CN106893832A - A kind of BQ & P Technologies for Heating Processing of carbides-free shellfish/horse Multiphase Steel - Google Patents
A kind of BQ & P Technologies for Heating Processing of carbides-free shellfish/horse Multiphase Steel Download PDFInfo
- Publication number
- CN106893832A CN106893832A CN201510957802.6A CN201510957802A CN106893832A CN 106893832 A CN106893832 A CN 106893832A CN 201510957802 A CN201510957802 A CN 201510957802A CN 106893832 A CN106893832 A CN 106893832A
- Authority
- CN
- China
- Prior art keywords
- horse
- carbide
- steel
- free
- shellfish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明公开一种无碳化物贝/马复相钢的BQ&P热处理工艺,以C-Mn-Si为主要合金元素,添加Al、Mo、Cr、Ni、Cu、Co、W、Ti、Nb和V等元素,其余为Fe。将无碳化物贝/马复相钢经冶炼、铸造、锻造或者轧制后,进行BQ处理和P处理,获得的无碳化物贝/马复相钢抗拉强度800-2500MPa,屈服强度600-2000MPa,延伸率10-40%,冲击值AKV20-300J/cm2,性能优于常规的低合金高强钢。同时可以避免传统的Q&P工艺淬火冷速过大,淬火温度过低,造成的钢件淬裂等问题。
The invention discloses a BQ&P heat treatment process for carbide-free shellfish/horse composite steel, which uses C-Mn-Si as the main alloy element and adds Al, Mo, Cr, Ni, Cu, Co, W, Ti, Nb and V and other elements, and the rest is Fe. After smelting, casting, forging or rolling, the carbide-free shellfish/horse composite steel is subjected to BQ treatment and P treatment, and the obtained carbide-free shellfish/horse composite steel has a tensile strength of 800-2500MPa and a yield strength of 600- 2000MPa, elongation 10-40%, impact value A KV 20-300J/cm 2 , performance is superior to conventional low-alloy high-strength steel. At the same time, it can avoid problems such as quenching and cracking of steel parts caused by excessive cooling rate and low quenching temperature in the traditional Q&P process.
Description
技术领域technical field
本发明涉及低合金高强钢热处理领域。更具体地,涉及一种无碳化物贝/马复相钢的BQ&P热处理工艺。The invention relates to the field of heat treatment of low-alloy high-strength steel. More specifically, it relates to a BQ&P heat treatment process for carbide-free shellfish/horse composite steel.
背景技术Background technique
轨道交通、建筑、机械和能源等领域都需要大量的低合金高强钢,并要求低合金高强钢在保持高强度的同时可以获得足够的延伸率和冲击韧性。但是经过常规的热处理,钢的韧性和塑性随着强度的增加而降低。美国的J.Speer教授提出了Q&P工艺,将钢件经奥氏体化后,淬火至马氏体转变开始温度(Ms)与马氏体转变结束温度(Mf)之间,得到未转变的奥氏体和马氏体,再加热至某一温度进行分配处理,促使碳从过饱和的马氏体中扩散至奥氏体中,稳定奥氏体组织(J.Speer et al.Acta Materialia 51(2003)2611-2622)。徐祖耀院士提出的Q-P-T工艺,在马氏体和奥氏体组织中引入纳米析出物,进一步改善钢的强度(徐祖耀,金属热处理,34(2009)1-8)。在此基础上,相关的发明专利包括:低合金超高强度复相钢及其热处理方法(公开号:101225499),一种高强韧性复相钢及其热处理方法(公开号:103045941A)和一种贝氏体/马氏体/奥氏体复相高强钢的制备方法(公开号:103243275A)。但是以上文献和专利都是为了获得足够的强度,将钢件经奥氏体化后,直接淬火或者冷却至马氏体转变开始温度(Ms)与马氏体转变结束温度(Mf)之间,都没有涉及到将钢件经奥氏体化后,控制冷却至贝氏体转变开始温度(Bs)与马氏体转变结束温度(Mf)之间。由于马氏体转变开始温度较低,而且奥氏体向马氏体转变会造成体积膨胀。因此将钢件直接淬火至马氏体转变开始温度(Ms)之下,容易引起钢件残余应力过大,造成淬裂等问题。A large amount of low-alloy high-strength steel is required in fields such as rail transit, construction, machinery, and energy, and it is required that low-alloy high-strength steel can obtain sufficient elongation and impact toughness while maintaining high strength. But after conventional heat treatment, the toughness and plasticity of steel decrease with the increase of strength. Professor J. Speer in the United States proposed the Q&P process. After the steel is austenitized, it is quenched to between the martensitic transformation start temperature (Ms) and the martensite transformation end temperature (M f ), to obtain untransformed Austenite and martensite, and then heated to a certain temperature for partitioning, promotes the diffusion of carbon from supersaturated martensite into austenite, stabilizing the austenite structure (J.Speer et al.Acta Materialia 51 (2003) 2611-2622). The QPT process proposed by academician Xu Zuyao introduces nano-precipitates into the martensite and austenite structures to further improve the strength of the steel (Xu Zuyao, Metal Heat Treatment, 34(2009) 1-8). On this basis, related invention patents include: low-alloy ultra-high-strength multi-phase steel and its heat treatment method (public number: 101225499), a high-strength toughness multi-phase steel and its heat treatment method (public number: 103045941A) and a Preparation method of bainite/martensite/austenite composite high-strength steel (publication number: 103243275A). However, the above documents and patents are all to obtain sufficient strength. After the steel is austenitized, it is directly quenched or cooled to a temperature between the start temperature of martensite transformation (M s ) and the end temperature of martensite transformation (M f ). None of them involved controlling the cooling of the steel to the temperature between the start temperature of bainite transformation (B s ) and the end temperature of martensite transformation (M f ) after austenitization. Since the martensite transformation starts at a lower temperature, and the transformation from austenite to martensite will cause volume expansion. Therefore, directly quenching the steel piece to below the martensitic transformation start temperature (M s ) will easily cause excessive residual stress of the steel piece, resulting in problems such as quenching cracks.
