CN106896393B - Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device - Google Patents
Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device Download PDFInfo
- Publication number
- CN106896393B CN106896393B CN201510967028.7A CN201510967028A CN106896393B CN 106896393 B CN106896393 B CN 106896393B CN 201510967028 A CN201510967028 A CN 201510967028A CN 106896393 B CN106896393 B CN 106896393B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- coordinates
- coordinate
- adjacent
- original
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种车辆协同式物体定位优化方法及车辆协同定位装置,该方法包含有:自本车接收一资讯封包,该资讯封包中包含一邻车提供的车辆原始坐标及至少一物体原始坐标,以及其各自定位的精准度;对该车辆原始坐标及物体原始坐标进行时间延迟补偿,以分别得到邻车补偿后的一车辆坐标及一物体坐标;执行一优化程序,分别对车辆及物体的坐标进行优化,以分别得到车辆优化坐标与物体优化坐标;藉此,该车辆优化坐标与物体优化座相较于利用GPS接收器所测知的坐标资讯具有较高的精准度,可使得车辆能更精确地判断周围物体分布,提高行驶安全。
The present invention discloses a vehicle cooperative object positioning optimization method and a vehicle cooperative positioning device, the method comprising: receiving an information packet from a vehicle, the information packet comprising a vehicle original coordinate and at least one object original coordinate provided by a neighboring vehicle, and the accuracy of their respective positioning; performing time delay compensation on the vehicle original coordinate and the object original coordinate to obtain a vehicle coordinate and an object coordinate after compensation by the neighboring vehicle respectively; executing an optimization program to optimize the coordinates of the vehicle and the object respectively to obtain the vehicle optimized coordinate and the object optimized coordinate respectively; thereby, the vehicle optimized coordinate and the object optimized coordinate have higher accuracy than the coordinate information measured by a GPS receiver, so that the vehicle can more accurately judge the distribution of surrounding objects and improve driving safety.
Description
技术领域technical field
本发明是一种物体定位方法,特别是指一种协同式物体定位(Cooperativepositioning)优化方法。The present invention is an object positioning method, in particular to a cooperative object positioning (Cooperativepositioning) optimization method.
背景技术Background technique
在车辆中配置感测器(sensor)以检测周围环境的相关技术已发展许久,例如使用全球定位系统(GPS)、雷达(RADAR)、光达(LIDAR)、行车记录器等不同感测器可提供多元的环境资讯。但是对车辆本身而言,透过环境资讯感测器所取得的环境资讯仍会受到许多因素的限制,举例而言,请参考图9所示,在十字路口的环境中,行驶在纵向车道的第一车辆101可得知该方向的环境资讯,例如可看到有物体200(如行人、车辆、动物)正快速冲出路口,但对于在横向车道的第二车辆102而言,因受限于其所在位置可能受周围建筑物遮蔽而产生盲点,即使第二车辆102上具有感测器,但仍无法察觉该物体200的突发情况而与其撞击。因此,若仅单独依据车辆本身的感测器提供环境资讯,在实际应用时仍存在有盲点。The related technology of disposing sensors in vehicles to detect the surrounding environment has been developed for a long time. Provide a variety of environmental information. However, for the vehicle itself, the environmental information obtained by the environmental information sensor is still limited by many factors. For example, please refer to Figure 9. The
为此,车辆协同式定位方法遂发展出来,协同式的概念是表示透过周围其邻车辆或周围的感测装置(例如路侧感测单元(Road side unit),RSU)分享各自感测到的资讯,使本车接收其它车辆的资讯而扩增自己的感测范围,沿用上述图9的例子说明,若该第二车辆102可接收该第一车辆提供的资讯,便可得知其右方路口将有物体突然出现,有足够的时间紧急应变。To this end, a vehicle cooperative positioning method has been developed. The concept of cooperative is to share the respective sensing devices (such as road side sensing units (RSU)) with neighboring vehicles or surrounding sensing devices. , so that the vehicle can receive information from other vehicles to expand its sensing range. Following the example in FIG. 9 , if the
然而目前协同式定位技术面临准确性不佳的技术缺点,请参考图10所示范例,第一车辆101表示本车,第二车辆102~第四车辆104表示邻近的其它车辆。以第二车辆102而言,其配备有一商用GPS及一摄影机,而一般商用GPS的定位误差约为5~15公尺,摄影机的定位误差约为5公尺,因此,该第二车辆102利用自身GPS所测得的自身位置具有一GPS误差范围A1,第二车辆102利用摄影机感测到第三车辆103的所在位置时,由摄影机所测得的第三车辆103位置具有一摄影机误差范围A2;因此,若第二车辆102将其感测到的第三车辆的位置资讯转传分享给第一车辆101时,第一车辆101所接收到的第三车辆103的位置资讯即有误差累积的问题,如GPS及摄影机累加误差范围A3所示。However, the current cooperative positioning technology faces the technical disadvantage of poor accuracy. Please refer to the example shown in FIG. 10 . The
再进一步而言,若第一车辆101将该笔第三车辆103的位置资讯二度转传分享给第四车辆104时,将会再进一步加上第一车辆101自身的位置误差,导致第四车辆104所接收的位置资讯产生更多的累积误差量。因此,当资讯经过多次的转传分享后,对物体的定位准确性将会显着下降,甚至不具参考价值。Furthermore, if the
发明内容SUMMARY OF THE INVENTION
鉴于既有协同式定位技术存在有位置资讯精确度不佳的问题,本发明的主要目的是提供一种车辆协同式物体定位优化方法,以扩增车辆的感范围、提高位置资讯的精准度而提升车辆行驶的安全性。In view of the problem of poor position information accuracy in the existing cooperative positioning technology, the main purpose of the present invention is to provide a vehicle cooperative object positioning optimization method, so as to increase the sense range of the vehicle and improve the accuracy of the position information. Improve vehicle driving safety.
为达到前述目的,本发明的方法是利用一设置在本车内部的协同定位装置执行,该方法包含有:In order to achieve the aforementioned object, the method of the present invention is implemented by using a co-location device arranged inside the vehicle, and the method includes:
由本车接收一资讯封包,该资讯封包中包含一邻车提供的车辆原始坐标及至少一物体原始坐标,该车辆原始坐标及该物体原始坐标分别具有各自的定位精准度;An information packet is received by the vehicle, the information packet includes the original coordinates of the vehicle and the original coordinates of at least one object provided by a neighboring vehicle, and the original coordinates of the vehicle and the original coordinates of the object have respective positioning accuracy;
对该车辆原始坐标及物体原始坐标进行时间延迟补偿,以分别得到邻车补偿后的一车辆坐标及一物体坐标;Perform time delay compensation on the original coordinates of the vehicle and the original coordinates of the object, so as to obtain a vehicle coordinate and an object coordinate after the compensation of the adjacent vehicle;
执行一优化程序,其包含:Execute an optimizer that includes:
比较定位精准度,比对本车的车辆坐标与邻车的车辆坐标,判断何者具有较高的定位精准度;Compare the positioning accuracy, compare the vehicle coordinates of the vehicle with the vehicle coordinates of the adjacent car, and determine which has higher positioning accuracy;
优先对具有较高精准度的车辆坐标进行一优化运算,再对具有较低定位精准度的车辆坐标进行优化运算,其中,该优化运算执行:An optimization operation is first performed on vehicle coordinates with higher accuracy, and then an optimization operation is performed on vehicle coordinates with lower positioning accuracy, wherein the optimization operation executes:
a)根据本车的车辆坐标与邻车的车辆坐标计算出多个参考位置;及a) Calculate a plurality of reference positions according to the vehicle coordinates of the own vehicle and the vehicle coordinates of the adjacent vehicle; and
b)根据各参考位置的权重值,分别计算出一本车车辆优化坐标及一邻车车辆优化坐标;b) According to the weight value of each reference position, calculate the optimized coordinates of a vehicle and the optimized coordinates of a neighboring vehicle respectively;
对物体坐标进行优化,是比较邻车的原始车辆坐标及邻车车辆优化坐标之间的差异量,依据该差异量对邻车提供的物体坐标进行补偿以得到一物体优化坐标;并比较本车的原始车辆坐标及本车的本车车辆优化坐标之间的差异量,依该差异量对本车提供的物体坐标进行补偿以得到一物体优化坐标。Optimizing the object coordinates is to compare the difference between the original vehicle coordinates of the adjacent car and the optimized coordinates of the adjacent car, and compensate the object coordinates provided by the adjacent car according to the difference to obtain the optimized coordinates of an object; and compare the own vehicle. The difference between the original vehicle coordinates of the vehicle and the vehicle-optimized coordinates of the vehicle, and the object coordinates provided by the vehicle are compensated according to the difference to obtain an object-optimized coordinate.
藉由本发明的定位优化方法,可获得本车及邻车优化后的车辆坐标、物体坐标,该优化后的坐标可更加接近实际化置,有助于在行车过程中准确地判断周围环境的物体、车辆分布状态,提升车辆行驶的安全性。By means of the positioning optimization method of the present invention, the optimized vehicle coordinates and object coordinates of the own vehicle and adjacent vehicles can be obtained, and the optimized coordinates can be closer to the actual location, which is helpful for accurately judging objects in the surrounding environment during driving. , vehicle distribution status, improve the safety of vehicle driving.
附图说明Description of drawings
图1是本发明协同定位装置的架构方块图。FIG. 1 is a block diagram of the structure of the co-location device of the present invention.
图2是本发明车辆协同式物体定位优化方法的流程图。Fig. 2 is a flow chart of the vehicle cooperative object localization optimization method of the present invention.
图3是本发明BSM资讯封包格式示意图。FIG. 3 is a schematic diagram of the BSM information packet format of the present invention.
图4是本发明对车辆原始位置执行时间延迟补偿的示意图。FIG. 4 is a schematic diagram of the present invention performing time delay compensation on the home position of the vehicle.
图5是本发明位置优化模块所执行的优化程序流程图。FIG. 5 is a flow chart of the optimization procedure executed by the location optimization module of the present invention.
图6A是本发明取得第一参考位置H1的示意图。FIG. 6A is a schematic diagram of obtaining the first reference position H1 according to the present invention.
图6B是本发明取得第一参考位置H2的示意图。FIG. 6B is a schematic diagram of obtaining the first reference position H2 according to the present invention.
图6C是本发明取得第一参考位置H3的示意图。FIG. 6C is a schematic diagram of obtaining the first reference position H3 according to the present invention.
图6D是本发明取得第一参考位置H4的示意图。FIG. 6D is a schematic diagram of obtaining the first reference position H4 according to the present invention.
图7是本发明利用多个参考位置计算车辆优化坐标的示意图。FIG. 7 is a schematic diagram of calculating vehicle optimal coordinates by using multiple reference positions in the present invention.
图8是本发明中多台车辆的资讯分享示意图。FIG. 8 is a schematic diagram of information sharing among multiple vehicles in the present invention.
图9是车辆行经交叉路口的示意图。FIG. 9 is a schematic diagram of a vehicle passing through an intersection.
图10是协定式定位的误差累积示意图。FIG. 10 is a schematic diagram of error accumulation of protocol positioning.
其中,附图标记:Among them, reference numerals:
10 车辆协同定位装置10 Vehicle co-location device
11 无线传输接口11 Wireless transmission interface
12 延迟修正模块12 Delay correction module
13 位置优化模块13 Position Optimization Module
14 定位比对模块14 Positioning comparison module
15 车身感知器15 Body Sensor
21 第一部分21 Part 1
22 第二部分22 Part II
101 第一车辆101 First vehicle
102 第二车辆102 Second vehicle
103 第三车辆103 Third vehicle
104 第四车辆104 Fourth vehicle
200 物体200 objects
A1 GPS误差范围A1 GPS error range
A2 摄影机误差范围A2 Camera Error Range
A3 GPS及摄影机累加误差范围A3 GPS and camera cumulative error range
H 本车H This car
R 邻车R Neighboring car
H1~H4 第一参考位置~第四参考位置H1~H4 The first reference position to the fourth reference position
R1 基准位置R1 reference position
M1~M4 第一涵盖范围~第四涵盖范围M1~M4 The first coverage area to the fourth coverage area
具体实施方式Detailed ways
请参考图1所示,本发明利用配备在各车辆上的一车身感知器15,包含GPS接收器及其它多种感测器,例如雷达、摄影机等设备取得本车坐标与车辆周围的环境资讯,并透过无线通信技术将本车坐标与环境资讯转传分享给周围的邻近车辆。因此,就任何一台车辆而言,是与周围车辆进行接收及传输的双向无线通信。Please refer to FIG. 1 , the present invention utilizes a
本发明在车辆内部设置一车辆协同定位装置10,该车辆协同定位装置10包含有一无线传输接口11、一延迟修正模块12、一位置优化模块13及一定位比对模块14。该车辆协同定位装置10执行一车辆协同式物体定位优化方法,该方法如图2所示,包含有以下步骤:In the present invention, a
S10:接收一资讯封包,该资讯封包中包含邻车的一车辆原始坐标及至少一物体原始坐标以及该车辆原始坐标与物体原始坐标各自的定位精准度;S10: Receive an information packet, the information packet includes the original coordinates of a vehicle and the original coordinates of at least one object of the adjacent vehicle, and the respective positioning accuracy of the original coordinates of the vehicle and the original coordinates of the object;
S20:对该车辆原始坐标及物体原始坐标进行时间延迟补偿,以分别得到邻车补偿后的的一车辆坐标及一物体坐标;S20: Perform time delay compensation on the original coordinates of the vehicle and the original coordinates of the object, so as to obtain the coordinates of a vehicle and the coordinates of an object after compensation of the adjacent vehicle;
S30:执行一优化程序;S30: Execute an optimization program;
S40:坐标比对融合。S40: Coordinate alignment fusion.
在步骤S10:该无线传输接口11负责本车与邻车之间的数据双向传输,在本实施例中是采用一短距无线通信接口(DSRC),于车辆之间周期性地收发资讯封包,资讯封包格式是采用基本安全信息(Basic Safety Message,BSM)封包,请参考图3,该资讯封包的信息格式大致上包含一msgID栏位、第一部分21(Part I)及第二部分22(Part II),其中第一部分21定义为必要资讯,包含基本的安全信息内容,为每个资讯封包必然包含的部分,但第二部分22为非必要部分(optional),可由使用者视应用需求将所需的资讯加入在第二部分22,属于自行定义的范围。In step S10: the
在BSM资讯封包的第一部分21中,即必然存在有车辆的经纬度资讯,也就是车辆的原始坐标,表示利用车辆内的GPS接收器所测得的本车位置。In the
在BSM资讯封包中的第二部分22中,本发明加入两类资讯,第一类资讯为输出该车辆原始坐标的感测器种类(例如RTK、GPS)及该感测器的定位精准度。第二类资讯包含有物体(object)原始坐标、产生该物体原始坐标的感测器种类、或进一步包含该感测器的精准度,该物体原始坐标是指利用本车的其它感测器(例如radar,lidar,camera等)感测本车以外的其它物体的资讯,该物体可能是车辆、行人、移动物或固定物等。各车辆可将本车的车辆原始坐标与物体原始坐标对外发送,供周围邻车利用;而本车同样可接收来自周围邻车提供的车辆原始坐标与物体原始坐标。In the
在步骤S20:该延迟修正模块12透过该无线传输接口11接收邻车传输出来的BSM资讯封包,获得邻车的车辆原始坐标与物体原始坐标,此外,该位置优化模块13也进一步接收本车的感测器提供的各种感测结果,例如车辆坐标(GPS)、物体坐标。该延迟修正模块12针对邻车提供的车辆原始坐标与物体原始坐标进行时间延迟补偿,请参考图4所示,一第一车辆101表示本车,在其附近的一第二车辆102表示邻车,当第一车辆101接收到第二车辆102发出的资讯封包时,第一车辆101可根据记录在封包内的一封包发出时间及其本身接收到该封包时的一封包接收时间,计算出该封包发出时间及封包接收时间之间的一时间延迟量n。因为第二车辆102在送出封包后,仍持续行驶前进由原始位置PA到位置PB,因此第一车辆101所接收到的第二车辆102原始坐标只是代表原始位置PA,而延迟修正模块12即根据该时间延迟量n推算第二车辆102所移动的一补偿距离,加上该补偿距离而得知即时位置PB,其推算公式可表示如下:In step S20: the
PB=PA+V×n,其中,V代表第二车辆102的车速。P B =P A +V×n, where V represents the vehicle speed of the
当延迟修正模块12推算出第二车辆102的即时位置PB,可根据两位置PA、PB的补偿距离,一并对第二车辆102提供的物体原始坐标加入该补偿距离。在车辆原始坐标、物体原始坐标都经过时间补偿后,即分别得到一车辆坐标及一物体坐标,提供给该位置优化模块13进行后续处理。When the
在步骤S30:该位置优化模块13接收到经时间补偿后的邻车的车辆坐标及物体坐标,并接收本车的车辆坐标及本车的感测器测得的物体坐标,并执行一优化程序如图5所示,该优化程序包含有以下流程S31~S33:In step S30: the
S31:比较定位精准度,是比较本车的车辆坐标与邻车的车辆坐标,判断何者的精准度较高。举例而言,若本车的车辆坐标是利用一即时动态测量(RTK)装置所得到的坐标,而邻车的车辆坐标是利用一般GPS接收器接收,则可判断RTK提供的坐标具有较高精准度;又例如本车与邻车皆是利用相同等级的GPS接收器提供坐标,则可根据两GPS信号中的信任度来判断何者精准度较高,例如根据GPS信号中包含的GGA信息判断两GPS信号何者的信任度较高。S31: Comparing the positioning accuracy is to compare the vehicle coordinates of the own vehicle and the vehicle coordinates of the adjacent vehicle, and determine which has higher accuracy. For example, if the vehicle coordinates of the own vehicle are obtained by a real-time kinematic measurement (RTK) device, and the vehicle coordinates of the neighboring vehicle are received by a general GPS receiver, it can be judged that the coordinates provided by RTK are highly accurate. Another example is that both the own vehicle and the adjacent vehicle use the same level of GPS receiver to provide coordinates, then you can judge which has higher accuracy according to the degree of trust in the two GPS signals, for example, according to the GGA information contained in the GPS signal to judge the two Which GPS signal is more reliable.
S32:车辆定位优化,在判断出本车与邻车两者的车辆坐标何者精准度较高后,将先针对精准度较高者进行优化运算,其次再对精准度较低者进行优化运算。无论是针对本车或邻车的位置资讯进行优化运算,其作法是:S32: Vehicle positioning optimization. After judging which vehicle coordinates of the vehicle and the adjacent vehicle have higher accuracy, the optimization operation will be performed first for the vehicle with higher accuracy, followed by the optimization operation for the vehicle with lower accuracy. Whether it is to optimize the location information of the own vehicle or the adjacent vehicle, the method is as follows:
a)根据本车与邻车的车辆坐标计算出多个参考位置;a) Calculate multiple reference positions according to the vehicle coordinates of the vehicle and adjacent vehicles;
b)根据各参考位置的权重值,分别计算出一本车车辆优化坐标及一邻车车辆优化坐标。b) According to the weight value of each reference position, calculate the optimized coordinates of one vehicle and the optimized coordinates of a neighboring vehicle respectively.
在本实施例中,假设本车与邻车皆配备有GPS接收器及其它感测器,并根据四个参考位置计算出车辆优化坐标,且当判断本车H的车辆坐标与邻车的车辆坐标后,得知本车H的车辆坐标具有较高的精准度,故以本车H为中心,优先对本车的车辆坐标进行优化,其步骤详述如后。首先,请参考图6A所示,本车及邻车分别以H、R表示,两车可根据自身的GPS接收器得知自己的车辆坐标,其中,本车H根据GPS接收器得知的车辆坐标作为第一参考位置H1,该第一参考位置H1与本车H的实际位置有差异是因为GPS接收器的误差量导致,邻车R的GPS接收器感测出的车辆坐标作为一基准位置R1。In this embodiment, it is assumed that both the own vehicle and the adjacent vehicle are equipped with GPS receivers and other sensors, and the vehicle optimal coordinates are calculated according to the four reference positions, and when the vehicle coordinates of the own vehicle H and the adjacent vehicle are determined After the coordinates are obtained, it is known that the vehicle coordinates of the own vehicle H have high accuracy, so the vehicle coordinates of the own vehicle are prioritized to be optimized with the own vehicle H as the center, and the steps are described in detail below. First, please refer to FIG. 6A , the own vehicle and the adjacent vehicle are represented by H and R respectively, and the two vehicles can know their own vehicle coordinates according to their own GPS receivers, wherein the own vehicle H is based on the vehicle obtained by the GPS receiver. The coordinates are used as the first reference position H1. The difference between the first reference position H1 and the actual position of the vehicle H is due to the error of the GPS receiver. The vehicle coordinates sensed by the GPS receiver of the adjacent vehicle R are used as a reference position. R1.
请参考图6B所示,邻车R的感测器因为可感知本车H的存在,因此可得知邻车R与本车H与之间的相对距离D1与相对角度θ1,即得知本车H的相对坐标。邻车R即以自已的基准位置R1为参考基准,根据距离D1及角度θ1将本车H的相对坐标转换为一经纬度坐标,该经纬度坐标即作为第二参考位置H2。由邻车R发出的资讯封包,即包含有该第二参考位置H2的经纬度坐标。Please refer to FIG. 6B , because the sensor of the adjacent vehicle R can sense the existence of the own vehicle H, it can know the relative distance D1 and the relative angle θ1 between the adjacent vehicle R and the own vehicle H, that is, the current vehicle H can be known. Relative coordinates of car H. The adjacent vehicle R takes its own reference position R1 as a reference, and converts the relative coordinates of the vehicle H into a latitude and longitude coordinate according to the distance D1 and the angle θ1, and the latitude and longitude coordinates serve as the second reference position H2. The information packet sent by the neighboring vehicle R includes the latitude and longitude coordinates of the second reference position H2.
请参考图6C所示,本车H的感测器因为可感知邻车R的存在,因此可得知本车H与邻车R与之间的相对距离D2与相对角度θ2。本车H取得与邻车R之间的相对距离D2及相对角度θ2之后,以邻车R的基准位置R1作为参考基准反推出本车H的经纬度坐标,可得到一第三参考位置H3。Referring to FIG. 6C , since the sensor of the own vehicle H can sense the existence of the adjacent vehicle R, it can know the relative distance D2 and the relative angle θ2 between the own vehicle H and the adjacent vehicle R. After obtaining the relative distance D2 and relative angle θ2 between the host vehicle H and the neighboring vehicle R, the latitude and longitude coordinates of the host vehicle H are reversely derived using the reference position R1 of the neighboring vehicle R as a reference to obtain a third reference position H3.
请参考图6D所示,邻车R与本车H之间以无线信号传输资讯封包,因此,可根据无线信号收、发之间的强度衰减程度,推估两车之间的相对距离D3,例如邻车R发射出的无线信号功率预设为-10dBi,而本车H接收到的无线信号功率己成为-30dBi,即显示两车之间的距离让无线信号衰减了20dBi,因为衰减幅度与距离成正比且可预先建立一衰减关系表,因此根据该20dBi的衰减量可推测或查表得知两车之间的相对距离D3。另一方面,因为本车H与邻车R利用GPS接收器测知的车辆坐标为已知,即第一参考位置H1及基准位置R1均为已知,可根据两位置之间的一直向延伸线推测出本车H相对于邻车R的所在方向。因此,以邻车R的基准位置R1为基准,根据相对距离D3及方向算出一第四参考位置H4。Referring to FIG. 6D , information packets are transmitted between the neighboring vehicle R and the own vehicle H by wireless signals. Therefore, the relative distance D3 between the two vehicles can be estimated according to the strength attenuation between the wireless signal transmission and reception. For example, the power of the wireless signal transmitted by the neighboring car R is preset to -10dBi, while the power of the wireless signal received by the own car H has become -30dBi, which means that the distance between the two cars reduces the wireless signal by 20dBi, because the attenuation amplitude is different from The distance is proportional to the distance and an attenuation relation table can be established in advance, so the relative distance D3 between the two vehicles can be obtained by inferring or looking up the table according to the attenuation of 20dBi. On the other hand, because the vehicle coordinates measured by the GPS receiver of the own vehicle H and the adjacent vehicle R are known, that is, the first reference position H1 and the reference position R1 are both known, and the straight extension between the two positions can be used. The line infers the direction of the host vehicle H relative to the adjacent vehicle R. Therefore, a fourth reference position H4 is calculated according to the relative distance D3 and the direction based on the reference position R1 of the adjacent vehicle R as a reference.
请参考图7,当取得第一参考位置H1~第四参考位置H4后,以各参考位置H1~H4为圆心相当于可决定出第一涵盖范围M1~第四涵盖范围M4,每个涵盖范围的大小是根据其参考位置的来源感测器的精准度而定,假设本车H的GPS接收器具有最好的精准度,则第一参考位置H1的涵盖范围最小,且精准度越高者,该参考位置也会具有一较高的权重值ω,其中GPS接收器会提供其本身的精准度。若其它感测器无法提供自身精准度,可根据该感测器推知后的位置其所在距离而决定其权重值,距离越远,其权重越低。而本发明即是在第一涵盖范围M1~第四涵盖范围M4的交集区域(如斜线区域表示)计算出一车辆优化坐标H(x,y)。Please refer to FIG. 7 , after obtaining the first reference position H1 to the fourth reference position H4, taking each reference position H1 to H4 as the center of the circle is equivalent to determining the first coverage range M1 to the fourth coverage range M4, each coverage range The size of the reference position is determined by the accuracy of the source sensor of its reference position. Assuming that the GPS receiver of the vehicle H has the best accuracy, the coverage of the first reference position H1 is the smallest, and the one with the higher accuracy , the reference position will also have a higher weight value ω, where the GPS receiver will provide its own accuracy. If other sensors cannot provide their own accuracy, the weight value can be determined according to the inferred position of the sensor and its distance. The farther the distance, the lower the weight. In the present invention, a vehicle optimization coordinate H(x, y) is calculated in the intersection area (as indicated by the oblique line area) of the first coverage range M1 to the fourth coverage range M4.
在步骤b)中,是根据各参考位置的权重值ω,计算出一车辆优化坐标H(x,y),计算方式可表示如下:In step b), according to the weight value ω of each reference position, a vehicle optimized coordinate H(x, y) is calculated, and the calculation method can be expressed as follows:
其中, in,
在上式中,有m表示参考位置的数目,故本实施例m=4;(xi,yi)分别表示第一~第四参考位置H1~H4的坐标;权重值ωi的其中一种计算方式可采用Adaboost演算法或其它演算法。In the above formula, m represents the number of reference positions, so m=4 in this embodiment; (x i , y i ) represent the coordinates of the first to fourth reference positions H1 to H4 respectively; one of the weight values ω i This calculation method can use the Adaboost algorithm or other algorithms.
除了Adaboost演算法,在此提供一种权重值的计算方式。首先,假设第一参考位置H1~第四参考位置H4的误差值分别为3、6、4、5公尺,可利用一误差反比演算法计算四个不同的权重值,计算方式如下:In addition to the Adaboost algorithm, here is a way to calculate the weight value. First, assuming that the error values of the first reference position H1 to the fourth reference position H4 are 3, 6, 4, and 5 meters respectively, an inverse error algorithm can be used to calculate four different weight values. The calculation method is as follows:
计算总误差量,∑iεi=3+4+5+6=18Calculate the total error amount, ∑ i ε i =3+4+5+6=18
分别计算总误差量与各误差值的差异量, Calculate the difference between the total error and each error value respectively,
计算差异量的总量, Calculate the total amount of variance,
四个权重值分别为:The four weight values are:
本车H的车辆优化坐标其中(xi,yi)分别表示四个参考位置的坐标;H(x,y)代表车辆优化坐标。Vehicle-optimized coordinates of host vehicle H Among them, (x i , y i ) respectively represent the coordinates of the four reference positions; H(x, y) represent the vehicle optimization coordinates.
当完成本车H的车辆坐标的优化运算之后,其次再以邻车R为中心,对邻车R的车辆坐标进行优化运算,其运算过程如同上述,只是互换本车与邻车之间的角色,换言之,将邻车数据视为是上述运算中的本车数据,并将本车数据视为是上述运算中的邻车数据。因此,同样可以得到代表邻车的邻车车辆优化坐标R(x,y)。After the optimization of the vehicle coordinates of the own vehicle H is completed, the next step is to optimize the vehicle coordinates of the adjacent vehicle R with the adjacent vehicle R as the center. The role, in other words, regards the adjacent car data as the own car data in the above calculation, and regards the own car data as the adjacent car data in the above calculation. Therefore, the optimal coordinates R(x, y) of the adjacent vehicle representing the adjacent vehicle can also be obtained.
S33:物体定位优化,即针对邻车R、本车H的感测器所测得的物体坐标皆进行优化。在本车H部分,因为已得知本车H优化后的车辆优化坐标H(x,y),故根据本车H感测器所测得的物体坐标,可以比较本车H的原始车辆坐标及其车辆优化坐标H(x,y)之间的差异量,于计算本车H感测器测得的物体的物体优化坐标时,即根据该差异量对本车H感测器测得的差异量进行补偿,而得到一物体优化坐标,完成对本车H测得的物体坐标的优化运算。同理,在邻车R部分,因为已得知邻车R优化后的车辆优化坐标,故根据邻车R感测器所测得的物体坐标,可以比较邻车R的原始车辆坐标及其车辆优化坐标之间的差异量,在重新计算该对邻车R感测器测得的物体的物体优化坐标时,即根据该差异量对邻车R感测器测得的差异量进行补偿,而得到一物体优化坐标。S33 : object positioning optimization, that is, optimizing the object coordinates measured by the sensors of the adjacent vehicle R and the own vehicle H. In the part of the own vehicle H, since the optimized vehicle coordinates H(x, y) of the own vehicle H are known, the original vehicle coordinates of the own vehicle H can be compared according to the object coordinates measured by the own vehicle H sensor. and the difference between the vehicle's optimized coordinates H(x, y), when calculating the object's optimized coordinates of the object measured by the vehicle's H sensor, the difference between the vehicle's H sensor and the vehicle's H sensor is measured according to the difference. Then, the optimized coordinates of an object are obtained, and the optimized operation of the coordinates of the object measured by the vehicle H is completed. In the same way, in the part of the adjacent car R, because the optimized vehicle coordinates of the adjacent car R have been known, according to the object coordinates measured by the sensor of the adjacent car R, the original vehicle coordinates of the adjacent car R and its vehicle can be compared. The difference between the optimized coordinates, when recalculating the object optimized coordinates of the object measured by the R sensor of the adjacent car, the difference amount measured by the R sensor of the adjacent car is compensated according to the difference, and Get the optimized coordinates of an object.
在步骤S40,本发明可利用该定位比对模块14融合来自不同邻车R的多笔坐标。举例来说,请参考图8所示,对第一车辆101而言,其它任一车辆102~104均会感测到周围的物体并分享给第一车辆101,第一车辆101会接收到多笔关于同一物体(例如第二车辆102)的坐标并暂存在一缓冲器(buffer)内,因此,第一车辆101内的定位比对模块14会从缓冲器内取出相似物体的坐标,并加以融合成单一个位置数据,不同的物体坐标则单独新增。其中一种融合方式是透过K-Means分群演算法将多笔坐标计算出一平均值,将同一车辆的车辆优化坐标平均计算出一车辆代表坐标,将同一物体的物体优化坐标平均计算出一物体代表坐标。In step S40, the present invention can use the
综上所述,本发明车辆协同式物体定位优化方法具备有下述优点:To sum up, the vehicle cooperative object localization optimization method of the present invention has the following advantages:
1.利用本车与邻车之间交换各自感测出的数据,可扩增各车辆的感测范围,取得更多的环境数据。1. By exchanging the sensed data between the vehicle and neighboring vehicles, the sensing range of each vehicle can be expanded and more environmental data can be obtained.
2.透过协同定位装置重新校正车辆及周围物体的坐标数据,相较于单独参考GPS接收器测知的坐标数据,本发明可以得到更精准的坐标,无论是应用于自动驾驶系统,或是用于提前警示驾驶者周围环境的现况,均可提升行车安全性。2. The coordinate data of the vehicle and surrounding objects are re-corrected through the co-location device. Compared with the coordinate data measured by the GPS receiver alone, the present invention can obtain more accurate coordinates, whether it is applied to an automatic driving system, or It is used to warn the driver of the current situation of the surrounding environment in advance, which can improve driving safety.
3.利用本发明的协同定位方法,当本车完成优化运算后,可以得到优化完成后的本车定位数据、邻车定位数据和一或多个物体定位数据,这三份数据会以BSM资讯封包的格式传送给周围的邻车,这时候的邻车接收到BSM资讯封包时,亦可以单独执行本发明的优化运算,因此,周围各车可分散运算,随着时间的逐渐累积,车辆彼此之间的定位数据亦会渐渐提高精准度。3. Using the collaborative positioning method of the present invention, when the vehicle completes the optimization operation, the optimized vehicle positioning data, adjacent vehicle positioning data and one or more object positioning data can be obtained. These three pieces of data will be displayed as BSM information. The format of the packet is transmitted to the surrounding adjacent vehicles. At this time, when the adjacent vehicle receives the BSM information packet, it can also perform the optimization calculation of the present invention independently. Therefore, the surrounding vehicles can perform distributed calculation. The positioning data between the two will gradually improve the accuracy.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510967028.7A CN106896393B (en) | 2015-12-21 | 2015-12-21 | Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510967028.7A CN106896393B (en) | 2015-12-21 | 2015-12-21 | Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106896393A CN106896393A (en) | 2017-06-27 |
CN106896393B true CN106896393B (en) | 2020-01-10 |
Family
ID=59190979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510967028.7A Active CN106896393B (en) | 2015-12-21 | 2015-12-21 | Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106896393B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107315413B (en) * | 2017-07-12 | 2020-07-21 | 北京航空航天大学 | A multi-vehicle co-localization algorithm considering relative positions between vehicles in a vehicle-to-vehicle communication environment |
CN110406456B (en) * | 2018-04-26 | 2022-12-06 | 财团法人车辆研究测试中心 | Self-adaptive light-shading method for vehicle headlamp |
CN112714930B (en) * | 2018-09-27 | 2023-02-28 | 本田技研工业株式会社 | System, management method, and information processing apparatus |
CN109655851A (en) * | 2018-12-26 | 2019-04-19 | 与德科技有限公司 | A kind of modification method, device, equipment and storage medium |
JP7199269B2 (en) * | 2019-03-20 | 2023-01-05 | 日立Astemo株式会社 | External sensing information processing device |
CN112348993A (en) * | 2019-08-07 | 2021-02-09 | 财团法人车辆研究测试中心 | Dynamic graph resource establishing method and system capable of providing environment information |
CN110807950B (en) * | 2019-11-13 | 2024-02-23 | 腾讯科技(深圳)有限公司 | Risk assessment method and device based on vehicle collision and computer equipment |
CN111220147B (en) * | 2020-01-06 | 2024-01-23 | 腾讯科技(深圳)有限公司 | Positioning correction method and device for terminal |
FR3106217A1 (en) * | 2020-01-09 | 2021-07-16 | Continental Automotive | METHOD OF DETERMINING THE LAND POSITION OF A MOTOR VEHICLE AND ASSOCIATED DETERMINATION DEVICE |
CN111650604B (en) * | 2020-07-02 | 2023-07-28 | 上海电科智能系统股份有限公司 | Method for realizing accurate detection of self-vehicle and surrounding obstacle by using accurate positioning |
CN112566040B (en) * | 2020-11-26 | 2023-06-06 | 深圳北斗通信科技有限公司 | Vehicle gun track binding fusion method, system and storage medium |
CN113049008B (en) * | 2021-04-20 | 2024-06-25 | 北京航迹科技有限公司 | Method and device for calibrating positioning system of vehicle, computer equipment and storage medium |
CN113421330B (en) * | 2021-06-21 | 2023-09-29 | 车路通科技(成都)有限公司 | Vehicle-road cooperative road three-dimensional scene construction method, device, equipment and medium |
TWI794971B (en) * | 2021-09-14 | 2023-03-01 | 和碩聯合科技股份有限公司 | Object orientation identification method and object orientation identification device |
CN115096320A (en) * | 2022-06-06 | 2022-09-23 | 北京主线科技有限公司 | Vehicle positioning method, device, equipment and medium |
CN117849841A (en) * | 2023-12-15 | 2024-04-09 | 上海戴世智能科技有限公司 | A method, device and vehicle for measuring relative positions of multiple targets |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101067879A (en) * | 2007-05-28 | 2007-11-07 | 戴宏 | Motor vehicle day and night running observing recorder |
CN101762805A (en) * | 2008-07-02 | 2010-06-30 | 凹凸电子(武汉)有限公司 | Integrated navigation system and navigation method |
CN102288952A (en) * | 2010-05-18 | 2011-12-21 | 万都株式会社 | Sensor and alignment adjusting method |
EP2551700A1 (en) * | 2011-02-28 | 2013-01-30 | The Boeing Company | Alternative communication link for an air vehicle |
CN104748755A (en) * | 2013-12-25 | 2015-07-01 | 财团法人工业技术研究院 | Method and device for positioning and correcting mobile vehicle |
-
2015
- 2015-12-21 CN CN201510967028.7A patent/CN106896393B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101067879A (en) * | 2007-05-28 | 2007-11-07 | 戴宏 | Motor vehicle day and night running observing recorder |
CN101762805A (en) * | 2008-07-02 | 2010-06-30 | 凹凸电子(武汉)有限公司 | Integrated navigation system and navigation method |
CN102288952A (en) * | 2010-05-18 | 2011-12-21 | 万都株式会社 | Sensor and alignment adjusting method |
EP2551700A1 (en) * | 2011-02-28 | 2013-01-30 | The Boeing Company | Alternative communication link for an air vehicle |
CN104748755A (en) * | 2013-12-25 | 2015-07-01 | 财团法人工业技术研究院 | Method and device for positioning and correcting mobile vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN106896393A (en) | 2017-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106896393B (en) | Vehicle cooperative type object positioning optimization method and vehicle cooperative positioning device | |
CN103778796B (en) | For transmitter being dispatched to the method for object and the motor vehicles that are detected in vehicle-to-vehicle communication | |
US10466366B2 (en) | Optimizing method for vehicle cooperative object positioning and vehicle cooperative positioning apparatus | |
US9418549B2 (en) | Apparatus and method for recognizing position of vehicle | |
US9420412B2 (en) | Vehicle position calibration method and apparatus | |
US20200011960A1 (en) | Enhanced object position detection | |
KR101622028B1 (en) | Apparatus and Method for controlling Vehicle using Vehicle Communication | |
US10282997B2 (en) | System and method for generating and communicating lane information from a host vehicle to a vehicle-to-vehicle network | |
JP2018066728A (en) | Vehicle position estimation using wireless vehicle data | |
JP6330471B2 (en) | Wireless positioning device | |
JP2009257763A (en) | System, method and program for position estimation for vehicle | |
US10694485B2 (en) | Method and apparatus for correcting multipath offset and determining wireless station locations | |
US10732598B2 (en) | Method for the transformation of position information into a local coordinates system | |
JP5364749B2 (en) | Wireless system and position estimator | |
WO2020151663A1 (en) | Vehicle positioning apparatus, system and method, and vehicle | |
US20170215046A1 (en) | Method and system for localizing a vehicle and vehicle with a device for carrying out vehicle-to-x communications | |
KR102528421B1 (en) | Communications terminal for vehicle and method for positioning vehicle using the same | |
TW201930921A (en) | Cooperative sensing | |
CN114631130B (en) | Method for providing object messages on surrounding objects in a communication network for communication with other traffic participants | |
CN113574346A (en) | Positioning method and device | |
US11900808B2 (en) | Apparatus, method, and computer program for a first vehicle and for estimating a position of a second vehicle at the first vehicle | |
KR20220023686A (en) | Device and Method for Positioning a Personal Mobility | |
US12078735B2 (en) | Proximity-based navigation method | |
TWI584238B (en) | Optimization Method of Vehicle Coordinated Object Location and Vehicle Coordinate Location Device | |
WO2019151109A1 (en) | Road surface information acquisition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |