CN106901727A - A kind of depression Risk Screening device based on EEG signals - Google Patents
A kind of depression Risk Screening device based on EEG signals Download PDFInfo
- Publication number
- CN106901727A CN106901727A CN201710025238.3A CN201710025238A CN106901727A CN 106901727 A CN106901727 A CN 106901727A CN 201710025238 A CN201710025238 A CN 201710025238A CN 106901727 A CN106901727 A CN 106901727A
- Authority
- CN
- China
- Prior art keywords
- eeg
- eeg signals
- module
- electrode
- depression risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012216 screening Methods 0.000 title claims abstract description 49
- 238000012545 processing Methods 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 18
- 210000004556 brain Anatomy 0.000 claims description 21
- 230000003044 adaptive effect Effects 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 10
- 210000003128 head Anatomy 0.000 claims description 8
- 238000005312 nonlinear dynamic Methods 0.000 claims description 7
- 210000001061 forehead Anatomy 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims 7
- 239000012774 insulation material Substances 0.000 claims 1
- 230000007958 sleep Effects 0.000 abstract description 18
- 238000007781 pre-processing Methods 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 9
- 238000004364 calculation method Methods 0.000 abstract description 5
- 238000012502 risk assessment Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 9
- 238000007726 management method Methods 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 6
- 230000008667 sleep stage Effects 0.000 description 6
- 238000013145 classification model Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000036385 rapid eye movement (rem) sleep Effects 0.000 description 5
- 238000012706 support-vector machine Methods 0.000 description 5
- 238000012549 training Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000012905 Brassica oleracea var viridis Nutrition 0.000 description 1
- 206010012374 Depressed mood Diseases 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- 206010065604 Suicidal behaviour Diseases 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000037053 non-rapid eye movement Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000004461 rapid eye movement Effects 0.000 description 1
- 230000004620 sleep latency Effects 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analogue processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Psychiatry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Psychology (AREA)
- Signal Processing (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Educational Technology (AREA)
- Hospice & Palliative Care (AREA)
- Social Psychology (AREA)
- Power Engineering (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种基于脑电信号的抑郁症风险筛查装置,属于抑郁症风险筛查领域;包括脑电信号中心处理装置和检测装置;还包括普适化脑电数据采集系统、脑电信号预处理系统、筛查抑郁症风险脑电系统、脑电显示模块和结果打印模块;普适化脑电数据采集系统包括Fp1电极传感器、FpZ电极传感器、Fp2电极传感器、前置放大器、50Hz陷波器和低通滤波器;它实现个体用户能够穿戴检测装置,方便用户自测,自动检测脑电噪声,去除眼电伪迹,降低各种噪声之间的干扰,直接处理脑电数据,跳过睡眠分期步骤,降低了在睡眠分期等步骤所产生的计算误差,提高抑郁症风险评估的准确度,采集信息量大,充分地利用了睡眠脑电的数据信息,进行特征选取时选择性强。
The invention discloses a depression risk screening device based on EEG signals, which belongs to the field of depression risk screening; it includes a central processing device and a detection device for EEG signals; it also includes a universal EEG data acquisition system, an EEG Signal preprocessing system, EEG system for screening depression risk, EEG display module and result printing module; universal EEG data acquisition system includes Fp1 electrode sensor, FpZ electrode sensor, Fp2 electrode sensor, preamplifier, 50Hz trap oscilloscope and low-pass filter; it enables individual users to wear a detection device, which is convenient for users to self-test, automatically detects EEG noise, removes EEG artifacts, reduces interference between various noises, directly processes EEG data, jumps Through the sleep staging step, the calculation error generated in the sleep staging and other steps is reduced, the accuracy of depression risk assessment is improved, the amount of information collected is large, the data information of sleep EEG is fully utilized, and the selectivity is strong when selecting features .
Description
技术领域technical field
本发明涉及抑郁症风险筛查装置领域,更具体地说,涉及一种基于脑电信号的抑郁症风险筛查装置。The present invention relates to the field of depression risk screening devices, in particular to a depression risk screening device based on electroencephalogram signals.
背景技术Background technique
抑郁症是一种常见的精神疾病,以心境低落和悲观为主要特征,症状严重时可能会产生自杀行为。本文在对抑郁症的病症、背景、诊断依据、工具和评估标准进行归类和分析的基础上,发现抑郁症患者不但人数众多,而且发病年龄、范围和行业也在逐步扩大,给社会和家庭带来沉重的负担。然而,从事抑郁症诊断和评估工作的人员比较匮乏,而且其诊断和评估依赖的主观因素较多,容易造成误诊和漏诊。因而,迫切需要提高其诊断的准确性和效率。本发明通过对抑郁症的研究现状、分析方法、手段以及现有成果的综合和分析发现,此病诊断不准确和效率低的一个重要原因是缺少客观量化的生物诊断指标、科学有效的诊断模型和一个精确的风险筛选装置。脑电活动是大量脑细胞群各种电活动整体的宏观综合效应。其活跃的程度和区域与大脑功能状态存在密切的关系,因而,也代表大脑的一种状态,能够反映和表征大脑的疾病和健康情况;目前基于脑电的郁抑症风险筛查诊断主要依据的是睡眠分期技术。关于睡眠分期,曾有几种划分方法。目前广泛应用的是 1968 年,Rechtschaffen和 Kales根据 EEG、EOG、EMG 信号在不同睡眠期的波形特征,将成人睡眠分成六期:清醒期,非快速眼动期(进一步分为 1、2、3、4 期),和快速眼动期,即分期标准(如图9)。计算睡眠潜伏期、睡眠总时间、觉醒指数、睡眠1期、睡眠2期、睡眠3期、睡眠4期、快速眼动百分比、快速眼动睡眠周期数、快速眼动睡眠潜伏期、快速眼动睡眠强度、快速眼动睡眠密度和快速眼动睡眠时间等特征,将其带入分类器中并进行抑郁症风险判断。Depression is a common mental illness characterized by low mood and pessimism. When the symptoms are severe, suicidal behavior may occur. Based on the classification and analysis of the symptoms, background, diagnostic basis, tools and evaluation criteria of depression, this paper finds that not only the number of depression patients is large, but also the age of onset, scope and industry are gradually expanding, which brings great benefits to society and families. bring a heavy burden. However, there are relatively few personnel engaged in the diagnosis and evaluation of depression, and the diagnosis and evaluation rely on many subjective factors, which may easily lead to misdiagnosis and missed diagnosis. Therefore, there is an urgent need to improve its diagnostic accuracy and efficiency. Through the synthesis and analysis of the research status, analysis methods, means and existing achievements of depression, the present invention finds that an important reason for the inaccurate diagnosis and low efficiency of this disease is the lack of objective and quantitative biological diagnostic indicators and scientific and effective diagnostic models. and an accurate risk screening device. EEG activity is the overall macroscopic comprehensive effect of various electrical activities of a large number of brain cell groups. There is a close relationship between the degree and area of its activity and the functional state of the brain. Therefore, it also represents a state of the brain, which can reflect and characterize the disease and health of the brain; the current EEG-based risk screening and diagnosis of depression is mainly based on What is sleep staging technology. Regarding sleep stages, there have been several classification methods. It is currently widely used in 1968. According to the waveform characteristics of EEG, EOG, and EMG signals in different sleep stages, Rechtschaffen and Kales divided adult sleep into six stages: awake stage, non-rapid eye movement stage (further divided into 1, 2, 3 , stage 4), and rapid eye movement stage, which is the staging standard (as shown in Figure 9). Calculation of sleep latency, total sleep time, arousal index, sleep stage 1, sleep stage 2, sleep stage 3, sleep stage 4, REM percentage, REM sleep cycle number, REM sleep latency, REM sleep intensity , rapid eye movement sleep density and rapid eye movement sleep time and other characteristics, and bring them into the classifier and judge the risk of depression.
现有的筛查抑郁症风险装置和采集方法存在着较多缺陷,其主要在于:There are many defects in the existing devices and collection methods for screening depression risk, mainly in:
1.传统的脑电图技术大多应用在比较严格的环境中,如医院的临床治疗或科研院所的实验室,不方便个体用户使用,且这些应用场景具有理想的实验条件:一方面,这些环境都做过专门的物理隔离,有良好的电磁屏蔽和声音屏蔽;另一方面,有专业的受过培训的操作人员,即便是在这样严格的限制下,脑电信号的测量也会受到一些因素的影响。1. Traditional EEG technology is mostly used in relatively strict environments, such as clinical treatment in hospitals or laboratories in scientific research institutes, which is not convenient for individual users, and these application scenarios have ideal experimental conditions: On the one hand, these The environment has been specially physically isolated, with good electromagnetic shielding and sound shielding; on the other hand, there are professional and trained operators. Even under such strict restrictions, the measurement of EEG signals will be affected by some factors. Impact.
2.睡眠分期标准不一,睡眠分期的准确率不够高,使抑郁症风险筛查系统准确度较低。2. Sleep staging standards are different, and the accuracy of sleep staging is not high enough, which makes the depression risk screening system less accurate.
3.信息量比较小,而且特征并不十分明确,并不能得到相应的针对受试者的特征信息给出合理化的抑郁症风险结果。3. The amount of information is relatively small, and the characteristics are not very clear, and the corresponding characteristic information for the subjects cannot be obtained to give a rationalized depression risk result.
发明内容Contents of the invention
1.要解决的技术问题1. technical problem to be solved
针对现有技术中存在的不方便个体用户使用,干扰因素干扰检测,检测准确度低,脑电采集的信息量小问题,本发明的目的在于提供一种基于脑电信号的抑郁症风险筛查装置,它可以实现方便个体用户使用,降低各种噪声之间的干扰,提高了检测准确度,采集的睡眠脑电的信息量大。In view of the problems existing in the prior art that it is inconvenient for individual users to use, interference factors interfere with detection, detection accuracy is low, and the amount of information collected by EEG is small, the purpose of the present invention is to provide a risk screening for depression based on EEG signals The device is convenient for individual users to use, reduces the interference between various noises, improves the detection accuracy, and collects a large amount of sleep EEG information.
2.技术方案2. Technical solution
一种基于脑电信号的抑郁症风险筛查装置,包括脑电信号中心处理装置和检测装置;所述的脑电信号中心处理装置包括前置放大器、50Hz陷波器、低通滤波器、AD转换器、脑电信号处理器、阻抗检测器、直流矫正器和蓝牙2.0射频收发器;所述的检测装置包括Fp1电极传感器、FpZ电极传感器、Fp2电极传感器、参考电极和开关;所述的检测装置通过导线连接到脑电信号中心处理装置中;所述的导线包括导线a、导线b和导线c;所述的导线c连接到开关上;所述的脑电信号处理装置还包括普适化脑电数据采集系统、脑电信号预处理系统、筛查抑郁症风险脑电系统、脑电显示模块和结果打印模块;普适化脑电数据采集系统包括Fp1电极传感器、FpZ电极传感器、Fp2电极传感器、前置放大器、50Hz陷波器和低通滤波器,Fp1电极传感器、FpZ电极传感器和Fp2电极传感器与前置放大器相连;前置放大器、50Hz陷波器和低通滤波器依次相连;所述脑电信号预处理系统包括AD转换器、脑电信号处理器、阻抗检测器、直流矫正器和蓝牙2.0射频收发器,所述AD转换器、脑电信号处理器和蓝牙2.0射频收发器依次相连;所述的脑电信号处理器电性连接到阻抗检测器,阻抗检测器通过导线a连接到检测装置中;所述的脑电信号处理器通过直流矫正器电性连接到前置放大器中;所述筛查抑郁症风险脑电系统包括脑电显示模块一、管理模块、脑电信号二次处理模块、脑电显示模块二和脑电信号数据筛查系统,所述脑电显示模块一、管理模块、脑电信号二次处理模块、脑电显示模块二、脑电信号数据筛查系统依次相连,所述脑电信号数据筛查系统包括特征提取模块、特征选择模块、分类模型模块和抑郁症风险筛查模块;本装置个体用户能够直接穿戴,方便用户的自测,脑电信号预处理系统能够自动检测脑电噪声,去除眼电伪迹,降低各种噪声之间的干扰,直接处理脑电数据,跳过睡眠分期步骤,降低了在睡眠分期等步骤所产生的计算误差,提高了抑郁症风险评估的准确度,采集信息量大,脑电信号数据筛查系统充分地利用了睡眠脑电的数据信息进行特征选取,选择性强。A depression risk screening device based on electroencephalogram signals, including an electroencephalogram signal central processing device and a detection device; the electroencephalogram signal central processing device includes a preamplifier, a 50Hz notch filter, a low-pass filter, an AD Converter, EEG signal processor, impedance detector, DC rectifier and bluetooth 2.0 radio frequency transceiver; Described detection device comprises Fp1 electrode sensor, FpZ electrode sensor, Fp2 electrode sensor, reference electrode and switch; Described detection The device is connected to the EEG signal central processing device through wires; the wires include wire a, wire b and wire c; the wire c is connected to the switch; the EEG signal processing device also includes a universal EEG data acquisition system, EEG signal preprocessing system, depression risk screening EEG system, EEG display module and result printing module; universal EEG data acquisition system includes Fp1 electrode sensor, FpZ electrode sensor, Fp2 electrode Sensor, preamplifier, 50Hz notch filter and low-pass filter, Fp1 electrode sensor, FpZ electrode sensor and Fp2 electrode sensor are connected to the preamplifier; preamplifier, 50Hz notch filter and low-pass filter are connected in turn; all The EEG signal preprocessing system includes an AD converter, an EEG signal processor, an impedance detector, a DC rectifier and a Bluetooth 2.0 radio frequency transceiver, and the AD converter, an EEG signal processor and a Bluetooth 2.0 radio frequency transceiver are sequentially connected; the EEG signal processor is electrically connected to the impedance detector, and the impedance detector is connected to the detection device through a wire a; the EEG signal processor is electrically connected to the preamplifier through a DC rectifier The EEG system for screening depression risk includes an EEG display module one, a management module, an EEG signal secondary processing module, an EEG display module two and an EEG data screening system, and the EEG display module one , a management module, an EEG secondary processing module, an EEG display module two, and an EEG data screening system are connected in sequence, and the EEG data screening system includes a feature extraction module, a feature selection module, a classification model module and Depression risk screening module; individual users of this device can wear it directly, which is convenient for users to self-test. The EEG signal preprocessing system can automatically detect EEG noise, remove ocular artifacts, reduce the interference between various noises, and directly Process the EEG data, skip the sleep staging steps, reduce the calculation errors in the sleep staging and other steps, improve the accuracy of depression risk assessment, collect a large amount of information, and the EEG data screening system makes full use of The data information of the sleep EEG is selected for feature selection, and the selectivity is strong.
优选的,所述筛查抑郁症风险脑电系统还包括数据采集建模系统、离线分析模块和数据库模块,数据采集建模系统产生出合理的生理指标参数,离线分析模块对预处理后得到的脑电信号进行二次处理,数据库模块用于存储被已标签的人群基本信息和最近一次受训时的脑电数据。Preferably, the EEG system for screening the risk of depression also includes a data acquisition modeling system, an offline analysis module and a database module, the data acquisition modeling system produces reasonable physiological index parameters, and the offline analysis module obtains after preprocessing The EEG signal is processed twice, and the database module is used to store the basic information of the labeled population and the EEG data of the latest training.
优选的,所述脑电信号预处理系统采用AR模型和自适应预测器模型方法,通过AR模型方法来自动检测脑电噪声,通过自适应预测器模型来去除眼电伪迹。Preferably, the EEG signal preprocessing system adopts an AR model and an adaptive predictor model method to automatically detect EEG noise through the AR model method, and remove electroocular artifacts through the adaptive predictor model.
优选的,所述数据采集建模系统通过普适化脑电采集系统分别对已标签的健康人群和已标签的抑郁症人群进行脑电数据采集,便于采集合理的生理指标参数。Preferably, the data collection and modeling system uses a universal EEG collection system to collect EEG data from labeled healthy people and labeled depressed people, so as to collect reasonable physiological index parameters.
优选的,所述的导线a包括三根电线分别连接到Fp1电极传感器、FpZ电极传感器和Fp2电极传感器;所述的导线b由两根电线组成;参考电极的两级通过导线b连接在脑电信号中心处理装置的BIAS口和COM口上。Preferably, the wire a includes three wires connected to the Fp1 electrode sensor, the FpZ electrode sensor and the Fp2 electrode sensor respectively; the wire b is composed of two wires; On the BIAS port and COM port of the central processing unit.
优选的,所述的检测装置为头盔状,中间设有填充隔音层,所述的填充隔音层为软质隔音材料制作而成,检测装置前端设有眼罩,两边设有软性耳塞;所述的开关处于软性耳塞下部;这样可以使个体用户随时随地保证一个安静舒适的环境,且采用填充式可以适应不同的人群便于调整大小,采用软质隔音材料可以保证舒适度,也可以减少外界对电极传感器的影响;所述Fp1电极传感器设置在左前额点,Fp2电极传感器设置在右前额点,FpZ电极传感器设置在前额中心点,所述的参考电极设置在后脑部位;所述的Fp1电极传感器、FpZ电极传感器、Fp2电极传感器和参考电极电极头均采用医用贴式湿电极头,医用贴式湿电极头避免了电极接触阻抗的干扰。Preferably, the detection device is helmet-shaped, with a sound-insulating layer filled in the middle, the sound-insulated layer filled is made of soft sound-insulating material, an eye mask is provided at the front end of the detection device, and soft earplugs are provided at both sides; The switch is located at the lower part of the soft earplugs; this can ensure a quiet and comfortable environment for individual users anytime and anywhere, and the filling type can adapt to different groups of people for easy adjustment of the size, and the use of soft sound-proof materials can ensure comfort and reduce external noise. The influence of the electrode sensor; the Fp1 electrode sensor is arranged at the left forehead point, the Fp2 electrode sensor is arranged at the right forehead point, the FpZ electrode sensor is arranged at the forehead center point, and the reference electrode is arranged at the back of the brain; the Fp1 electrode sensor , FpZ electrode sensor, Fp2 electrode sensor and reference electrode electrode head all use medical paste type wet electrode head, which avoids the interference of electrode contact impedance.
优选的,所述特征提取模块采用非线性动力学理论,所述特征选择模块和分类模型模块均采用支持向量机,非线性动力学理论对脑电信号进行分析,提取出脑电信号的非线性特征,支持向量机对脑电数据特征进行选择和分类。Preferably, the feature extraction module uses nonlinear dynamics theory, the feature selection module and classification model module both use support vector machines, and the nonlinear dynamics theory analyzes the EEG signal to extract the nonlinearity of the EEG signal. Features, the support vector machine selects and classifies the features of the EEG data.
3.有益效果3. Beneficial effect
相比于现有技术,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
(1)本装置个体用户能够直接穿戴,方便用户的自测,脑电信号预处理系统能够自动检测脑电噪声,去除眼电伪迹,降低各种噪声之间的干扰,直接处理脑电数据,跳过睡眠分期步骤,降低了在睡眠分期等步骤所产生的计算误差,提高了抑郁症风险评估的准确度,采集信息量大,脑电信号数据筛查系统充分地利用了睡眠脑电的数据信息进行特征选取,选择性强,通过阻抗检测器和直流矫正器使得直流电源达到预定的测试功能。(1) Individual users of this device can wear it directly, which is convenient for users to self-test. The EEG signal preprocessing system can automatically detect EEG noise, remove ocular artifacts, reduce the interference between various noises, and directly process EEG data , skip the sleep staging step, reduce the calculation error generated in the sleep staging and other steps, improve the accuracy of depression risk assessment, collect a large amount of information, and the EEG data screening system makes full use of the sleep EEG Data information is selected for feature selection, and the selectivity is strong. The DC power supply can achieve the predetermined test function through the impedance detector and the DC rectifier.
(2)数据采集建模系统产生出合理的生理指标参数,离线分析模块对预处理后得到的脑电信号进行二次处理,数据库模块用于存储被已标签的人群基本信息和最近一次受训时的脑电数据。(2) The data acquisition and modeling system generates reasonable physiological index parameters. The offline analysis module performs secondary processing on the EEG signals obtained after preprocessing. The database module is used to store the basic information of the labeled population and the latest training time. EEG data.
(3)通过AR模型方法来自动检测脑电噪声,通过自适应预测器模型来去除眼电伪迹。(3) The EEG noise is automatically detected by the AR model method, and the oculograph artifact is removed by the adaptive predictor model.
(4)通过普适化脑电采集系统分别对已标签的健康人群和已标签的抑郁症人群进行脑电数据采集,便于采集合理的生理指标参数。(4) Collect EEG data from labeled healthy people and labeled depressed people through the universal EEG collection system, which facilitates the collection of reasonable physiological parameters.
(5)采用填充式可以适应不同的人群便于调整大小,采用软质隔音材料可以保证舒适度,也可以减少外界对电极传感器的影响,医用贴式湿电极头避免了电极接触阻抗的干扰。(5) The filling type can be adapted to different groups of people for easy size adjustment. The use of soft sound-proof materials can ensure comfort and reduce the influence of the outside world on the electrode sensor. The medical stick-type wet electrode head avoids the interference of electrode contact impedance.
(6)非线性动力学理论对脑电信号进行分析,提取出脑电信号的非线性特征,支持向量机对脑电数据特征进行选择和分类。(6) The nonlinear dynamics theory analyzes the EEG signals, extracts the nonlinear features of the EEG signals, and supports vector machines to select and classify the EEG data features.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为本发明整体筛查系统方框图Fig. 2 is a block diagram of the overall screening system of the present invention
图3为本发明的普适化脑电采集系统方框图;Fig. 3 is a block diagram of the universalized EEG acquisition system of the present invention;
图4为本发明的自适应预测期去除眼电伪迹模型方框图;Fig. 4 is a block diagram of the oculograph artifact removal model in the adaptive prediction period of the present invention;
图5为本发明的筛查抑郁症风险脑电系统方框图;Fig. 5 is a block diagram of the EEG system for screening the risk of depression of the present invention;
图6为本发明的脑电信号数据筛查系统方框图;Fig. 6 is a block diagram of the EEG data screening system of the present invention;
图7为本发明的数据采集建模系统方框图;Fig. 7 is a block diagram of the data acquisition modeling system of the present invention;
图8为人脑系统电极位置图;Fig. 8 is a diagram of the electrode position of the human brain system;
图9为睡眠分期结构图;Fig. 9 is a sleep staging structure diagram;
图10为本发明的检测装置俯视图。Fig. 10 is a top view of the detection device of the present invention.
图中标号说明:1、脑电信号中心处理装置;2、检测装置;3、前置放大器;4、50Hz陷波器;5、低通滤波器;6、AD转换器;7、脑电信号处理器;8、阻抗检测器;9、直流矫正器;10、蓝牙2.0射频收发器;11、Fp1电极传感器;12、FpZ电极传感器;13、Fp2电极传感器;14、参考电极;15、导线;16、导线a;17、导线b;18、开关;19、填充隔音层;20、眼罩;21、软性耳塞;22、导线c。Explanation of symbols in the figure: 1. EEG signal central processing device; 2. Detection device; 3. Preamplifier; 4. 50Hz notch filter; 5. Low-pass filter; 6. AD converter; 7. EEG signal Processor; 8. Impedance detector; 9. DC rectifier; 10. Bluetooth 2.0 radio frequency transceiver; 11. Fp1 electrode sensor; 12. FpZ electrode sensor; 13. Fp2 electrode sensor; 14. Reference electrode; 15. Wire; 16. Conductor a; 17. Conductor b; 18. Switch; 19. Filling the sound insulation layer; 20. Eye mask; 21. Soft earplugs; 22. Conductor c.
具体实施方式detailed description
下面将结合本发明实施例中的附图;对本发明实施例中的技术方案进行清楚、完整地描述;显然;所描述的实施例仅仅是本发明一部分实施例;而不是全部的实施例。基于本发明中的实施例;本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例;都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention; obviously, the described embodiments are only some embodiments of the present invention; rather than all embodiments. Based on the embodiments of the present invention; all other embodiments obtained by persons of ordinary skill in the art without creative work; all belong to the protection scope of the present invention.
实施例1:Example 1:
请参阅图1-10,一种基于脑电信号的抑郁症风险筛查装置,包括脑电信号中心处理装置1和检测装置2;脑电信号中心处理装置1包括前置放大器3、50Hz陷波器4、低通滤波器5、AD转换器6、脑电信号处理器7、阻抗检测器8、直流矫正器9和蓝牙2.0射频收发器10;检测装置2包括Fp1电极传感器11、FpZ电极传感器12、Fp2电极传感器13、参考电极14和开关18;检测装置2通过导线15连接到脑电信号中心处理装置1中;导线15包括导线a16、导线b17和导线c22;导线c22连接到开关18上;脑电信号处理装置1还包括普适化脑电数据采集系统、脑电信号预处理系统、筛查抑郁症风险脑电系统、脑电显示模块和结果打印模块;普适化脑电数据采集系统包括Fp1电极传感器11、FpZ电极传感器12、Fp2电极传感器13、前置放大器3、50Hz陷波器4和低通滤波器5,Fp1电极传感器11、FpZ电极传感器12和Fp2电极传感器13与前置放大器3相连;前置放大器3、50Hz陷波器和低通滤波器依次相连;所述脑电信号预处理系统包括AD转换器6、脑电信号处理器7、阻抗检测器8、直流矫正器9和蓝牙2.0射频收发器10,AD转换器6、脑电信号处理器7和蓝牙2.0射频收发器10依次相连;脑电信号处理器7电性连接到阻抗检测器8,阻抗检测器8通过导线a16连接到检测装置2中;脑电信号处理器7通过直流矫正器9电性连接到前置放大器3中;导线a16包括三根电线分别连接到Fp1电极传感器11、FpZ电极传感器12和Fp2电极传感器13;所述的导线b17由两根电线组成;参考电极14的两级通过导线b17连接在脑电信号中心处理装置1的BIAS口和COM口上。Please refer to Figure 1-10, a depression risk screening device based on EEG signals, including EEG signal central processing device 1 and detection device 2; EEG signal central processing device 1 includes preamplifier 3, 50Hz notch wave Device 4, low-pass filter 5, AD converter 6, EEG signal processor 7, impedance detector 8, DC rectifier 9 and Bluetooth 2.0 radio frequency transceiver 10; detection device 2 includes Fp1 electrode sensor 11, FpZ electrode sensor 12, Fp2 electrode sensor 13, reference electrode 14 and switch 18; Detection device 2 is connected in the EEG signal central processing device 1 by wire 15; Wire 15 includes wire a16, wire b17 and wire c22; Wire c22 is connected on the switch 18 The EEG signal processing device 1 also includes a universal EEG data acquisition system, an EEG signal preprocessing system, an EEG system for screening the risk of depression, an EEG display module and a result printing module; the universal EEG data acquisition The system includes Fp1 electrode sensor 11, FpZ electrode sensor 12, Fp2 electrode sensor 13, preamplifier 3, 50Hz notch filter 4 and low-pass filter 5, Fp1 electrode sensor 11, FpZ electrode sensor 12 and Fp2 electrode sensor 13 are connected with the front The preamplifier 3, the 50Hz notch filter and the low-pass filter are connected in turn; the EEG signal preprocessing system includes an AD converter 6, an EEG signal processor 7, an impedance detector 8, a DC correction Device 9 and Bluetooth 2.0 radio frequency transceiver 10, AD converter 6, EEG signal processor 7 and Bluetooth 2.0 radio frequency transceiver 10 are connected in turn; EEG signal processor 7 is electrically connected to impedance detector 8, impedance detector 8 Connect to the detection device 2 through the wire a16; the EEG signal processor 7 is electrically connected to the preamplifier 3 through the DC rectifier 9; the wire a16 includes three wires connected to the Fp1 electrode sensor 11, the FpZ electrode sensor 12 and the Fp2 respectively The electrode sensor 13; the wire b17 is composed of two wires; the two stages of the reference electrode 14 are connected to the BIAS port and the COM port of the EEG signal central processing device 1 through the wire b17.
检测装置2为头盔状,中间设有填充隔音层19,填充隔音层19为软质隔音材料制作而成,检测装置2前端设有眼罩20,两边设有软性耳塞21;开关18处于软性耳塞21下部;这样可以使个体用户随时随地保证一个安静舒适的环境,且采用填充式可以适应不同的人群便于调整大小,采用软质隔音材料可以保证舒适度,也可以减少外界对电极传感器的影响;Fp1电极传感器11设置在左前额点,Fp2电极传感器13设置在右前额点,FpZ电极传感器12设置在前额中心点,参考电极14设置在后脑部位;Fp1电极传感器11、FpZ电极传感器12、Fp2电极传感器13和参考电极14电极头均采用医用贴式湿电极头,医用贴式湿电极头避免了电极接触阻抗的干扰。The detection device 2 is helmet-shaped, with a sound-insulating layer 19 in the middle, and the sound-insulation layer 19 is made of soft sound-insulating material. The front end of the detection device 2 is provided with an eye mask 20, and soft earplugs 21 are provided on both sides; the switch 18 is in a soft position. The lower part of the earplug 21; this can ensure a quiet and comfortable environment for individual users anytime and anywhere, and the filling type can be used to adapt to different groups of people for easy adjustment of the size, and the use of soft sound-proof materials can ensure comfort and reduce the influence of the outside on the electrode sensor Fp1 electrode sensor 11 is arranged on the left forehead point, Fp2 electrode sensor 13 is arranged on the right forehead point, FpZ electrode sensor 12 is arranged on the forehead center point, and reference electrode 14 is arranged on the back of the brain; Fp1 electrode sensor 11, FpZ electrode sensor 12, Fp2 The electrode heads of the electrode sensor 13 and the reference electrode 14 are all made of medical paste type wet electrode heads, which avoids the interference of electrode contact impedance.
脑电信号预处理系统采用AR模型和自适应预测器模型方法,通过AR模型方法来自动检测脑电噪声,将检测到的脑电噪声通过滤波器初始化后送到自适应预测器,同时自适应预测器接收来自眼电区域的脑电信号,自适应预测器同时对脑电噪声和眼电区域脑电信号进行处理,通过自适应预测器模型来去除眼电伪迹和去除脑电噪声,脑电信号预处理系统能够自动检测脑电噪声,去除眼电伪迹,降低各种噪声之间的干扰,脑电信号预处理系统直接处理脑电数据,跳过睡眠分期步骤,降低了在睡眠分期等步骤所产生的计算误差,提高了抑郁症风险评估的准确度。The EEG signal preprocessing system adopts the AR model and the adaptive predictor model method to automatically detect the EEG noise through the AR model method, and the detected EEG noise is sent to the adaptive predictor after initialization through the filter, and the adaptive predictor at the same time The predictor receives the EEG signal from the EEG area, and the adaptive predictor processes the EEG noise and the EEG signal in the EEG area at the same time, and removes the EEG artifact and EEG noise through the adaptive predictor model. The EEG signal preprocessing system can automatically detect EEG noise, remove oculoelectric artifacts, and reduce the interference between various noises. The EEG signal preprocessing system directly processes EEG data, skips the sleep staging step, and reduces sleep staging. The calculation errors generated by such steps improve the accuracy of depression risk assessment.
筛查抑郁症风险脑电系统包括脑电显示模块一、管理模块、脑电信号二次处理模块、脑电显示模块二和脑电信号数据筛查系统,脑电显示模块一、管理模块、脑电信号二次处理模块、脑电显示模块二、脑电信号数据筛查系统依次相连,脑电信号二次处理模块通过对预处理后得到的脑电信号进行二次处理,以得到脑电功率谱阵列图和脑电θ、α、β等指标直方图的实时动态显示,实现脑电指标实时监护,医生通过该功能实时观察病人脑电信息各项指标变化,直观、准确地掌握病人脑功能状态,用以监测反馈治疗的效果,所述脑电信号数据筛查系统包括特征提取模块、特征选择模块、分类模型模块和抑郁症风险筛查模块,特征提取模块采用非线性动力学理论,所述特征选择模块和分类模型模块均采用支持向量机,非线性动力学理论对脑电信号进行分析,提取出脑电信号的非线性特征,支持向量机对脑电数据特征进行选择和分类,采集信息量大,脑电信号数据筛查系统充分地利用了睡眠脑电的数据信息进行特征选取,选择性强。The EEG system for screening depression risk includes EEG display module 1, management module, EEG signal secondary processing module, EEG display module 2 and EEG data screening system, EEG display module 1, management module, brain The electrical signal secondary processing module, the EEG display module 2, and the EEG signal data screening system are connected in sequence. The EEG signal secondary processing module performs secondary processing on the EEG signals obtained after preprocessing to obtain the EEG power spectrum. The real-time dynamic display of the array diagram and the histogram of EEG θ, α, β and other indicators realizes real-time monitoring of EEG indicators. Doctors can observe the changes of various indicators of the patient's EEG information in real time through this function, and intuitively and accurately grasp the patient's brain function status , to monitor the effect of feedback treatment, the EEG data screening system includes a feature extraction module, a feature selection module, a classification model module and a depression risk screening module, the feature extraction module uses nonlinear dynamics theory, the Both the feature selection module and the classification model module use support vector machines, nonlinear dynamics theory to analyze EEG signals, extract nonlinear features of EEG signals, support vector machines to select and classify EEG data features, and collect information The EEG signal data screening system makes full use of the sleep EEG data information for feature selection, with strong selectivity.
筛查抑郁症风险脑电系统还包括数据采集建模系统、离线分析模块和数据库模块,管理模块对筛查进程和受试者信息进行管理,包括受试者信息的创建、查询、修改、删除,以及诊断筛查方案的选择,设置筛查抑郁症方案所要求的指标和形式以及资料的存储,数据库模块储存筛查方案、被试者的基本信息和系统的筛查过程及结果,以供管理系统进行查询及管理,数据采集建模系统产生出合理的生理指标参数,离线分析模块对预处理后得到的脑电信号进行二次处理,数据库模块用于存储被已标签的人群基本信息和最近一次受训时的脑电数据,所述数据采集建模系统通过普适化脑电采集系统、脑电数据预处理系统、脑电数据二次处理系统、特征提取模块、特征选择模块和分类模型模块分别对已标签的健康人群和已标签的抑郁症人群进行脑电数据采集,便于采集合理的生理指标参数,全新的数据模型,根据不同病症在系统中进行分类,其数据结构简单、清晰,有很好的数据独立性、安全保密性,用户易懂易用,可以与已有数据进行交叉对比,提高筛查诊断的准确性与针对性,脑电显示模块是做出接受反馈训练的受试着者的动态脑电图,是将受试者的脑电信号波形动态实时地显示在显示器上,实现了脑电图动态无笔描记。The EEG system for screening depression risk also includes a data collection and modeling system, an offline analysis module and a database module. The management module manages the screening process and subject information, including creation, query, modification and deletion of subject information , as well as the selection of diagnostic screening programs, setting the indicators and forms required by the screening program and the storage of data, the database module stores the screening program, the basic information of the subjects and the screening process and results of the system, for The management system performs query and management, the data acquisition and modeling system generates reasonable physiological index parameters, the offline analysis module performs secondary processing on the EEG signals obtained after preprocessing, and the database module is used to store the basic information and EEG data during the latest training, the data acquisition modeling system through the universal EEG acquisition system, EEG data preprocessing system, EEG data secondary processing system, feature extraction module, feature selection module and classification model The module separately collects EEG data from labeled healthy people and labeled depressed people, which is convenient for collecting reasonable physiological index parameters. The new data model can be classified in the system according to different diseases, and its data structure is simple and clear. It has good data independence, security and confidentiality, and is easy to understand and use for users. It can be cross-compared with existing data to improve the accuracy and pertinence of screening and diagnosis. The dynamic EEG of the tester is to dynamically display the waveform of the EEG signal of the subject on the monitor in real time, and realize the dynamic EEG without a pen.
工作原理:受试者先注册自己的信息,其中包括受试者的编号、姓名、性别、年龄等信息,将检测装置戴在受试者的头部,打开开关,检测装置根据受试者的头部大小,自动开启填充层,眼罩20和软性耳塞21自动贴到受试者的眼睛和耳朵上,使受试者在一个相对安静的环境里逐渐进入睡眠状态,打开实时脑电记录,患者的脑电信号通过Fp1电极传感器11、FpZ电极传感器12和Fp2电极传感器13提取进来,通过前置放大器3对微弱的脑电信号进行放大,同时对原始脑电信号进行工频滤波处理,放大的信号通过16位A/D转换器6转换成数字信号,通过调用脑电信号预处理系统对脑电信号进行预处理以减少伪差的干扰,保证反馈治疗时的正确性,然后通过蓝牙2.0传输到计算机,然后实时显示在屏幕上。医生调用脑电分析中相应的信号处理程序对采集的信号进行二次处理,采用非线性动力学理论对脑电信号进行分析,提取出脑电信号的非线性特征,得到反馈信息的特征值,将信息的特征值带入支持向量机,进行风险筛查,最终输出结果,在系统训练的过程中,系统会自动把患者的脑电信号储存下来,医生可以在受试者做完训练后以后,回放该脑电信号并进行分析、打印,用以监控病人的治疗过程。Working principle: The subject first registers his own information, including the subject's number, name, gender, age, etc., puts the detection device on the subject's head, turns on the switch, and the detection device according to the subject's The size of the head, the filling layer is automatically opened, the eye mask 20 and the soft earplugs 21 are automatically attached to the eyes and ears of the subject, so that the subject gradually falls asleep in a relatively quiet environment, and the real-time EEG recording is turned on. The patient's EEG signal is extracted through the Fp1 electrode sensor 11, the FpZ electrode sensor 12 and the Fp2 electrode sensor 13, the weak EEG signal is amplified by the preamplifier 3, and the original EEG signal is processed by power frequency filtering and amplified. The signal is converted into a digital signal through the 16-bit A/D converter 6, and the EEG signal is preprocessed by calling the EEG signal preprocessing system to reduce the interference of artifacts and ensure the correctness of the feedback treatment, and then through Bluetooth 2.0 transmitted to the computer and displayed on the screen in real time. The doctor invokes the corresponding signal processing program in the EEG analysis to perform secondary processing on the collected signal, uses nonlinear dynamics theory to analyze the EEG signal, extracts the nonlinear characteristics of the EEG signal, and obtains the eigenvalue of the feedback information. Bring the eigenvalues of the information into the support vector machine, carry out risk screening, and finally output the results. During the system training process, the system will automatically store the patient's EEG signals. , replay the EEG signal, analyze and print it, and monitor the treatment process of the patient.
以上所述;仅为本发明较佳的具体实施方式;但本发明的保护范围并不局限于此;任何熟悉本技术领域的技术人员在本发明揭露的技术范围内;根据本发明的技术方案及其改进构思加以等同替换或改变;都应涵盖在本发明的保护范围内。The above; is only a preferred embodiment of the present invention; but the protection scope of the present invention is not limited thereto; any person familiar with the technical field is within the technical scope disclosed in the present invention; according to the technical solution of the present invention Equivalent replacements or changes thereof and their improved concepts should be covered within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710025238.3A CN106901727A (en) | 2017-01-13 | 2017-01-13 | A kind of depression Risk Screening device based on EEG signals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710025238.3A CN106901727A (en) | 2017-01-13 | 2017-01-13 | A kind of depression Risk Screening device based on EEG signals |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106901727A true CN106901727A (en) | 2017-06-30 |
Family
ID=59207179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710025238.3A Pending CN106901727A (en) | 2017-01-13 | 2017-01-13 | A kind of depression Risk Screening device based on EEG signals |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106901727A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107788976A (en) * | 2017-09-22 | 2018-03-13 | 复旦大学 | Sleep monitor system based on Amplitude integrated electroencephalogram |
CN107865638A (en) * | 2017-09-21 | 2018-04-03 | 广东思派康电子科技有限公司 | Computer-readable storage medium, in-ear earplug detection device |
CN109363670A (en) * | 2018-11-13 | 2019-02-22 | 杭州电子科技大学 | An intelligent detection method for depression based on sleep monitoring |
CN109646021A (en) * | 2018-12-28 | 2019-04-19 | 浙江大学 | A kind of psychological research auxiliary headset equipment and its data analysing method |
CN110811610A (en) * | 2019-11-04 | 2020-02-21 | 北京信息科技大学 | A multi-channel bioelectric signal acquisition system and its control method |
CN112617833A (en) * | 2020-12-21 | 2021-04-09 | 首都医科大学 | Device for detecting depression based on resting brain waves |
CN112773368A (en) * | 2021-03-19 | 2021-05-11 | 河南省安信科技发展有限公司 | ADHD detection rehabilitation equipment for collecting electroencephalogram signals based on disposable electromagnetic sheet |
CN114010194A (en) * | 2021-11-03 | 2022-02-08 | 瑞尔明康(杭州)医疗科技有限公司 | Biological characteristic information acquisition method and device and depression evaluation device |
CN114366104A (en) * | 2022-01-14 | 2022-04-19 | 东南大学 | Depression state evaluation method based on forehead minority lead electroencephalogram monitoring |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070249954A1 (en) * | 2006-04-21 | 2007-10-25 | Medtronic, Inc. | Method and apparatus for detection of nervous system disorders |
US20130151166A1 (en) * | 2007-02-21 | 2013-06-13 | Neurovista Corporation | Reduction Of Classification Error Rates And Monitoring System Using An Artificial Class |
CN105342603A (en) * | 2014-11-19 | 2016-02-24 | 群蕴科技股份有限公司 | Inflatable brain wave measuring device |
-
2017
- 2017-01-13 CN CN201710025238.3A patent/CN106901727A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070249954A1 (en) * | 2006-04-21 | 2007-10-25 | Medtronic, Inc. | Method and apparatus for detection of nervous system disorders |
US20130151166A1 (en) * | 2007-02-21 | 2013-06-13 | Neurovista Corporation | Reduction Of Classification Error Rates And Monitoring System Using An Artificial Class |
CN105342603A (en) * | 2014-11-19 | 2016-02-24 | 群蕴科技股份有限公司 | Inflatable brain wave measuring device |
Non-Patent Citations (2)
Title |
---|
史玉君: "基于经验模态分解的眼电伪迹去除方法的研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑(月刊 )》 * |
赵文: "基于脑电信号的特定人群心理压力研究", 《中国优秀硕士学位论文全文数据库信息科技辑(月刊 )》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107865638A (en) * | 2017-09-21 | 2018-04-03 | 广东思派康电子科技有限公司 | Computer-readable storage medium, in-ear earplug detection device |
CN107788976A (en) * | 2017-09-22 | 2018-03-13 | 复旦大学 | Sleep monitor system based on Amplitude integrated electroencephalogram |
CN109363670A (en) * | 2018-11-13 | 2019-02-22 | 杭州电子科技大学 | An intelligent detection method for depression based on sleep monitoring |
CN109646021A (en) * | 2018-12-28 | 2019-04-19 | 浙江大学 | A kind of psychological research auxiliary headset equipment and its data analysing method |
CN110811610A (en) * | 2019-11-04 | 2020-02-21 | 北京信息科技大学 | A multi-channel bioelectric signal acquisition system and its control method |
CN112617833A (en) * | 2020-12-21 | 2021-04-09 | 首都医科大学 | Device for detecting depression based on resting brain waves |
CN112773368A (en) * | 2021-03-19 | 2021-05-11 | 河南省安信科技发展有限公司 | ADHD detection rehabilitation equipment for collecting electroencephalogram signals based on disposable electromagnetic sheet |
CN114010194A (en) * | 2021-11-03 | 2022-02-08 | 瑞尔明康(杭州)医疗科技有限公司 | Biological characteristic information acquisition method and device and depression evaluation device |
CN114010194B (en) * | 2021-11-03 | 2025-01-24 | 瑞尔明康(杭州)医疗科技有限公司 | Biometric information acquisition method, device and depression assessment device |
CN114366104A (en) * | 2022-01-14 | 2022-04-19 | 东南大学 | Depression state evaluation method based on forehead minority lead electroencephalogram monitoring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106901727A (en) | A kind of depression Risk Screening device based on EEG signals | |
EP3698707B1 (en) | Electrocardiogram information dynamic monitoring system, computer program and computer readable storage medium | |
WO2020119245A1 (en) | Wearable bracelet-based emotion recognition system and method | |
US11350868B2 (en) | Electrocardiogram information processing method and electrocardiogram workstation system | |
Mihajlović et al. | Wearable, wireless EEG solutions in daily life applications: what are we missing? | |
US7570991B2 (en) | Method for real time attitude assessment | |
US11783924B2 (en) | ECG information processing method and ECG workstation | |
CN106407733A (en) | Depression risk screening system and method based on virtual reality scene electroencephalogram signal | |
CN106859673A (en) | A kind of depression Risk Screening system based on sleep cerebral electricity | |
CN113208563A (en) | Sleep monitoring method, device, system, computer equipment and storage medium | |
Leach et al. | A protocol for comparing dry and wet EEG electrodes during sleep | |
CN109124655A (en) | State of mind analysis method, device, equipment, computer media and multifunctional chair | |
CN103405225B (en) | A kind of pain that obtains feels the method for evaluation metrics, device and equipment | |
CN112438733A (en) | Portable neonatal convulsion electroencephalogram monitoring system | |
US20050020934A1 (en) | Physiological monitoring | |
CN109009103A (en) | The detection of the biofeedback type disturbance of consciousness and wake-up system | |
CN117158970B (en) | Emotion recognition method, system, medium and computer | |
CN117918863A (en) | A method and system for real-time artifact processing and feature extraction of electroencephalogram signals | |
CN209107350U (en) | The detection of the biofeedback type disturbance of consciousness and wake-up system | |
CN206285117U (en) | Intelligence hearing terminal | |
CN112617833A (en) | Device for detecting depression based on resting brain waves | |
CN112102938B (en) | Sleep staging method and device | |
Paul et al. | Automated detection of mental stress using multimodal characterization of PPG signal for AI based healthcare applications | |
D’Arcy et al. | Towards brain first-aid: a diagnostic device for conscious awareness | |
CN114903445A (en) | Intelligent monitoring and early warning system for cardiovascular and cerebrovascular diseases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170630 |
|
RJ01 | Rejection of invention patent application after publication |