发明内容Contents of the invention
本发明所解决的技术问题在于提供一种无碳化物贝/马复相钢的热处理工艺,采用BQ处理和P处理结合,首先采用两个阶段控制冷却,将奥氏体化后的钢件冷却至贝氏体转变开始温度(Bs)及贝氏体转变开始温度(Bs)与马氏体转变结束温度(Mf)之间,然后采用控制加热,加热至某一温度进行P处理,促进碳从无碳化物贝氏体铁素体和马氏体中向奥氏体中分配。避免了将奥氏体化后的钢件直接淬火至马氏体转变开始温度(Ms)与马氏体转变结束温度(Mf)之间,带来的钢件淬裂等问题;而且采用控制加热使钢件P阶段的温度均匀,可避免加热过程中的钢件开裂。最终改善了钢件的塑性和韧性。The technical problem to be solved by the present invention is to provide a heat treatment process for carbide-free B/M complex phase steel, which combines BQ treatment and P treatment, first adopts two-stage controlled cooling, and cools the steel after austenitization To the bainite transformation start temperature (B s ) and between the bainite transformation start temperature (B s ) and the martensite transformation end temperature (M f ), then use controlled heating to a certain temperature for P treatment, Promotes carbon partitioning from carbide-free bainitic ferrite and martensite to austenite. It avoids the problems of quenching and cracking of the steel parts caused by directly quenching the austenitized steel parts to the temperature between the martensite transformation start temperature (M s ) and the martensite transformation end temperature (M f ); and adopts Control the heating to make the temperature of the P stage of the steel part uniform, which can avoid the cracking of the steel part during the heating process. Finally, the plasticity and toughness of steel parts are improved.
为达到上述目的,本发明采用下述技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、锻造或轧制成无碳化物贝/马复相钢,所述无碳化物贝/马复相钢包含的组分及质量百分比为:1) Smelting, casting, forging or rolling into carbide-free shellfish/horse composite steel by conventional steelmaking process, the components and mass percentages contained in the carbide-free shellfish/horse composite steel are:
C:0.06~0.75wt%;Si:0.3~2.0wt%;Al:0.01~1.5wt%;Mn:1.6~3.6wt%;C: 0.06~0.75wt%; Si: 0.3~2.0wt%; Al: 0.01~1.5wt%; Mn: 1.6~3.6wt%;
Mo:0.1~0.6wt%;Cr:0.1~1.5wt%;Ni:0~1.0wt%;Co:0~1.0wt%;Mo: 0.1~0.6wt%; Cr: 0.1~1.5wt%; Ni: 0~1.0wt%; Co: 0~1.0wt%;
Cu:0~0.8wt%;W:0~1.2wt.%;Ti:0~0.05wt%;Nb:0~0.12wt.%;Cu: 0~0.8wt%; W: 0~1.2wt.%; Ti: 0~0.05wt%; Nb: 0~0.12wt.%;
V:0~0.22wt%;P:0.001~0.01wt%;S:0.001~0.015wt%;其余为Fe;V: 0~0.22wt%; P: 0.001~0.01wt%; S: 0.001~0.015wt%; the rest is Fe;
2)将步骤1)得到的无碳化物贝/马复相钢加热或冷却至800~1200℃;2) heating or cooling the carbide-free shellfish/horse composite steel obtained in step 1) to 800-1200°C;
3)BQ处理:将无碳化物贝/马复相钢控制冷却至贝氏体转变开始温度与马氏体转变结束温度之间;3) BQ treatment: Controlled cooling of the carbide-free bainite/martensite composite phase steel to the temperature between the start temperature of bainite transformation and the end temperature of martensite transformation;
4)P处理:将无碳化物贝/马复相钢控制加热至200~500℃,保温0.1~72h,再冷却至室温。4) P treatment: Heat the carbide-free shellfish/horse composite steel to 200-500°C under control, keep it warm for 0.1-72h, and then cool to room temperature.
优选地,步骤2)中,加热或冷却至800~1200℃,得到的显微组织是奥氏体或铁素体和奥氏体。Preferably, in step 2), heating or cooling to 800-1200° C., the obtained microstructure is austenite or ferrite and austenite.
优选地,步骤3)中,所述控制冷却分为两个阶段:第1阶段以0.5~50℃/秒的冷却速度冷却至贝氏体转变开始温度;第2阶段以0.1~5℃/秒的冷却速度冷却至贝氏体转变开始温度与马氏体转变结束温度之间。Preferably, in step 3), the controlled cooling is divided into two stages: the first stage cools to the bainite transformation start temperature at a cooling rate of 0.5-50°C/sec; the second stage cools at a cooling rate of 0.1-5°C/sec The cooling rate is cooled to between the start temperature of bainite transformation and the end temperature of martensite transformation.
优选地,所述贝氏体转变开始温度为210~615℃;所述马氏体转变结束温度为-175~225℃。Preferably, the bainite transformation start temperature is 210-615°C; the martensite transformation end temperature is -175-225°C.
优选地,步骤3)中,冷却后得到的的显微组织是未转变的奥氏体、无碳化物贝氏体和马氏体组织或者是未转变的奥氏体、铁素体、无碳化物贝氏体和马氏体组织。Preferably, in step 3), the microstructure obtained after cooling is untransformed austenite, carbide-free bainite and martensite or untransformed austenite, ferrite, carbide-free bainite and martensite structures.
优选地,步骤4)中,所述控制加热是以10-100℃/分钟加热至200~500℃。Preferably, in step 4), the controlled heating is heating at 10-100°C/minute to 200-500°C.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1.本发明无碳化物贝/马复相钢以C-Mn-Si为主要合金组分,合金成本低,同时添加0.10~0.6wt%的Mo和控制P的含量为0.001-0.01wt%,可避免钢件出现沿晶断裂,进而改善钢件的韧性;采用Al、Co促进贝氏体转变,节省处理时间,节约能源。1. The carbide-free shellfish/horse composite phase steel of the present invention takes C-Mn-Si as the main alloy component, and the alloy cost is low, while adding 0.10-0.6wt% Mo and controlling the content of P to be 0.001-0.01wt%, Intergranular fracture of steel parts can be avoided, thereby improving the toughness of steel parts; Al and Co are used to promote bainite transformation, saving processing time and energy.
2.BQ处理不同于传统的Q&P工艺将钢件淬火至马氏体转变开始温度(Ms)和马氏体转变结束温度(Mf)之间,而是将钢件控制冷却至贝氏体转变开始温度(Bs)与马氏体转变结束温度(Mf)之间。BQ处理采用两个阶段的控制冷却,第1阶段以0.5~50℃/秒的冷却速度冷却至贝氏体转变开始温度(Bs),第2阶段以0.1~5℃/秒的冷却速度冷却至贝氏体转变开始温度(Bs)与马氏体转变结束温度(Mf)之间。其中第1阶段冷却过程中没有发生相变,采用比第2阶段较快的冷速可以提高生产效率,但是如果冷速过大,会造成热应力过大引起钢件变形的问题,因此第1阶段采用0.5~50℃/秒的冷却速度即提高了生产效率,又避免了钢件变形。第2阶段发生贝氏体转变和马氏体转变,采用比第1阶段较慢的冷速可以避免相变应力过大造成钢件开裂,同时有利于钢件温度均匀化,但是如果冷却速度过慢,会造成生产效率低下,因此第2阶段采用0.1~5℃/秒的冷却速度即可以避免钢件的开裂,又保证了生产效率。2. BQ treatment is different from the traditional Q&P process, which quenches the steel to between the martensitic transformation start temperature (M s ) and the martensite transformation end temperature (M f ), but controls the cooling of the steel to bainite Between the transformation start temperature (B s ) and the martensitic transformation end temperature (M f ). BQ treatment adopts two-stage controlled cooling, the first stage is cooled to the bainite transformation start temperature (B s ) at a cooling rate of 0.5-50°C/s, and the second stage is cooled at a cooling rate of 0.1-5°C/s Between the start temperature of bainite transformation (B s ) and the end temperature of martensite transformation (M f ). There is no phase change in the cooling process of the first stage, and the production efficiency can be improved by adopting a faster cooling rate than that of the second stage, but if the cooling rate is too large, it will cause the problem of excessive thermal stress and deformation of the steel parts, so the first stage Adopting a cooling rate of 0.5-50°C/s in the first stage not only improves production efficiency, but also avoids deformation of steel parts. In the second stage, bainite transformation and martensitic transformation occur, and the cooling rate slower than that in the first stage can avoid cracking of steel parts caused by excessive phase transformation stress, and is conducive to the uniform temperature of steel parts, but if the cooling rate is too high Slow cooling will result in low production efficiency, so the second stage adopts a cooling rate of 0.1-5°C/s to avoid cracking of steel parts and ensure production efficiency.
3.P处理采用控制加热,加热速度为10~100℃/分钟,可使无碳化物贝/马复相钢P阶段的温度均匀,可避免加热过程中的钢件开裂。3. P treatment adopts controlled heating, and the heating rate is 10-100°C/min, which can make the temperature of the carbide-free shellfish/horse composite phase steel P stage uniform, and can avoid cracking of steel parts during the heating process.
4.应用本发明得到的无碳化物贝/马复相钢可以达到抗拉强度800-2500MPa,屈服强度600-2000MPa,延伸率10-40%,冲击值AKV20-300J/cm2,综合性能高于常规的低合金高强钢,具有广阔的应用前景。4. The carbide-free shellfish/horse composite steel obtained by applying the present invention can reach a tensile strength of 800-2500MPa, a yield strength of 600-2000MPa, an elongation of 10-40%, and an impact value A KV of 20-300J/cm 2 . The performance is higher than that of conventional low-alloy high-strength steel, and it has broad application prospects.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细的说明。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings.
图1示出无碳化物贝/马复相钢的热处理工艺的示意图。Fig. 1 shows a schematic diagram of the heat treatment process of carbide-free shellfish/horse composite steel.
图2示出实施例1的无碳化物贝/马复相组织。FIG. 2 shows the carbide-free shellfish/horse composite structure of Example 1.
图3示出实施例4的无碳化物贝/马复相组织。FIG. 3 shows the carbide-free shellfish/horse composite structure of Example 4.
图4示出实施例8的无碳化物贝/马复相组织。FIG. 4 shows the carbide-free shellfish/horse complex structure of Example 8.
图5示出实施例11的无碳化物贝/马复相组织。FIG. 5 shows the carbide-free shellfish/horse composite structure of Example 11.
具体实施方式detailed description
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。In order to illustrate the present invention more clearly, the present invention will be further described below in conjunction with preferred embodiments and accompanying drawings. Similar parts in the figures are denoted by the same reference numerals. Those skilled in the art should understand that the content specifically described below is illustrative rather than restrictive, and should not limit the protection scope of the present invention.
表1各种无碳化物贝/马复相钢的合金组分及质量百分比Table 1 Alloy components and mass percentages of various carbide-free shellfish/horse composite steels
各实施例中无碳化物贝/马复相钢合金组分含量如表1所示,其余为铁。The content of the carbide-free shellfish/horse composite steel alloy components in each embodiment is shown in Table 1, and the rest is iron.
表2各实施例中无碳化物贝/马复相钢的贝氏体转变开始温度(Bs)和马氏体转变结束温度(Mf)Table 2 The bainite transformation start temperature (B s ) and the martensite transformation end temperature (M f ) of the carbide-free bainite/martensite composite steel in each example
实施例1Example 1
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、轧制成10-20mm厚的无碳化物贝/马复相钢板;1) Smelting, casting and rolling into 10-20mm thick carbide-free shellfish/horse composite steel plate by conventional steelmaking process;
2)将上述无碳化物贝/马复相钢板经冶炼、铸造、轧制后冷却至900℃进行奥氏体化;2) The above-mentioned carbide-free shellfish/horse composite steel plate is smelted, cast, and rolled, then cooled to 900°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相钢板以50℃/秒的冷却速度冷却至615℃,然后再以5℃/秒的冷却速度冷却至450℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite steel plate to 615°C at a cooling rate of 50°C/s, and then cool to 450°C at a cooling rate of 5°C/s;
4)P处理:将上述无碳化物贝/马复相钢板以50℃/分钟加热至500℃,保温0.1小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite steel plate at 50°C/min to 500°C, keep it warm for 0.1 hour, and then cool it down to room temperature.
实施例2Example 2
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、轧制成20-60mm厚的无碳化物贝/马复相钢板;1) Smelting, casting and rolling into 20-60mm thick carbide-free shellfish/horse composite steel plate by conventional steelmaking process;
2)将上述无碳化物贝/马复相钢板经冶炼、铸造、轧制后冷却至800℃进行奥氏体化;2) The above-mentioned carbide-free shellfish/horse composite steel plate is smelted, cast, and rolled, then cooled to 800°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相钢板以20℃/秒的冷却速度冷却至420℃,然后再以1℃/秒的冷却速度冷却至400℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite steel plate to 420°C at a cooling rate of 20°C/s, and then cool to 400°C at a cooling rate of 1°C/s;
4)P处理:将上述无碳化物贝/马复相钢板以10℃/分钟加热至450℃,保温0.5小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite steel plate to 450°C at 10°C/min, keep it warm for 0.5 hours, and then cool to room temperature.
实施例3Example 3
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、轧制成直径为600-900m的无碳化物贝/马复相车轮;1) Carbide-free shellfish/horse composite wheels with a diameter of 600-900m are smelted, cast, and rolled by conventional steelmaking processes;
2)将上述无碳化物贝/马复相车轮加热至950℃进行奥氏体化;2) Heating the carbide-free shellfish/horse composite wheel to 950°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相车轮以10℃/秒的冷却速度冷却至516℃,然后再以2℃/秒的冷却速度冷却至280℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite wheel to 516°C at a cooling rate of 10°C/s, and then cool to 280°C at a cooling rate of 2°C/s;
4)P处理:将上述无碳化物贝/马复相车轮以100℃/分钟加热至300℃,保温12小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite wheel at 100°C/min to 300°C, keep it warm for 12 hours, and then cool it down to room temperature.
实施例4Example 4
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、轧制成直径为800-1200m的无碳化物贝/马复相车轮;1) Carbide-free shellfish/horse composite wheels with a diameter of 800-1200m are smelted, cast, and rolled by conventional steelmaking processes;
2)将上述无碳化物贝/马复相车轮加热至930℃进行奥氏体化;2) Heating the carbide-free shellfish/horse composite wheel to 930°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相车轮以10℃/秒的冷却速度冷却至505℃,然后再以1℃/秒的冷却速度冷却至250℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite wheel to 505°C at a cooling rate of 10°C/s, and then cool to 250°C at a cooling rate of 1°C/s;
4)P处理:将上述无碳化物贝/马复相车轮以50℃/分钟加热至300℃,保温24小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite wheel at 50°C/min to 300°C, keep it warm for 24 hours, and then cool it down to room temperature.
实施例5Example 5
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、轧制成无碳化物贝/马复相钢轨;1) Smelting, casting and rolling into carbide-free shellfish/horse composite rails by conventional steelmaking process;
2)将上述无碳化物贝/马复相钢轨经冶炼、铸造、轧制后冷却至950℃进行奥氏体化;2) After smelting, casting and rolling, the above-mentioned carbide-free shellfish/horse composite rail is cooled to 950°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相钢轨以1℃/秒的冷却速度冷却至420℃,然后再以0.5℃/秒的冷却速度冷却至325℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite rail to 420°C at a cooling rate of 1°C/s, and then cool to 325°C at a cooling rate of 0.5°C/s;
4)P处理:将上述无碳化物贝/马复相钢轨以10℃/分钟加热至350℃,保温0.3小时,之后再冷却至室温。4) P treatment: the above-mentioned carbide-free shellfish/horse composite rail is heated to 350°C at 10°C/min, kept for 0.3 hours, and then cooled to room temperature.
实施例6Example 6
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、轧制成无碳化物贝/马复相钢筋;1) Smelting, casting and rolling into carbide-free shellfish/horse composite steel bars by conventional steelmaking process;
2)将上述无碳化物贝/马复相钢筋经冶炼、铸造、轧制后冷却至1000℃进行奥氏体化;2) Cool the above-mentioned carbide-free shellfish/horse composite steel bars to 1000°C for austenitization after smelting, casting, and rolling;
3)BQ处理:将上述无碳化物贝/马复相钢筋以0.5℃/秒的冷却速度冷却至420℃,然后再以0.2℃/秒的冷却速度冷却至100℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite steel bars to 420°C at a cooling rate of 0.5°C/s, and then cool to 100°C at a cooling rate of 0.2°C/s;
4)P处理:将上述无碳化物贝/马复相钢筋以10℃/分钟加热至250℃,保温72小时,之后再冷却至室温。4) P treatment: the above-mentioned carbide-free shellfish/horse composite steel bar was heated to 250°C at 10°C/min, kept for 72 hours, and then cooled to room temperature.
实施例7Example 7
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造成无碳化物贝/马复相耐磨钢管;1) It is smelted and cast into a carbide-free shellfish/horse composite phase wear-resistant steel pipe by conventional steelmaking process;
2)将上述无碳化物贝/马复相耐磨钢管加热至1000℃进行奥氏体化;2) Heating the above-mentioned carbide-free shellfish/horse composite wear-resistant steel pipe to 1000°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相耐磨钢管以1℃/秒的冷却速度冷却至322℃,然后再以0.1℃/秒的冷却速度冷却至200℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite wear-resistant steel pipe to 322°C at a cooling rate of 1°C/s, and then cool to 200°C at a cooling rate of 0.1°C/s;
4)P处理:将上述无碳化物贝/马复相耐磨钢管以10℃/分钟加热至280℃,保温72小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite wear-resistant steel pipe at 10°C/min to 280°C, keep it warm for 72 hours, and then cool it to room temperature.
实施例8Example 8
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、锻造、轧制成无碳化物贝/马复相钢板簧;1) Using conventional steelmaking process to smelt, cast, forge and roll carbide-free shellfish/horse composite steel plate spring;
2)将上述无碳化物贝/马复相钢板簧加热至950℃进行奥氏体化;2) heating the above-mentioned carbide-free shellfish/horse composite steel plate spring to 950°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相钢板簧以2℃/秒的冷却速度冷却至360℃,然后再以0.1℃/秒的冷却速度冷却至200℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite steel plate spring to 360°C at a cooling rate of 2°C/s, and then cool to 200°C at a cooling rate of 0.1°C/s;
4)P处理:将上述无碳化物贝/马复相钢板簧以10℃/分钟加热至360℃,保温2小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite steel plate spring to 360°C at 10°C/min, keep it warm for 2 hours, and then cool it down to room temperature.
实施例9Example 9
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、锻造、轧制成无碳化物贝/马复相耐磨钢板;1) Smelting, casting, forging and rolling into carbide-free shellfish/horse composite phase wear-resistant steel plate by conventional steelmaking process;
2)将上述无碳化物贝/马复相耐磨钢板加热至1050℃进行奥氏体化;2) Heating the above-mentioned carbide-free shellfish/horse composite wear-resistant steel plate to 1050°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相耐磨钢板以1℃/秒的冷却速度冷却至360℃,然后再以0.1℃/秒的冷却速度冷却至20℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite wear-resistant steel plate to 360°C at a cooling rate of 1°C/s, and then cool to 20°C at a cooling rate of 0.1°C/s;
4)P处理:将上述无碳化物贝/马复相耐磨钢板以20℃/分钟加热至280℃,保温48小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite wear-resistant steel plate at 20°C/min to 280°C, keep it warm for 48 hours, and then cool to room temperature.
实施例10Example 10
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、锻造、轧制成无碳化物贝/马复相钢扣件;1) Using conventional steelmaking process to smelt, cast, forge, and roll carbide-free shellfish/horse composite steel fasteners;
2)将上述无碳化物贝/马复相钢扣件加热至1100℃进行奥氏体化;2) Heating the above-mentioned carbide-free shellfish/horse composite steel fastener to 1100°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相钢扣件以5℃/秒的冷却速度冷却至320℃,然后再以0.1℃/秒的冷却速度冷却至150℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite steel fastener to 320°C at a cooling rate of 5°C/s, and then cool to 150°C at a cooling rate of 0.1°C/s;
4)P处理:将上述无碳化物贝/马复钢扣件以20℃/分钟加热至280℃,保温36小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/mafu steel fastener at 20°C/min to 280°C, keep it warm for 36 hours, and then cool it down to room temperature.
实施例11Example 11
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、锻造、轧制成无碳化物贝/马复相钢轴承;1) Smelting, casting, forging and rolling into carbide-free shellfish/horse composite steel bearings by conventional steelmaking process;
2)将上述无碳化物贝/马复相钢轴承加热至900℃进行奥氏体化;2) heating the above-mentioned carbide-free shellfish/horse composite steel bearing to 900°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相钢轴承以1℃/秒的冷却速度冷却至254℃,然后再以0.1℃/秒的冷却速度冷却至-100℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite steel bearing to 254°C at a cooling rate of 1°C/s, and then cool to -100°C at a cooling rate of 0.1°C/s;
4)P处理:将上述无碳化物贝/马复钢轴承以10℃/分钟加热至280℃,保温4小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free Bei/Ma Fugang bearing to 280°C at 10°C/min, keep it warm for 4 hours, and then cool to room temperature.
实施例12Example 12
一种无碳化物贝/马复相钢的BQ&P热处理工艺,包括如下步骤:A kind of BQ&P heat treatment process of carbide-free shellfish/horse composite phase steel, comprises the steps:
1)采用常规炼钢工艺冶炼、铸造、锻造、轧制成无碳化物贝/马复相钢轴承;1) Smelting, casting, forging and rolling into carbide-free shellfish/horse composite steel bearings by conventional steelmaking process;
2)将上述无碳化物贝/马复相钢轴承加热至900℃进行奥氏体化;2) heating the above-mentioned carbide-free shellfish/horse composite steel bearing to 900°C for austenitization;
3)BQ处理:将上述无碳化物贝/马复相钢轴承以0.5℃/秒的冷却速度冷却至210℃,然后再以0.1℃/秒的冷却速度冷却至-150℃;3) BQ treatment: Cool the above-mentioned carbide-free shellfish/horse composite steel bearing to 210°C at a cooling rate of 0.5°C/s, and then cool to -150°C at a cooling rate of 0.1°C/s;
4)P处理:将上述无碳化物贝/马复相钢轴承以10℃/分钟加热至250℃,保温24小时,之后再冷却至室温。4) P treatment: heat the above-mentioned carbide-free shellfish/horse composite steel bearing to 250°C at 10°C/min, keep it warm for 24 hours, and then cool it down to room temperature.
通过万能拉伸试验机和冲击试验机,采用标准拉伸试样和冲击试样,以GB/T 228.1-2010和GB/T 229-2007国家标准的规定试样条件及取样位置,分别测定了各实施例试样的力学性能,性能范围如表3所示。Through universal tensile testing machine and impact testing machine, using standard tensile samples and impact samples, according to the sample conditions and sampling positions specified in GB/T 228.1-2010 and GB/T 229-2007 national standards, respectively, the The mechanical properties and performance ranges of the samples in each embodiment are shown in Table 3.
表3各实施例无碳化物贝/马复相钢经BQ&P处理后的力学性能Table 3 The mechanical properties of carbide-free shellfish/horse composite steel in each embodiment after BQ&P treatment
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, on the basis of the above description, they can also make It is not possible to exhaustively list all the implementation methods here, and all obvious changes or changes derived from the technical solutions of the present invention are still within the scope of protection of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510957802.6A CN106893832B (en) | 2015-12-18 | 2015-12-18 | A kind of BQ & P heat treatment process of carbides-free shellfish/horse Multiphase Steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510957802.6A CN106893832B (en) | 2015-12-18 | 2015-12-18 | A kind of BQ & P heat treatment process of carbides-free shellfish/horse Multiphase Steel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106893832A true CN106893832A (en) | 2017-06-27 |
CN106893832B CN106893832B (en) | 2018-08-10 |
Family
ID=59188682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510957802.6A Active CN106893832B (en) | 2015-12-18 | 2015-12-18 | A kind of BQ & P heat treatment process of carbides-free shellfish/horse Multiphase Steel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106893832B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107557695A (en) * | 2017-08-28 | 2018-01-09 | 北京首钢冷轧薄板有限公司 | A kind of sour rolling production process control method of CP980MPa Multiphase Steels |
CN108411096A (en) * | 2018-02-06 | 2018-08-17 | 武汉理工大学 | Improve the forming manufacturing method of M50 bearing matrix obdurability and dimensional stability |
CN109112397A (en) * | 2018-08-14 | 2019-01-01 | 山东建筑大学 | A kind of 1400MPa grades of shellfish/horse complex phase automobile low-carbon Q&P steel Preparation Method |
CN109136779A (en) * | 2018-08-14 | 2019-01-04 | 山东建筑大学 | A kind of martensitic matrix 1100MPa grades of rare earths Q&P steel Preparation Method |
CN107058864B (en) * | 2017-01-10 | 2019-07-02 | 北京特冶工贸有限责任公司 | Railroad carriage wheel |
CN110055392A (en) * | 2019-05-27 | 2019-07-26 | 武汉钢铁有限公司 | A kind of tensile strength >=2500Mpa high tenacity bridge Suo Gang and preparation method thereof |
CN110195192A (en) * | 2018-02-24 | 2019-09-03 | 北京交通大学 | A kind of ultra-low-carbon bainite steel, rail and preparation method thereof |
CN110592354A (en) * | 2019-09-12 | 2019-12-20 | 北京交通大学 | A method for preparing 1380MPa grade bainite rail by waste heat quenching-self-partitioning |
CN115287552A (en) * | 2022-08-17 | 2022-11-04 | 四川清贝科技技术开发有限公司 | Lightweight low-alloy steel casting, preparation method and application thereof |
-
2015
- 2015-12-18 CN CN201510957802.6A patent/CN106893832B/en active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107058864B (en) * | 2017-01-10 | 2019-07-02 | 北京特冶工贸有限责任公司 | Railroad carriage wheel |
CN107557695A (en) * | 2017-08-28 | 2018-01-09 | 北京首钢冷轧薄板有限公司 | A kind of sour rolling production process control method of CP980MPa Multiphase Steels |
CN107557695B (en) * | 2017-08-28 | 2019-05-03 | 北京首钢冷轧薄板有限公司 | A kind of sour rolling production process control method of CP980MPa Multiphase Steel |
CN108411096A (en) * | 2018-02-06 | 2018-08-17 | 武汉理工大学 | Improve the forming manufacturing method of M50 bearing matrix obdurability and dimensional stability |
CN108411096B (en) * | 2018-02-06 | 2019-05-24 | 武汉理工大学 | Improve the forming manufacturing method of M50 bearing matrix obdurability and dimensional stability |
CN110195192A (en) * | 2018-02-24 | 2019-09-03 | 北京交通大学 | A kind of ultra-low-carbon bainite steel, rail and preparation method thereof |
CN110195192B (en) * | 2018-02-24 | 2021-03-02 | 北京交通大学 | A kind of ultra-low carbon bainitic steel, rail and preparation method thereof |
CN109136779A (en) * | 2018-08-14 | 2019-01-04 | 山东建筑大学 | A kind of martensitic matrix 1100MPa grades of rare earths Q&P steel Preparation Method |
CN109136779B (en) * | 2018-08-14 | 2020-05-19 | 山东建筑大学 | Preparation method of 1100 MPa-level rare earth Q & P steel with martensite matrix |
CN109112397A (en) * | 2018-08-14 | 2019-01-01 | 山东建筑大学 | A kind of 1400MPa grades of shellfish/horse complex phase automobile low-carbon Q&P steel Preparation Method |
CN110055392A (en) * | 2019-05-27 | 2019-07-26 | 武汉钢铁有限公司 | A kind of tensile strength >=2500Mpa high tenacity bridge Suo Gang and preparation method thereof |
CN110592354A (en) * | 2019-09-12 | 2019-12-20 | 北京交通大学 | A method for preparing 1380MPa grade bainite rail by waste heat quenching-self-partitioning |
CN115287552A (en) * | 2022-08-17 | 2022-11-04 | 四川清贝科技技术开发有限公司 | Lightweight low-alloy steel casting, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106893832B (en) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106893832B (en) | A kind of BQ & P heat treatment process of carbides-free shellfish/horse Multiphase Steel | |
CN103343281B (en) | A kind of lamellar two-phase high-strength and high-toughness steel and preparation method thereof | |
CN103695802A (en) | High-molybdenum high-strength secondary hardening ultra-high-strength steel and preparation method thereof | |
CN103243275A (en) | Preparation method of bainite/martensite/austenite composite high-strength steel | |
CN104046915A (en) | Large-section high-performance hot work die steel for die casting and preparation technology thereof | |
CN104451408B (en) | Strong bainitic steel of carbon superelevation and preparation method thereof in one | |
JP2018532883A (en) | High toughness seamless steel pipe and manufacturing method thereof | |
CN103820729A (en) | Titanium reinforced high-cobalt martensitic aged anti-corrosion ultrahigh-strength steel and preparation method | |
CN104328359A (en) | High-toughness ultrahigh-strength D506A steel easy for rotary extrusion and easy to weld and preparation method thereof | |
CN106521334B (en) | The preparation method of high strength and ductility low-carbon silicomanganese system's Q&P steel plates and asymmetrical rolling | |
CN109609848A (en) | High tough antifatigue nano-scaled precipitate enhancing Ma-Austria's Multiphase Steel and preparation method thereof | |
CN104073736A (en) | 10Ni10Co high-toughness secondary-hardening ultrahigh-strength steel and preparation method thereof | |
CN105506448B (en) | A kind of low-carbon high hardness nanocomposite bainitic steel and preparation method thereof | |
CN105039862A (en) | Co-free composite reinforced secondary hardening ultrahigh-strength steel and preparing method | |
CN101654728A (en) | Method for preparing manganese chilled bainitic steel | |
CN118166191B (en) | Manufacturing method of 9.8-grade non-cold-heading steel high-strength hot-rolled wire rod | |
CN104087859A (en) | Molybdenum-strengthened 10Ni7Co secondary hardened ultrahigh-strength steel and preparation method thereof | |
CN103993243B (en) | A kind of ultra-high strength bainite plate and preparation method thereof | |
CN111876674A (en) | Preparation method of high-strength medium-carbon low-alloy steel plate | |
CN104911499B (en) | Cu strengthens Co free Secondery-hardening Ultrahigh Strength Steels and preparation method | |
CN100560772C (en) | Preparation method of granular carbide reinforced ferritic steel | |
CN109930082A (en) | A kind of high-intensity and high-tenacity upper bainite steel and preparation method thereof | |
CN104805377B (en) | Low-alloy ultrahigh-strength steel and preparation method thereof | |
CN103103435A (en) | Preparation technology for nodular cast iron with TRIP (transformation-induced plasticity) effect | |
CN102643969A (en) | Ultra-high strength plastic low alloy steel with nano structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |