil Substances 0.000 claims 2
- 229940117958 vinyl acetate Drugs 0.000 claims 2
- GHUXAYLZEGLXDA-UHFFFAOYSA-N 8-azido-5-ethyl-6-phenylphenanthridin-5-ium-3-amine;bromide Chemical compound [Br-].C12=CC(N=[N+]=[N-])=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 GHUXAYLZEGLXDA-UHFFFAOYSA-N 0.000 claims 1
- ONVMWTPUHXCQPY-UHFFFAOYSA-N C(C=C)(=O)O.C(C=C)(=O)O.C(C)O.C(C)O Chemical compound C(C=C)(=O)O.C(C=C)(=O)O.C(C)O.C(C)O ONVMWTPUHXCQPY-UHFFFAOYSA-N 0.000 claims 1
- 241001136154 Stylidium graminifolium Species 0.000 claims 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims 1
- 239000007983 Tris buffer Substances 0.000 claims 1
- 239000006227 byproduct Substances 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 claims 1
- 125000004494 ethyl ester group Chemical group 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- FBUKVWPVBMHYJY-UHFFFAOYSA-M nonanoate Chemical compound CCCCCCCCC([O-])=O FBUKVWPVBMHYJY-UHFFFAOYSA-M 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 150000003431 steroids Chemical class 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000011540 sensing material Substances 0.000 abstract description 21
- 239000000126 substance Substances 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 239000003086 colorant Substances 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 32
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 14
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- 239000000047 product Substances 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- XMPIMLRYNVGZIA-CCEZHUSRSA-N [10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] [(e)-octadec-9-enyl] carbonate Chemical compound C12CCC3(C)C(C(C)CCCC(C)C)CCC3C2CC=C2C1(C)CCC(OC(=O)OCCCCCCCC/C=C/CCCCCCCC)C2 XMPIMLRYNVGZIA-CCEZHUSRSA-N 0.000 description 7
- 238000013019 agitation Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 238000010907 mechanical stirring Methods 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 150000001841 cholesterols Chemical class 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UUWUIHHEUZZYGW-FJMRLGANSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] (4-nonylphenyl) carbonate Chemical compound C1=CC(CCCCCCCCC)=CC=C1OC(=O)O[C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@H]([C@H](C)CCCC(C)C)[C@@]4(C)CC[C@@H]3[C@@]2(C)CC1 UUWUIHHEUZZYGW-FJMRLGANSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XBTXTLKLSHACSS-WDSKDSINSA-N (2S,3S)-2,3-dihydro-3-hydroxyanthranilic acid Chemical compound [NH3+][C@@H]1[C@@H](O)C=CC=C1C([O-])=O XBTXTLKLSHACSS-WDSKDSINSA-N 0.000 description 1
- NZSXSUWYRJVNFI-UHFFFAOYSA-N (4-nonylphenyl) hydrogen carbonate Chemical compound CCCCCCCCCC1=CC=C(OC(O)=O)C=C1 NZSXSUWYRJVNFI-UHFFFAOYSA-N 0.000 description 1
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- LVGFPWDANALGOY-UHFFFAOYSA-N 8-methylnonyl prop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C=C LVGFPWDANALGOY-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- JWXLCQHWBFHMOI-NIQMUPOESA-N bis[(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] carbonate Chemical compound C([C@@H]12)C[C@]3(C)[C@@H]([C@H](C)CCCC(C)C)CC[C@H]3[C@@H]1CC=C(C1)[C@]2(C)CC[C@@H]1OC(=O)O[C@@H]1CC2=CC[C@H]3[C@@H]4CC[C@H]([C@H](C)CCCC(C)C)[C@@]4(C)CC[C@@H]3[C@@]2(C)CC1 JWXLCQHWBFHMOI-NIQMUPOESA-N 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XPNLOZNCOBKRNJ-UHFFFAOYSA-N ethyl prop-2-enoate;methyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C=C.COC(=O)C(C)=C XPNLOZNCOBKRNJ-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- DWDNMCTZTCXXDP-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCCCCCOC(=O)C(C)=C DWDNMCTZTCXXDP-UHFFFAOYSA-N 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- ZDHCZVWCTKTBRY-UHFFFAOYSA-N omega-Hydroxydodecanoic acid Natural products OCCCCCCCCCCCC(O)=O ZDHCZVWCTKTBRY-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/46—Polymerisation initiated by wave energy or particle radiation
- C08F2/48—Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/109—Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/20—Clinical contact thermometers for use with humans or animals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Optical Integrated Circuits (AREA)
Abstract
本发明涉及一种反蛋白石结构温度感应材料及其制备方法。利用反蛋白石光子晶体的多孔微结构,将温度感应物质选择性填充在反蛋白石的多孔微结构中,并将其封装,继而得到温度感应材料。根据填充的温度感应物质不同,在不同温度下温度感应材料显示不同颜色。本发明制备的反蛋白石温度感应材料具有高柔性、高敏感度,制备工艺简单,可控性强,易于工业化生产。The invention relates to an inverse opal structure temperature sensing material and a preparation method thereof. Using the porous microstructure of the inverse opal photonic crystal, the temperature-sensing material is selectively filled in the porous microstructure of the inverse opal and encapsulated, and then the temperature-sensing material is obtained. According to the different temperature-sensing substances filled, the temperature-sensing material displays different colors at different temperatures. The inverse opal temperature sensing material prepared by the invention has high flexibility and high sensitivity, simple preparation process, strong controllability and easy industrial production.
Description
技术领域:Technical field:
本发明涉及一种反蛋白石结构温度感应材料及其制备方法,属于反蛋白石结构光子晶体材料及温敏材料领域。The invention relates to an inverse opal structure temperature sensing material and a preparation method thereof, belonging to the field of inverse opal structure photonic crystal materials and temperature sensitive materials.
背景技术:Background technique:
光子晶体是不同介电常数的材料在空间中周期性排列的结构。利用光子晶体折光指数的周期性变化,可以调控一定波长光的禁阻,即光子带隙。在光子晶体的三维有序自组装的蛋白石结构空隙中填充另一种材料,然后利用化学蚀刻或煅烧来去除原光子晶体模板,即得到反蛋白石。Photonic crystals are structures in which materials with different dielectric constants are periodically arranged in space. By using the periodic change of the refractive index of photonic crystals, the prohibition of light of a certain wavelength can be adjusted, that is, the photonic band gap. Inverse opal is obtained by filling the gaps of the three-dimensional ordered self-assembled opal structure of photonic crystals with another material, and then using chemical etching or calcination to remove the original photonic crystal template.
多孔材料由于具有纳米级孔道结构,其比表面积高,孔径均一可调并且维度有序,在生物催化、功能高分子复合物的组装、化学传感、吸附分离和微器件等领域有着重要的应用前景。反蛋白石结构光子晶体作为一种超高比表面积材料,有广泛的用途,作为新型催化剂及其载体、生物传感器等用途不断被开发出来。专利CN101870866A将二氧化硅反蛋白石光子晶体表面修饰上荧光素FITC,成功制备对TNT蒸气识别作用的反蛋白石结构二氧化硅荧光薄膜,形成高选择性、高灵敏性、带有分子识别性能纳米结构探针。专利CN103257123A将重金属感应基团修饰到反蛋白石光子晶体表面,制备了一种具有多级结构的光子晶体薄膜重金属传感器,用于特定物质的分析检测可以大大提高检测的灵敏度、选择性和适用范围。专利CN102193213B将水凝胶作为反蛋白石光子晶体骨架,在孔穴中填充隐形眼镜标准热固液,获得炫彩色隐形眼镜。相对于其他彩色隐形眼镜而言,炫彩色隐形眼镜更加美观大方,而且生物相容性好,具有很好的实用性。多种材料被用于修饰反蛋白石光子晶体,使反蛋白石光子晶体表现出多种性质。但在以往的反蛋白石结构应用中,还未见到填充温度敏感物质作为温度感应材料的报道。传统的温度计采用水银和玻璃所制,容易损坏,造成水银挥发和泄露,对人体和环境造成危害;温度计形态固定,不能弯折,无法满足复杂条件下,温度测量。由于薄膜液晶温度计为流体形态,容易泄露,造成损失。为了解决在复杂环境下的温度感应材料缺失,利用反蛋白石结构多孔特性,将温度敏感物质封装在其中,得到了一种反蛋白石结构温度感应材料。Due to the nanoscale pore structure, the porous material has high specific surface area, uniform and adjustable pore size and ordered dimensions, and has important applications in the fields of biocatalysis, functional polymer composite assembly, chemical sensing, adsorption separation, and microdevices. prospect. As an ultra-high specific surface area material, inverse opal photonic crystal has a wide range of applications, and has been continuously developed as a new catalyst and its carrier, biosensor and other applications. Patent CN101870866A modified the surface of silicon dioxide inverse opal photonic crystal with fluorescein FITC, and successfully prepared an inverse opal structure silicon dioxide fluorescent film that recognizes TNT vapor, forming a nanostructure with high selectivity, high sensitivity and molecular recognition performance probe. Patent CN103257123A modified heavy metal sensing groups to the surface of inverse opal photonic crystals, and prepared a photonic crystal thin film heavy metal sensor with multi-level structure, which can greatly improve the sensitivity, selectivity and scope of application for the analysis and detection of specific substances. Patent CN102193213B uses hydrogel as the framework of inverse opal photonic crystals, and fills the holes with standard thermosolid liquid for contact lenses to obtain colorful contact lenses. Compared with other colored contact lenses, the dazzling colored contact lenses are more elegant in appearance, have good biocompatibility, and have good practicability. A variety of materials have been used to modify inverse opal photonic crystals, so that inverse opal photonic crystals exhibit various properties. However, in the previous application of inverse opal structures, there has not been any report of filling temperature-sensitive substances as temperature-sensing materials. Traditional thermometers are made of mercury and glass, which are easily damaged, causing mercury volatilization and leakage, and causing harm to the human body and the environment; the thermometer has a fixed shape and cannot be bent, so it cannot meet temperature measurement under complex conditions. Since the thin-film liquid crystal thermometer is in the form of fluid, it is easy to leak and cause losses. In order to solve the lack of temperature-sensing materials in complex environments, a temperature-sensing material with an inverse opal structure was obtained by encapsulating temperature-sensitive substances in it by using the porous characteristics of the inverse opal structure.
发明内容:Invention content:
本发明涉及一种新型反蛋白石结构温度感应材料及其制备方法,利用反蛋白石光子晶体的多孔微结构,将温度感应物质选择性填充在反蛋白石的多孔微结构中,并将其封装,继而得到温度感应材料。The invention relates to a novel inverse opal structure temperature-sensing material and a preparation method thereof. Using the porous microstructure of the inverse opal photonic crystal, the temperature-sensing material is selectively filled in the porous microstructure of the inverse opal and encapsulated to obtain temperature sensitive material.
本发明提供的一种反蛋白石结构温度感应材料:将二氧化硅微球垂直沉降组装成二氧化硅光子晶体嵌入聚合物薄膜,将嵌入二氧化硅光子晶体的聚合物薄膜选择性蚀刻形成反蛋白石区域,在蚀刻后形成的反蛋白石区域填充温度感应物质,经封装,形成反蛋白石结构温度感应材料。An inverse opal-structured temperature-sensing material provided by the invention: vertically sedimentation of silicon dioxide microspheres is assembled into a silicon dioxide photonic crystal-embedded polymer film, and the polymer film embedded in a silicon dioxide photonic crystal is selectively etched to form an inverse opal In the region, the inverse opal region formed after etching is filled with a temperature-sensing substance, and encapsulated to form an inverse-opal structure temperature-sensing material.
所述的温度感应物质为胆甾相液晶;选自以下液晶中的一种或它们的混合物:胆甾醇油烯基碳酸酯、胆甾醇壬酸酯、胆甾醇苯甲酸酯、氯化胆固醇、胆甾烯基碳酸酯或胆甾烯基对壬基苯基碳酸酯。The temperature-sensitive substance is a cholesteric liquid crystal; one or a mixture thereof selected from the following liquid crystals: cholesteryl oleyl carbonate, cholesteryl nonanoate, cholesteryl benzoate, chlorinated cholesterol, Cholesteryl carbonate or cholestenyl p-nonylphenyl carbonate.
本发明提供的一种反蛋白石结构温度感应材料的制备方法,具体步骤和条件为:A method for preparing an inverse opal structure temperature sensing material provided by the present invention, the specific steps and conditions are as follows:
(1)二氧化硅微球的制备(1) Preparation of silica microspheres
采用优化的Stober法,将乙醇与质量浓度25%的氨水按照体积比45:1-3:1混合,取100质量份,在搅拌及恒定温度(25–50℃)下,滴加3-30质量份原硅酸四乙酯。经过6-48小时反应,将产物洗涤、干燥,得到粒径均一的二氧化硅微球,待用。Using the optimized Stober method, mix ethanol and ammonia water with a mass concentration of 25% according to the volume ratio of 45:1-3:1, take 100 parts by mass, add dropwise 3-30 Parts by mass of tetraethyl orthosilicate. After 6-48 hours of reaction, the product is washed and dried to obtain silica microspheres with uniform particle size, which are ready for use.
(2)二氧化硅光子晶体的组装(2) Assembly of silica photonic crystals
将步骤(1)得到的二氧化硅微球配置成质量浓度0.1-5%的乙醇分散液,优选质量浓度1-3%,将表面亲水化的玻璃基板放入分散液中,在恒温恒湿条件下,静置24-96小时,在基板表面(双面)得到二氧化硅光子晶体。The silica microspheres obtained in step (1) are configured into an ethanol dispersion with a mass concentration of 0.1-5%, preferably with a mass concentration of 1-3%, and the surface-hydrophilized glass substrate is put into the dispersion, and heated at a constant temperature. Under wet conditions, stand still for 24-96 hours to obtain silicon dioxide photonic crystals on the substrate surface (both sides).
所述的恒温恒湿条件为:温度为10-80℃,优选30-50℃;湿度为5-80%,优选30-50%。The constant temperature and humidity conditions are as follows: temperature is 10-80°C, preferably 30-50°C; humidity is 5-80%, preferably 30-50%.
(3)嵌入二氧化硅光子晶体的聚合物薄膜的制备(3) Preparation of polymer films embedded with silica photonic crystals
将间隔垫粘在光子晶体玻璃基板两侧,加盖另一块玻璃基板形成腔体。将可聚合单体添加质量比1%-5%的光引发剂后,填充入腔体中。在紫外光照射下(紫外光强度为5-50mw/cm2,照射时间优选5-200分钟)固化,将腔体放置在60-95℃热水中浸泡1-24小时,将形成的聚合物薄膜从腔体中取出,得到一面嵌入二氧化硅光子晶体的聚合物薄膜。The spacer is glued on both sides of the photonic crystal glass substrate, and another glass substrate is covered to form a cavity. The polymerizable monomer is filled into the cavity after adding a photoinitiator with a mass ratio of 1%-5%. Cured under ultraviolet light (intensity of ultraviolet light is 5-50mw/cm2, irradiation time is preferably 5-200 minutes), the cavity is placed in hot water at 60-95°C for 1-24 hours, and the formed polymer film Take it out of the cavity to get a polymer film embedded with silicon dioxide photonic crystals on one side.
所述的可聚合单体选自以下单体中的一种或它们的混合物:甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丁酯、甲基丙烯酸己酯、甲基丙烯酸羟丙酯、甲基丙烯酸缩水甘油酯、醋酸乙烯酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸己酯、丙烯酸异辛酯、丙烯酸异癸酯、丙烯酸月桂酯、己二醇二丙烯酸酯、聚二乙醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、A6OCB、AC-6CN、6CB、5CB、C3M、C4M、C6M。The polymerizable monomer is selected from one of the following monomers or a mixture thereof: methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methacrylic acid Hexyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, vinyl acetate, methyl acrylate, ethyl acrylate, hexyl acrylate, isooctyl acrylate, isodecyl acrylate, lauryl acrylate, hexanediol Diacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate, A6OCB, AC-6CN, 6CB, 5CB, C3M, C4M, C6M.
所述光引发剂选自以下光引发剂的中的一种或它们的混合物:Irgacure 651、Irgacure 1717、Irgacure 1173、Irgacure 2959、Irgacure 184、Irgacure 907、Irgacure369、Irgacure 819、Irgacure 754、TPO、MBF。The photoinitiator is selected from one of the following photoinitiators or their mixture: Irgacure 651, Irgacure 1717, Irgacure 1173, Irgacure 2959, Irgacure 184, Irgacure 907, Irgacure369, Irgacure 819, Irgacure 754, TPO, MBF .
(4)选择性蚀刻制备图案(4) Selective etching to prepare patterns
在掩膜覆盖下,用氢氟酸稀溶液蚀刻聚合物薄膜表面的光子晶体,在聚合物薄膜光子晶体表面得到图案化柔性反蛋白石结构空隙。氢氟酸稀溶液质量浓度为0.05-5%,优选1-3%,蚀刻时间优选为1-30分钟。Under the cover of the mask, the photonic crystal on the surface of the polymer film is etched with a dilute solution of hydrofluoric acid, and patterned flexible inverse opal structure voids are obtained on the surface of the photonic crystal of the polymer film. The mass concentration of the dilute hydrofluoric acid solution is 0.05-5%, preferably 1-3%, and the etching time is preferably 1-30 minutes.
(5)温度感应物质的填入及封装(5) Filling and packaging of temperature-sensitive substances
将温度感应物质填入蚀刻后的反蛋白石结构空隙中,再在薄膜表面喷涂添加了光引发剂的可聚合封装单体,经紫外光照固化后,温度敏感物质被封装在反蛋白石结构中,得到反蛋白石结构温度感应材料。Fill the temperature-sensitive substance into the gap of the etched inverse opal structure, and then spray the polymerizable encapsulation monomer added with photoinitiator on the surface of the film. After being cured by ultraviolet light, the temperature-sensitive substance is encapsulated in the inverse opal structure to obtain Inverse opal-structured temperature-sensing materials.
温度感应物质优选如下质量比的液晶混合物:The temperature sensitive substance is preferably a liquid crystal mixture with the following mass ratio:
胆甾烯基对壬基苯基碳酸酯:胆甾醇壬酸酯:胆甾醇苯甲酸酯:氯化胆固醇:胆甾烯基碳酸酯=(20-30):(30-50):(0-20):(0-10):(0-25)Cholesteryl p-nonylphenyl carbonate: cholesteryl nonanoate: cholesteryl benzoate: chlorinated cholesterol: cholestenyl carbonate = (20-30): (30-50): (0 -20):(0-10):(0-25)
或者胆甾醇油烯基碳酸酯:胆甾醇壬酸酯:胆甾醇苯甲酸酯=(30-45):(45-60):10Or cholesteryl oleyl carbonate: cholesteryl nonanoate: cholesteryl benzoate = (30-45): (45-60): 10
所述的可聚合封装单体为质量比10:1~1:10的1,6-己二醇二丙烯酸酯(HDDA)与以下单体中的一种的混合物:甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丁酯、甲基丙烯酸己酯、甲基丙烯酸羟丙酯、甲基丙烯酸缩水甘油酯、醋酸乙烯酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸己酯、丙烯酸异辛酯;光引发剂选自以下光引发剂的中的一种或它们的混合物:Irgacure 651、Irgacure 1717、Irgacure 1173、Irgacure 2959、Irgacure 184、TPO,光引发剂的加入量为单体总质量的1-4%。The polymerizable encapsulating monomer is a mixture of 1,6-hexanediol diacrylate (HDDA) with a mass ratio of 10:1 to 1:10 and one of the following monomers: methyl methacrylate, methyl methacrylate Ethyl acrylate, n-butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, hydroxypropyl methacrylate, glycidyl methacrylate, vinyl acetate, methyl acrylate, ethyl acrylate , hexyl acrylate, isooctyl acrylate; the photoinitiator is selected from one of the following photoinitiators or their mixture: Irgacure 651, Irgacure 1717, Irgacure 1173, Irgacure 2959, Irgacure 184, TPO, photoinitiator The added amount is 1-4% of the total mass of monomers.
本发明的效果:本发明制得的温度感应材料具有生物相容性好、无刺激、环境友好的特点,并且具有高柔性,为设计新型的温度传感器提供了材料基础。本发明还可根据实际需要得到感应不同指定温度的感应材料,按照感应温度范围,可应用于多种用途,如检测人体体温、酒类产品温度及其他窄量程温度检测领域。与传统的水银温度计相比,反蛋白石结构温度感应材料可用于柔性温度测量装置的制备;与传统的水银温度计相比,更环保、适用场景更多;与电子温度计相比,价格更低廉。Effects of the present invention: the temperature sensing material prepared by the present invention has the characteristics of good biocompatibility, non-irritation, environmental friendliness, and high flexibility, which provides a material basis for designing a new type of temperature sensor. The present invention can also obtain sensing materials that sense different designated temperatures according to actual needs, and can be applied to various purposes according to the sensing temperature range, such as detecting human body temperature, wine product temperature and other narrow-range temperature detection fields. Compared with traditional mercury thermometers, inverse opal-structured temperature-sensing materials can be used in the preparation of flexible temperature measuring devices; compared with traditional mercury thermometers, they are more environmentally friendly and have more applicable scenarios; compared with electronic thermometers, they are cheaper.
具体实施方式:detailed description:
实施例1:Example 1:
二氧化硅微球采用优化的Stober法合成。首先,将75ml乙醇、7ml质量浓度25%的氨水混合加入反应器中,并水浴加热至30℃;以300rpm转速进行机械搅拌。控制反应温度为30℃,向体系中以1滴/s的滴加速度,加入6ml原硅酸四乙酯。在滴加完毕后,反应12h。将产物离心后,分别用乙醇、去离子水反复洗涤四次,干燥,得到二氧化硅微球,待用。Silica microspheres were synthesized by the optimized Stober method. First, 75 ml of ethanol and 7 ml of ammonia water with a mass concentration of 25% were mixed and added into the reactor, and heated to 30° C. in a water bath; mechanical stirring was performed at a speed of 300 rpm. The reaction temperature was controlled at 30°C, and 6ml of tetraethyl orthosilicate was added to the system at a rate of 1 drop/s. After the dropwise addition was completed, the reaction was carried out for 12h. After the product was centrifuged, it was repeatedly washed four times with ethanol and deionized water, and dried to obtain silica microspheres for use.
将二氧化硅微球以质量浓度1.2%超声分散在乙醇中。将经表面亲水性处理的玻璃基板(玻璃基板放入质量浓度37%过氧化氢和98%浓硫酸体积比3:7的混合溶液中12h,以增强其表面亲水性),垂直放入二氧化硅-乙醇分散液储液槽中。控制温度35℃,湿度25%,静置48h,取出,待乙醇蒸发完毕后,得到二氧化硅光子晶体模板。The silica microspheres were ultrasonically dispersed in ethanol at a mass concentration of 1.2%. Put the glass substrate treated with surface hydrophilicity (put the glass substrate in a mixed solution with a mass concentration of 37% hydrogen peroxide and 98% concentrated sulfuric acid at a volume ratio of 3:7 for 12 hours to enhance its surface hydrophilicity), and place it vertically Silica-ethanol dispersion in reservoir. Control the temperature at 35° C. and the humidity at 25%, let it stand for 48 hours, take it out, and obtain the silicon dioxide photonic crystal template after the ethanol evaporates completely.
将可聚合单体C4M,C6M,A6OCB以质量比4:4:2混合,加入单体质量总质量2%光引发剂Irgacure651后,在二氯甲烷中充分搅拌溶解。减压蒸发去除溶剂后,得到混配的可聚合单体。将厚度20微米的间隔垫粘在光子晶体玻璃基板两侧,加盖另一块玻璃基板形成腔体。将可聚合单体添加光引发剂(光引发剂与可聚合单体质量比为1:50)后,填充入腔体中。在强度为15mw/cm2的紫外光照射15分钟后固化,将腔体放置在80℃热水中浸泡5小时,将形成的聚合物薄膜从腔体中取出,得到一面嵌入二氧化硅光子晶体的聚合物薄膜。Mix the polymerizable monomers C4M, C6M, and A6OCB at a mass ratio of 4:4:2, add 2% photoinitiator Irgacure651 to the total mass of the monomers, and fully stir and dissolve in dichloromethane. After removal of the solvent by evaporation under reduced pressure, a compounded polymerizable monomer was obtained. A spacer with a thickness of 20 microns is glued to both sides of the photonic crystal glass substrate, and another glass substrate is covered to form a cavity. After adding the photoinitiator to the polymerizable monomer (mass ratio of photoinitiator to polymerizable monomer is 1:50), it is filled into the cavity. Cured after 15 minutes of ultraviolet light irradiation with an intensity of 15mw/cm2, the cavity was placed in hot water at 80°C for 5 hours, and the formed polymer film was taken out of the cavity to obtain a photonic crystal embedded in silicon dioxide. polymer film.
将上步制备的一面嵌入光子晶体的聚合物薄膜,覆盖掩膜。用质量浓度1%的氢氟酸溶液,均匀涂抹在掩膜上,进行局部蚀刻。1分钟后,用去离子水清洗。得到图案化反蛋白石模板。Embed the photonic crystal polymer film on one side prepared in the previous step to cover the mask. Use a hydrofluoric acid solution with a mass concentration of 1% to evenly spread on the mask for partial etching. After 1 min, wash with deionized water. A patterned inverse opal template was obtained.
将胆甾醇油烯基碳酸酯、胆甾醇壬酸酯、胆甾醇苯甲酸酯按照质量比45:45:10混配,加热至90℃后,加入图案化反蛋白石模板的图案中。在薄膜图案表面喷涂一层质量比1:1的1,6-己二醇二丙烯酸酯与甲基丙烯酸甲酯封装单体(光引发剂Irgacure651质量比为2%)。在25mw/cm2紫外光照下5min固化封装。得到反蛋白石结构温度感应材料。Cholesteryl oleyl carbonate, cholesteryl nonanoate, and cholesteryl benzoate were mixed in a mass ratio of 45:45:10, heated to 90°C, and added to the pattern of the patterned inverse opal template. Spray a layer of 1,6-hexanediol diacrylate and methyl methacrylate encapsulating monomer with a mass ratio of 1:1 on the surface of the film pattern (the mass ratio of the photoinitiator Irgacure651 is 2%). The package was cured under 25mw/cm 2 UV light for 5min. Obtain the inverse opal structure temperature sensing material.
在温度低于26.5℃时,薄膜整体呈现无色状态。在26.5℃时,薄膜呈现红色图案;在从26.5℃加热至30.5℃时,薄膜颜色依次变换为红色、橙色、绿色、蓝色。在温度高于30.5℃时,薄膜又呈现出无色状态。此反蛋白石结构温度敏感材料可指示温域26.5℃至30.5℃。灵敏度为1℃。When the temperature is lower than 26.5°C, the film is in a colorless state as a whole. At 26.5°C, the film showed a red pattern; when heated from 26.5°C to 30.5°C, the color of the film changed to red, orange, green, and blue in turn. When the temperature is higher than 30.5°C, the film shows a colorless state again. The temperature-sensitive material with inverse opal structure can indicate the temperature range from 26.5°C to 30.5°C. The sensitivity is 1°C.
实施例2:Example 2:
二氧化硅微球采用优化的Stober法合成。首先,将75ml乙醇、8ml氨水混合加入具有机械搅拌的反应器中,并水浴加热至31℃;控制机械搅拌310rpm。在温度稳定后,向体系中以1滴/s的滴加速度,加入6ml原硅酸四乙酯。在滴加完毕后,12h,停止反应。将产物离心后,分别用乙醇、其离子水反复洗涤四次。干燥待用。Silica microspheres were synthesized by the optimized Stober method. First, mix 75ml of ethanol and 8ml of ammonia water into the reactor with mechanical stirring, and heat it to 31°C in a water bath; control the mechanical stirring to 310rpm. After the temperature stabilized, 6ml of tetraethyl orthosilicate was added to the system at a rate of 1 drop/s. After the dropwise addition was completed, 12h, the reaction was stopped. After the product was centrifuged, it was repeatedly washed four times with ethanol and its deionized water respectively. Dry and set aside.
将二氧化硅微球以质量浓度1.5%超声分散在乙醇中。将经表面亲水性处理的玻璃基板(表面亲水处理同实施例1),垂直放入二氧化硅-乙醇分散液储液槽中。设定温度30℃,湿度35%。静置58h,待乙醇蒸发完毕后,得到二氧化硅光子晶体模板。The silica microspheres were ultrasonically dispersed in ethanol at a mass concentration of 1.5%. Put the glass substrate with surface hydrophilic treatment (the surface hydrophilic treatment is the same as that in Example 1) vertically into the silica-ethanol dispersion liquid storage tank. Set the temperature at 30°C and the humidity at 35%. After standing still for 58 hours, the silicon dioxide photonic crystal template was obtained after the ethanol evaporated completely.
将可聚合单体C4M,A6OCB以质量比8:2混合,加入单体总质量2%光引发剂Irgacure1173后,在二氯甲烷中充分搅拌溶解。减压蒸发去除溶剂后,得到混配的可聚合单体。采用与实施例1相同的方法,得到一面嵌入二氧化硅光子晶体的聚合物薄膜。Mix the polymerizable monomers C4M and A6OCB at a mass ratio of 8:2, add 2% photoinitiator Irgacure1173 of the total mass of the monomers, and fully stir and dissolve in dichloromethane. After removal of the solvent by evaporation under reduced pressure, a compounded polymerizable monomer was obtained. Using the same method as in Example 1, a polymer film with one side embedded with silicon dioxide photonic crystals was obtained.
将上步制备的反蛋白石薄膜,覆盖掩膜。用质量浓度1.5%的氢氟酸溶液,均匀涂抹在掩膜上,进行局部蚀刻。1分钟后,用去离子水清洗。得到图案化反蛋白石模板。Cover the inverse opal film prepared in the previous step with a mask. Use a hydrofluoric acid solution with a mass concentration of 1.5% to evenly spread it on the mask for partial etching. After 1 min, wash with deionized water. A patterned inverse opal template was obtained.
将胆甾醇油烯基碳酸酯、胆甾醇壬酸酯、胆甾醇苯甲酸酯按照质量比44:46:10混配,加热至95℃后,加入图案化反蛋白石模板的图案中。用质量比1:1的1,6-己二醇二丙烯酸酯:丙烯酸混合单体封装(光引发剂Irgacure1173,占单体质量2%),其他条件同实施例1,得到反蛋白石结构温度感应材料。Cholesteryl oleyl carbonate, cholesteryl nonanoate, and cholesteryl benzoate were mixed in a mass ratio of 44:46:10, heated to 95° C., and added to the pattern of the patterned inverse opal template. Encapsulate with 1,6-hexanediol diacrylate: acrylic acid mixed monomer with a mass ratio of 1:1 (photoinitiator Irgacure1173, accounting for 2% of the monomer mass), and other conditions are the same as in Example 1 to obtain an inverse opal structure. Material.
在温度低于30℃时,薄膜整体呈现无色状态。在30℃时,薄膜呈现红色图案;在从30℃加热至33℃时,薄膜颜色变换为红色、橙色、绿色、蓝色。在温度高于33℃时,薄膜又呈现出无色状态。此反蛋白石温度计可指示温域30℃至33℃。灵敏度为1℃。When the temperature is lower than 30°C, the film as a whole is in a colorless state. At 30°C, the film showed a red pattern; when heated from 30°C to 33°C, the color of the film changed to red, orange, green, and blue. When the temperature is higher than 33°C, the film shows a colorless state again. This inverse opal thermometer can indicate a temperature range of 30°C to 33°C. The sensitivity is 1°C.
实施例3:Example 3:
二氧化硅微球采用优化的Stober法合成。首先,将75ml乙醇、9ml氨水混合加入具有机械搅拌的反应器中,并水浴加热至33℃;控制机械搅拌350rpm。在温度稳定后,向体系中以1滴/s的滴加速度,加入6ml原硅酸四乙酯。在滴加完毕后,12h,停止反应。将产物离心后,分别用乙醇、其离子水反复洗涤四次。干燥待用。Silica microspheres were synthesized by the optimized Stober method. First, mix 75ml of ethanol and 9ml of ammonia water into the reactor with mechanical agitation, and heat it to 33°C in a water bath; control the mechanical agitation to 350rpm. After the temperature stabilized, 6ml of tetraethyl orthosilicate was added to the system at a rate of 1 drop/s. After the dropwise addition was completed, 12h, the reaction was stopped. After the product was centrifuged, it was repeatedly washed four times with ethanol and its deionized water respectively. Dry and set aside.
将二氧化硅微球以质量浓度1.7%超声分散在乙醇中。将经表面亲水性处理的玻璃基板(表面亲水处理同实施例1),垂直放入二氧化硅-乙醇分散液储液槽中。设定温度38℃,湿度35%。静置68h,待乙醇蒸发完毕后,得到二氧化硅光子晶体模板。The silica microspheres were ultrasonically dispersed in ethanol at a mass concentration of 1.7%. Put the glass substrate with surface hydrophilic treatment (the surface hydrophilic treatment is the same as that in Example 1) vertically into the silica-ethanol dispersion liquid storage tank. Set the temperature at 38°C and the humidity at 35%. After standing still for 68 hours, the silicon dioxide photonic crystal template was obtained after the ethanol evaporated completely.
将可聚合单体C6M,A6OCB以质量比8:2混合,加入光引发剂Irgacure2959后,在二氯甲烷中充分搅拌溶解。减压蒸发去除溶剂后,得到混配的可聚合单体。采用与实施例1相同的方法,得到一面嵌入二氧化硅光子晶体的聚合物薄膜。Mix the polymerizable monomers C6M and A6OCB at a mass ratio of 8:2, add the photoinitiator Irgacure2959, and fully stir and dissolve in dichloromethane. After removal of the solvent by evaporation under reduced pressure, a compounded polymerizable monomer was obtained. Using the same method as in Example 1, a polymer film with one side embedded with silicon dioxide photonic crystals was obtained.
将上步制备的反蛋白石薄膜,覆盖掩膜。用质量浓度1.8%的氢氟酸溶液,均匀涂抹在掩膜上,进行局部蚀刻。1分钟后,用去离子水清洗。得到图案化反蛋白石模板。Cover the inverse opal film prepared in the previous step with a mask. Use a hydrofluoric acid solution with a mass concentration of 1.8% to evenly spread it on the mask for partial etching. After 1 min, wash with deionized water. A patterned inverse opal template was obtained.
将胆甾醇油烯基碳酸酯、胆甾醇壬酸酯、胆甾醇苯甲酸酯按照质量比40:50:10混配,加热至85-95℃后,加入图案化反蛋白石模板的图案中。用质量比1:1的1,6-己二醇二丙烯酸酯:甲基丙烯酸乙酯混合单体封装(光引发剂Irgacure2959,占单体质量2%),其他条件同实施例1,得到反蛋白石结构温度感应材料。Cholesteryl oleyl carbonate, cholesteryl nonanoate, and cholesteryl benzoate are mixed in a mass ratio of 40:50:10, heated to 85-95° C., and then added to the pattern of the patterned inverse opal template. Encapsulation with 1,6-hexanediol diacrylate: ethyl methacrylate mixed monomer with a mass ratio of 1:1 (photoinitiator Irgacure2959, accounting for 2% of the monomer mass), other conditions are the same as in Example 1, and the reaction product is obtained. Opal-structured temperature-sensing materials.
在温度低于32℃时,薄膜整体呈现无色状态。在32℃时,薄膜呈现红色图案;在从32℃加热至35℃时,薄膜颜色变换为红色、橙色、绿色、蓝色。在温度高于35℃时,薄膜又呈现出无色状态。此反蛋白石温度计可指示温域32℃至35℃。灵敏度为1℃。When the temperature is lower than 32°C, the film as a whole is in a colorless state. At 32°C, the film showed a red pattern; when heated from 32°C to 35°C, the color of the film changed to red, orange, green, and blue. When the temperature is higher than 35°C, the film shows a colorless state again. This inverse opal thermometer can indicate a temperature range of 32°C to 35°C. The sensitivity is 1°C.
实施例4:Example 4:
二氧化硅微球采用优化的Stober法合成。首先,将75ml乙醇、10ml氨水混合加入具有机械搅拌的反应器中,并水浴加热至34℃;控制机械搅拌370rpm。在温度稳定后,向体系中以1滴/s的滴加速度,加入6ml原硅酸四乙酯。在滴加完毕后,12h,停止反应。将产物离心后,分别用乙醇、其离子水反复洗涤四次。干燥待用。Silica microspheres were synthesized by the optimized Stober method. First, mix 75ml of ethanol and 10ml of ammonia water into the reactor with mechanical agitation, and heat it to 34°C in a water bath; control the mechanical agitation to 370rpm. After the temperature stabilized, 6ml of tetraethyl orthosilicate was added to the system at a rate of 1 drop/s. After the dropwise addition was completed, 12h, the reaction was stopped. After the product was centrifuged, it was repeatedly washed four times with ethanol and its deionized water respectively. Dry and set aside.
将二氧化硅微球以质量浓度2%超声分散在乙醇中。将经表面亲水性处理的玻璃基板(表面亲水处理同实施例1),垂直放入二氧化硅-乙醇分散液储液槽中。设定温度42℃,湿度40%。静置68h,待乙醇蒸发完毕后,得到二氧化硅光子晶体模板。The silica microspheres were ultrasonically dispersed in ethanol with a mass concentration of 2%. Put the glass substrate with surface hydrophilic treatment (the surface hydrophilic treatment is the same as that in Example 1) vertically into the silica-ethanol dispersion liquid storage tank. Set the temperature at 42°C and the humidity at 40%. After standing still for 68 hours, the silicon dioxide photonic crystal template was obtained after the ethanol evaporated completely.
将可聚合单体C4M,C6M,AC6CN以质量比4:4:2混合,加入光引发剂Irgacure 184后,在二氯甲烷中充分搅拌溶解。减压蒸发去除溶剂后,得到混配的可聚合单体。采用与实施例1相同的方法,得到一面嵌入二氧化硅光子晶体的聚合物薄膜。Mix the polymerizable monomers C4M, C6M, and AC6CN at a mass ratio of 4:4:2, add the photoinitiator Irgacure 184, and fully stir and dissolve in dichloromethane. After removal of the solvent by evaporation under reduced pressure, a compounded polymerizable monomer was obtained. Using the same method as in Example 1, a polymer film with one side embedded with silicon dioxide photonic crystals was obtained.
将上步制备的反蛋白石薄膜,覆盖掩膜。用质量浓度1%的氢氟酸溶液,均匀涂抹在掩膜上,进行局部蚀刻。1分钟后,用去离子水清洗。得到图案化反蛋白石模板。Cover the inverse opal film prepared in the previous step with a mask. Use a hydrofluoric acid solution with a mass concentration of 1% to evenly spread on the mask for partial etching. After 1 min, wash with deionized water. A patterned inverse opal template was obtained.
将胆甾醇油烯基碳酸酯、胆甾醇壬酸酯、胆甾醇苯甲酸酯按照质量比36:44:10混配,加热至90-100℃后,加入图案化反蛋白石模板的图案中。用质量比1:1 1,6-己二醇二丙烯酸酯:丙烯酸甲酯混合单体封装(光引发剂Irgacure184,占单体质量2%),其他条件同实施例1,得到反蛋白石结构温度感应材料。Cholesteryl oleyl carbonate, cholesteryl nonanoate, and cholesteryl benzoate are mixed in a mass ratio of 36:44:10, heated to 90-100° C., and added to the pattern of the patterned inverse opal template. Encapsulate with a 1:1 mass ratio of 1,6-hexanediol diacrylate:methyl acrylate mixed monomer (photoinitiator Irgacure184, accounting for 2% of the monomer mass), and other conditions are the same as in Example 1 to obtain the inverse opal structure temperature Sensitive material.
在温度低于34℃时,薄膜整体呈现无色状态。在34℃时,薄膜呈现红色图案;在从34℃加热至37℃时,薄膜颜色变换为红色、橙色、绿色、蓝色。在温度高于37℃时,薄膜又呈现出无色状态。此反蛋白石温度计可指示温域34℃至37℃。灵敏度为1℃。When the temperature is lower than 34°C, the film as a whole is in a colorless state. At 34°C, the film showed a red pattern; when heated from 34°C to 37°C, the color of the film changed to red, orange, green, and blue. When the temperature is higher than 37°C, the film shows a colorless state again. This inverse opal thermometer can indicate a temperature range of 34°C to 37°C. The sensitivity is 1°C.
实施例5:Example 5:
二氧化硅微球采用优化的Stober法合成。首先,将75ml乙醇、11ml氨水混合加入具有机械搅拌的反应器中,并水浴加热至32℃;控制机械搅拌400rpm。在温度稳定后,向体系中以1滴/s的滴加速度,加入6ml原硅酸四乙酯。在滴加完毕后,12h,停止反应。将产物离心后,分别用乙醇、其离子水反复洗涤四次。干燥待用。Silica microspheres were synthesized by the optimized Stober method. First, mix 75ml of ethanol and 11ml of ammonia water into the reactor with mechanical agitation, and heat it to 32°C in a water bath; control the mechanical agitation to 400rpm. After the temperature stabilized, 6ml of tetraethyl orthosilicate was added to the system at a rate of 1 drop/s. After the dropwise addition was completed, 12h, the reaction was stopped. After the product was centrifuged, it was repeatedly washed four times with ethanol and its deionized water respectively. Dry and set aside.
将二氧化硅微球以质量浓度1.7%超声分散在乙醇中。将经表面亲水性处理的玻璃基板(表面亲水处理同实施例1),垂直放入二氧化硅-乙醇分散液储液槽中。设定温度45℃,湿度25%。静置48h,待乙醇蒸发完毕后,得到二氧化硅光子晶体模板。The silica microspheres were ultrasonically dispersed in ethanol at a mass concentration of 1.7%. Put the glass substrate with surface hydrophilic treatment (the surface hydrophilic treatment is the same as that in Example 1) vertically into the silica-ethanol dispersion liquid storage tank. Set the temperature at 45°C and the humidity at 25%. After standing still for 48 hours, the silicon dioxide photonic crystal template was obtained after the ethanol evaporated completely.
将可聚合单体DHHA,C6M,A6OCB以质量比4:4:2混合,加入光引发剂Irgacure1717后,在二氯甲烷中充分搅拌溶解。减压蒸发去除溶剂后,得到混配的可聚合单体。采用与实施例1相同的方法,得到一面嵌入二氧化硅光子晶体的聚合物薄膜。Mix the polymerizable monomers DHHA, C6M, and A6OCB at a mass ratio of 4:4:2, add the photoinitiator Irgacure1717, and fully stir and dissolve in dichloromethane. After removal of the solvent by evaporation under reduced pressure, a compounded polymerizable monomer was obtained. Using the same method as in Example 1, a polymer film with one side embedded with silicon dioxide photonic crystals was obtained.
将上步制备的反蛋白石薄膜,覆盖掩膜。用质量浓度3%的氢氟酸溶液,均匀涂抹在掩膜上,进行局部蚀刻。1分钟后,用去离子水清洗。得到图案化反蛋白石模板。Cover the inverse opal film prepared in the previous step with a mask. Use a hydrofluoric acid solution with a mass concentration of 3% to evenly spread on the mask for partial etching. After 1 min, wash with deionized water. A patterned inverse opal template was obtained.
将胆甾醇油烯基碳酸酯、胆甾醇壬酸酯、胆甾醇苯甲酸酯按照质量比32:48:10混配,加热至90-100℃后,加入图案化反蛋白石模板的图案中。用质量比1:1 1,6-己二醇二丙烯酸酯:丙烯酸甲酯混合单体封装(光引发剂Irgacure1717,占单体质量2%),其他条件同实施例1,得到反蛋白石结构温度感应材料。Cholesteryl oleyl carbonate, cholesteryl nonanoate, and cholesteryl benzoate are mixed in a mass ratio of 32:48:10, heated to 90-100°C, and added to the pattern of the patterned inverse opal template. Encapsulate with a 1:1 mass ratio of 1,6-hexanediol diacrylate: methyl acrylate mixed monomer (photoinitiator Irgacure1717, accounting for 2% of the monomer mass), other conditions are the same as in Example 1, and the inverse opal structure temperature is obtained Sensitive material.
在温度低于36℃时,薄膜整体呈现无色状态。在36℃时,薄膜呈现红色图案;在从36℃加热至39℃时,薄膜颜色变换为红色、橙色、绿色、蓝色。在温度高于39℃时,薄膜又呈现出无色状态。此反蛋白石温度计可指示温域36℃至39℃。灵敏度为1℃。When the temperature is lower than 36°C, the film as a whole is in a colorless state. At 36°C, the film showed a red pattern; when heated from 36°C to 39°C, the color of the film changed to red, orange, green, and blue. When the temperature is higher than 39°C, the film shows a colorless state again. This inverse opal thermometer can indicate a temperature range of 36°C to 39°C. The sensitivity is 1°C.
实施例6:Embodiment 6:
二氧化硅微球采用优化的Stober法合成。首先,将75ml乙醇、8.5ml氨水混合加入具有机械搅拌的反应器中,并水浴加热至30℃;控制机械搅拌350rpm。在温度稳定后,向体系中以1滴/s的滴加速度,加入6ml原硅酸四乙酯。在滴加完毕后,12h,停止反应。将产物离心后,分别用乙醇、其离子水反复洗涤四次。干燥待用。Silica microspheres were synthesized by the optimized Stober method. First, mix 75ml of ethanol and 8.5ml of ammonia water into the reactor with mechanical stirring, and heat it to 30°C in a water bath; control the mechanical stirring to 350rpm. After the temperature stabilized, 6ml of tetraethyl orthosilicate was added to the system at a rate of 1 drop/s. After the dropwise addition was completed, 12h, the reaction was stopped. After the product was centrifuged, it was repeatedly washed four times with ethanol and its deionized water respectively. Dry and set aside.
将二氧化硅微球以质量浓度1.2%超声分散在乙醇中。将经表面亲水性处理的玻璃基板(表面亲水处理同实施例1),垂直放入二氧化硅-乙醇分散液储液槽中。设定温度38℃,湿度30%。静置52h,待乙醇蒸发完毕后,得到二氧化硅光子晶体模板。The silica microspheres were ultrasonically dispersed in ethanol at a mass concentration of 1.2%. Put the glass substrate with surface hydrophilic treatment (the surface hydrophilic treatment is the same as that in Example 1) vertically into the silica-ethanol dispersion liquid storage tank. Set the temperature at 38°C and the humidity at 30%. After standing still for 52 hours, the silicon dioxide photonic crystal template was obtained after the ethanol evaporated completely.
将可聚合单体C4M,C6M,A6OCB以质量比45:35:20混合,加入光引发剂Irgacure651后,在二氯甲烷中充分搅拌溶解。减压蒸发去除溶剂后,得到混配的可聚合单体。采用与实施例1相同的方法,得到一面嵌入二氧化硅光子晶体的聚合物薄膜。Mix the polymerizable monomers C4M, C6M, and A6OCB at a mass ratio of 45:35:20, add the photoinitiator Irgacure651, and fully stir and dissolve in dichloromethane. After removal of the solvent by evaporation under reduced pressure, a compounded polymerizable monomer was obtained. Using the same method as in Example 1, a polymer film with one side embedded with silicon dioxide photonic crystals was obtained.
将上步制备的反蛋白石薄膜,覆盖掩膜。用质量浓度1%的氢氟酸溶液,均匀涂抹在掩膜上,进行局部蚀刻。1分钟后,用去离子水清洗。得到图案化反蛋白石模板。Cover the inverse opal film prepared in the previous step with a mask. Use a hydrofluoric acid solution with a mass concentration of 1% to evenly spread on the mask for partial etching. After 1 min, wash with deionized water. A patterned inverse opal template was obtained.
配置胆甾相液晶,将胆甾烯基对壬基苯基碳酸酯、胆甾醇壬酸酯、胆甾醇苯甲酸酯、氯化胆固醇按照质量比36.5:45.3:9.1:9.1混配,加热至90-100℃后,加入图案化反蛋白石模板的图案中。用质量比1:1 1,6-己二醇二丙烯酸酯:甲基丙烯酸甲酯混合单体封装(光引发剂Irgacure651,占单体质量2%),其他条件同实施例1,得到反蛋白石结构温度感应材料。Configure cholesteric liquid crystals, mix cholesteryl p-nonylphenyl carbonate, cholesteryl nonanoate, cholesteryl benzoate, and chlorinated cholesterol according to the mass ratio of 36.5:45.3:9.1:9.1, and heat to After 90-100°C, add to the pattern of the patterned inverse opal template. Encapsulate with a 1:1 mass ratio of 1,6-hexanediol diacrylate:methyl methacrylate mixed monomer (photoinitiator Irgacure651, accounting for 2% of the monomer mass), and other conditions are the same as in Example 1 to obtain inverse opal Structural temperature sensing materials.
在温度低于33℃时,薄膜整体呈现无色状态。在33℃时,薄膜呈现红色图案;在从33℃加热至37℃时,薄膜颜色变换为红色、橙色、黄色、绿色、蓝色。在温度高于37℃时,薄膜又呈现出无色状态。此反蛋白石温度计可指示温域33℃至37℃。灵敏度为1℃。When the temperature is lower than 33°C, the film is in a colorless state as a whole. At 33°C, the film showed a red pattern; when heated from 33°C to 37°C, the color of the film changed to red, orange, yellow, green, and blue. When the temperature is higher than 37°C, the film shows a colorless state again. This inverse opal thermometer can indicate a temperature range of 33°C to 37°C. The sensitivity is 1°C.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710070396.0A CN106905551B (en) | 2017-02-09 | 2017-02-09 | A kind of inverse opal structure temperature sensing material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710070396.0A CN106905551B (en) | 2017-02-09 | 2017-02-09 | A kind of inverse opal structure temperature sensing material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106905551A true CN106905551A (en) | 2017-06-30 |
CN106905551B CN106905551B (en) | 2019-06-11 |
Family
ID=59208369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710070396.0A Active CN106905551B (en) | 2017-02-09 | 2017-02-09 | A kind of inverse opal structure temperature sensing material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106905551B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110273182A (en) * | 2018-03-16 | 2019-09-24 | 郑州大学 | A kind of three-dimensional counter opal polymer photon crystal material and its preparation method and application |
CN110780361A (en) * | 2019-11-29 | 2020-02-11 | 大连理工大学 | Double-layer photonic crystal optical switch thin film device and preparation method thereof |
CN110850584A (en) * | 2019-11-29 | 2020-02-28 | 京东方科技集团股份有限公司 | Electronic paper display device and electronic equipment |
CN110983423A (en) * | 2019-12-31 | 2020-04-10 | 哈尔滨工业大学 | Preparation method of colloid photonic crystal film without color change after bending and patterned colloid photonic crystal film |
KR20210051457A (en) * | 2019-10-30 | 2021-05-10 | 한국과학기술원 | Thermal Condition Recording Method and Thermal Condition Recording System Using Inverse Opal Optical Structure |
CN116656169A (en) * | 2022-04-27 | 2023-08-29 | 中国科学院化学研究所 | A kind of preparation method of novel powder pigment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980685A (en) * | 2012-12-06 | 2013-03-20 | 天津理工大学 | Cascade long-period pohotonic crystal fiber grating temperature sensor |
CN104117338A (en) * | 2014-06-12 | 2014-10-29 | 东南大学 | Structural color activated carbon and preparation method and application of structural color activated carbon |
-
2017
- 2017-02-09 CN CN201710070396.0A patent/CN106905551B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102980685A (en) * | 2012-12-06 | 2013-03-20 | 天津理工大学 | Cascade long-period pohotonic crystal fiber grating temperature sensor |
CN104117338A (en) * | 2014-06-12 | 2014-10-29 | 东南大学 | Structural color activated carbon and preparation method and application of structural color activated carbon |
Non-Patent Citations (2)
Title |
---|
HUIHUI XING, ET AL.: "Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer", 《J. MATER. CHEM. C》 * |
邢慧慧: "可调带隙光子晶体/液晶光功能材料的制备及调控机理研究", 《中国博士学位论文全文数据库·工程科技Ⅰ辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110273182A (en) * | 2018-03-16 | 2019-09-24 | 郑州大学 | A kind of three-dimensional counter opal polymer photon crystal material and its preparation method and application |
CN110273182B (en) * | 2018-03-16 | 2021-06-11 | 郑州大学 | Three-dimensional inverse opal polymer photonic crystal material and preparation method and application thereof |
KR20210051457A (en) * | 2019-10-30 | 2021-05-10 | 한국과학기술원 | Thermal Condition Recording Method and Thermal Condition Recording System Using Inverse Opal Optical Structure |
KR102265009B1 (en) | 2019-10-30 | 2021-06-15 | 한국과학기술원 | Thermal Condition Recording Method and Thermal Condition Recording System Using Inverse Opal Optical Structure |
CN110780361A (en) * | 2019-11-29 | 2020-02-11 | 大连理工大学 | Double-layer photonic crystal optical switch thin film device and preparation method thereof |
CN110850584A (en) * | 2019-11-29 | 2020-02-28 | 京东方科技集团股份有限公司 | Electronic paper display device and electronic equipment |
CN110780361B (en) * | 2019-11-29 | 2021-08-17 | 大连理工大学 | A kind of double-layer photonic crystal optical switching thin film device and preparation method thereof |
US12242048B2 (en) | 2019-11-29 | 2025-03-04 | Dalian University Of Technology | Bilayer photonic crystal photoswitch thin-film device and preparation method thereof |
CN110983423A (en) * | 2019-12-31 | 2020-04-10 | 哈尔滨工业大学 | Preparation method of colloid photonic crystal film without color change after bending and patterned colloid photonic crystal film |
CN110983423B (en) * | 2019-12-31 | 2021-07-09 | 哈尔滨工业大学 | A kind of colloidal photonic crystal film that does not change color after bending and preparation method of patterned colloidal photonic crystal film |
CN116656169A (en) * | 2022-04-27 | 2023-08-29 | 中国科学院化学研究所 | A kind of preparation method of novel powder pigment |
Also Published As
Publication number | Publication date |
---|---|
CN106905551B (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106905551A (en) | A kind of counter opal structure temperature-sensitive material and preparation method thereof | |
CN103143303B (en) | Wide-visual-angle colloid crystal film and preparation method thereof | |
CN103409801B (en) | A kind of preparation method of high intensity crosslinking polymer crystal film with photon | |
US9150769B2 (en) | Phase-changing material microcapsules by using PMMA prepolymer and organic-solvent free synthesis process | |
CN101985531A (en) | Photosensitive coating and preparation method thereof and photosensitive film made by utilizing same | |
CN104389024A (en) | Method for preparing color-adjustable gel photonic crystal film | |
CN102816268B (en) | Preparation method for nanometer composite anti-fogging film | |
CN104961906B (en) | A kind of photonic crystal hydrogel thin film, its preparation method and application for having pH value and ionic strength response concurrently | |
CN101510518A (en) | Method for sealing micro-fluidic chip and use thereof | |
CN107490576A (en) | A kind of photonic crystal hydrogel microsphere of quick detection agricultural chemicals, toxin and nano-particle and its preparation method and application | |
JP2020514047A (en) | Method for producing capsules with improved retention properties and capsules obtained from the method | |
CN107384367B (en) | Preparation of melamine molecularly imprinted fluorescence sensor MEL-MIP using ZnO quantum dots/porous silicon fluorescent material | |
CN104693469B (en) | A kind of preparation method of the flexible colloid crystal film of high-sequential | |
CN101358242A (en) | Compound biochip based on photonic crystal | |
CN112592072B (en) | Responsive photonic crystal film with wide temperature induction interval and preparation method thereof | |
CN105784664A (en) | Hydrogel microsphere type fluorescence sensor, preparation method and application | |
CN103372410A (en) | Microcapsule used for cladding solid-liquid phase and preparation method thereof | |
Lim et al. | Functional solid-state photonic droplets with interpenetrating polymer network and their applications to biosensors | |
CN110183703A (en) | A kind of photonic crystal composite type pressure sensor and preparation method thereof and optical detecting method | |
CN107664637A (en) | A kind of molecular imprinting photonic crystal detection card and application | |
CN102616044B (en) | Colloidal photon crystal composite film with humidity responsiveness and patterning, and method for preparing same | |
CN109627826A (en) | A kind of compound shell material microcapsules and preparation method thereof with dual corrosion proof function | |
WO2019039292A1 (en) | Method for producing microcapsules or beads | |
CN109908357A (en) | A kind of controlled-release microsphere carrier capable of visual monitoring and preparation method and application thereof | |
Hu et al. | Osmosis manipulable morphology and photonic property of microcapsules with colloidal nano-in-micro structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |