CN106874629B - Simulation modeling method for automatic leveling system of paver - Google Patents
Simulation modeling method for automatic leveling system of paver Download PDFInfo
- Publication number
- CN106874629B CN106874629B CN201710186798.7A CN201710186798A CN106874629B CN 106874629 B CN106874629 B CN 106874629B CN 201710186798 A CN201710186798 A CN 201710186798A CN 106874629 B CN106874629 B CN 106874629B
- Authority
- CN
- China
- Prior art keywords
- simulation
- automatic leveling
- model
- paver
- software
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005094 computer simulation Methods 0.000 title claims abstract description 24
- 238000004088 simulation Methods 0.000 claims abstract description 44
- 230000033001 locomotion Effects 0.000 claims abstract description 30
- 239000007787 solid Substances 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 8
- 230000008676 import Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 claims description 2
- 238000010409 ironing Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 9
- 238000012360 testing method Methods 0.000 abstract description 8
- 230000000007 visual effect Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000011384 asphalt concrete Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种摊铺机自动找平系统仿真建模方法,属于工程机械领域。The invention relates to a simulation modeling method for an automatic leveling system of a paver, belonging to the field of construction machinery.
背景技术Background technique
沥青混凝土摊铺机是高等级路面铺筑的核心设备,对路面施工质量具有重要影响。平整度是评价高等级公路使用质量的一个重要参数,是路面施工控制中的重要环节,而摊铺机自动找平系统是决定控制路面平整度的关键部件。随着公路建设的迅猛发展,对路面平整度的要求也不断提升,因此有必要对摊铺机自动找平系统进行深入研究。Asphalt concrete paver is the core equipment for high-grade pavement paving, which has an important influence on the quality of pavement construction. Flatness is an important parameter to evaluate the quality of use of high-grade highways, and an important link in the control of pavement construction, and the automatic leveling system of paver is a key component that determines the control of pavement flatness. With the rapid development of highway construction, the requirements for the smoothness of the road surface are also increasing, so it is necessary to conduct in-depth research on the automatic leveling system of paver.
摊铺机自动找平系统由熨平装置、找平液压系统及找平控制系统组成,是机、电、液一体化技术的典型应用。影响找平系统性能的因素众多,包括液压系统、控制策略及机械结构等一系列因素,仅仅依靠试验手段对自动找平系统进行研究,存在测试成本高、测试周期长、参数修改困难等缺点。现有摊铺机自动找平系统采用的建模方法主要有两种:一种是数学建模方法,运用数学方法建立自动找平系统传递函数,此方法需要对系统进行假设和简化;第二种是利用单一仿真软件建模,重点针对自动找平系统某一部分进行建模分析,如液压系统、机械结构,无法完成机、电、液多学科综合建模。The automatic leveling system of the paver consists of a leveling device, a leveling hydraulic system and a leveling control system, which is a typical application of the integrated technology of machine, electricity and hydraulic. There are many factors affecting the performance of the leveling system, including a series of factors such as hydraulic system, control strategy and mechanical structure. Only relying on the test method to study the automatic leveling system has disadvantages such as high test cost, long test period and difficult parameter modification. There are two main modeling methods used in the existing paver automatic leveling system: one is the mathematical modeling method, which uses mathematical methods to establish the transfer function of the automatic leveling system. This method requires assumptions and simplification of the system; the second is Using a single simulation software for modeling, focusing on modeling and analysis of a certain part of the automatic leveling system, such as hydraulic system and mechanical structure, it is impossible to complete the multi-disciplinary comprehensive modeling of mechanics, electricity and hydraulics.
上述数学建模方法存在以下缺点:The above mathematical modeling methods have the following disadvantages:
(1)建模前需要对自动找平系统进行假设和简化,如忽略某些非线性因素、近似的线性化处理等,导致仿真模型与实际系统存在较大差距,模型准确度较差;(1) The automatic leveling system needs to be assumed and simplified before modeling, such as ignoring some nonlinear factors, approximate linearization, etc., resulting in a large gap between the simulation model and the actual system, and the model accuracy is poor;
(2)建模过程中,需把复杂的机、电、液系统抽象、简化为合理的数学结构,不仅要求建模人员对系统有全面深入的了解,还需具备深厚扎实的数学功底,因此,此方法存在建模难度大,建模过程复杂等缺点。(2) In the process of modeling, it is necessary to abstract and simplify the complex mechanical, electrical and hydraulic systems into a reasonable mathematical structure, which requires not only a comprehensive and in-depth understanding of the system, but also a solid mathematical foundation. , this method has disadvantages such as difficult modeling and complex modeling process.
上述单一仿真软件建模方法存在以下缺点:由于仿真软件的设计一般具有学科针对性,所以运用单一软件仿真建模只能较好的体现自动找平系统某一部分的特点,无法通过模型对机、电、液多学科综合系统进行全面分析。The above single simulation software modeling method has the following shortcomings: Since the design of simulation software is generally subject-specific, the use of single software simulation modeling can only better reflect the characteristics of a certain part of the automatic leveling system, and it is impossible to compare the machine and electricity through the model. , Liquid multidisciplinary comprehensive system for comprehensive analysis.
因此,为了克服试验方法存在的上述缺陷,本发明将仿真建模技术引入自动找平系统研究中。采用仿真建模方法对自动找平系统关键参数进行评估,模型参数修改方便,有利于实现设计的多样化,同时具有资金投入少,设计周期短,研发效率高等优点。Therefore, in order to overcome the above-mentioned defects of the test method, the present invention introduces the simulation modeling technology into the research of the automatic leveling system. The simulation modeling method is used to evaluate the key parameters of the automatic leveling system. The model parameters are easy to modify, which is conducive to the realization of design diversification. At the same time, it has the advantages of less capital investment, short design cycle and high R&D efficiency.
发明内容SUMMARY OF THE INVENTION
目的:为了克服现有技术中存在的不足,本发明提供一种摊铺机自动找平系统仿真建模方法,该方法采用多软件联合仿真建模,充分利用各软件在各自学科领域的建模优势,实现自动找平系统机、电、液一体化建模,提高仿真建模准确性,简化建模过程;同时降低试验成本,缩短设计周期。Purpose: In order to overcome the deficiencies in the prior art, the present invention provides a simulation modeling method for an automatic leveling system of a paver. The method adopts multi-software co-simulation modeling, and makes full use of the modeling advantages of each software in their respective disciplines. , to realize the integrated modeling of machine, electricity and hydraulics of the automatic leveling system, improve the accuracy of simulation modeling, simplify the modeling process; at the same time, reduce the test cost and shorten the design cycle.
技术方案:为解决上述技术问题,本发明采用的技术方案为:Technical scheme: in order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:
一种摊铺机自动找平系统仿真建模方法,其特征在于:包括以下步骤:A simulation modeling method for an automatic leveling system of a paver, comprising the following steps:
步骤一:在Pro/E软件中建立摊铺机自动找平系统的三维实体模型;Step 1: Establish a 3D solid model of the paver automatic leveling system in Pro/E software;
步骤二:将三维实体模型导入VL motion软件,在VL motion软件中建立摊铺机自动找平系统的动力学模型;Step 2: Import the three-dimensional solid model into the VL motion software, and establish the dynamic model of the paver automatic leveling system in the VL motion software;
步骤三:在AMESim软件中建立摊铺机自动找平系统的电液系统模型,所述摊铺机自动找平电液系统模型包括液压系统和控制系统模型;Step 3: establish an electro-hydraulic system model of the paver automatic leveling system in the AMESim software, and the paver automatic leveling electro-hydraulic system model includes a hydraulic system and a control system model;
步骤四:在VL motion软件中进行设置计算,生成动力学模型仿真接口文件;在AMESim软件中通过interface模块加载动力学模型仿真接口文件,生成联合仿真接口,实现机、电、液一体化联合仿真。Step 4: Perform setting calculation in VL motion software to generate dynamic model simulation interface file; load dynamic model simulation interface file through interface module in AMESim software, generate co-simulation interface, and realize mechanical, electrical and hydraulic integrated co-simulation .
进一步地,所述的摊铺机自动找平系统仿真建模方法,其特征在于:还包括步骤五:在AMESim电液系统模型中和VL motion动力学模型中查看仿真结果。Further, the method for simulating and modeling an automatic leveling system of a paver is characterized in that: it further comprises step 5: checking the simulation results in the AMESim electro-hydraulic system model and the VL motion dynamic model.
步骤一中,根据摊铺机自动找平系统各部件实际结构尺寸和相互运动关系,建立三维实体模型。In step 1, a three-dimensional solid model is established according to the actual structure size and mutual motion relationship of each component of the paver automatic leveling system.
步骤二中,摊铺机自动找平系统的动力学模型的相关设置包括:运动副、约束设置、车体运动速度设置和熨平板支持力设置。In step 2, the relevant settings of the dynamic model of the automatic leveling system of the paver include: kinematic pair, constraint setting, vehicle body movement speed setting and screed support force setting.
步骤二中,根据仿真建模需求,添加联合仿真控制节点,其中输入控制节点包括:找平油缸位移、找平油缸速度和熨平板仰角;输出控制节点为找平油缸输出力。In step 2, according to the simulation modeling requirements, a joint simulation control node is added, wherein the input control node includes: leveling cylinder displacement, leveling cylinder speed and screed elevation angle; and the output control node is leveling cylinder output force.
步骤三中,AMESim采用图形化物理建模方式。此建模方式直观、简洁,避免了繁琐的数学建模过程,因此,仅需根据自动找平系统原理进行图形化建模即可。In step 3, AMESim adopts the graphical physical modeling method. This modeling method is intuitive and concise, and avoids the tedious mathematical modeling process. Therefore, it is only necessary to perform graphical modeling according to the principle of the automatic leveling system.
步骤三中,根据自动找平液压系统原理,采用液压元件设计库和液压库搭建自动找平液压系统模型;按照自动找平控制系统逻辑,采用信号控制库建立控制系统模型,并与液压系统正确连接。In step 3, according to the principle of the automatic leveling hydraulic system, the hydraulic component design library and the hydraulic library are used to build the automatic leveling hydraulic system model; according to the automatic leveling control system logic, the signal control library is used to establish the control system model and correctly connect with the hydraulic system.
步骤四中,在VL motion动力学模型中进行求解设置,生成扩展名为“.vlcosim”仿真接口文件,运用AMESim软件中的interface模块导入扩展名为“.vlcosim”仿真接口文件,生成联合仿真接口,并与找平液压系统和控制系统正确连接。In step 4, set the solution in the VL motion dynamic model, generate a simulation interface file with the extension ".vlcosim", and use the interface module in the AMESim software to import the simulation interface file with the extension ".vlcosim" to generate a co-simulation interface , and properly connected with the leveling hydraulic system and control system.
步骤四中,动力学模型和电液系统模型之间可进行数据传输和信息交互,实现机、电、液一体化仿真。In step 4, data transmission and information exchange can be performed between the dynamic model and the electro-hydraulic system model to realize the integrated simulation of mechanics, electricity and fluids.
有益效果:本发明提供的摊铺机自动找平系统仿真建模方法,该方法采用多软件联合仿真建模,充分利用各软件在各自学科领域的建模优势,实现自动找平系统机、电、液一体化建模,提高仿真建模准确性,简化建模过程;同时降低试验成本,缩短设计周期。具有以下优点:1、采用AMESim和VL motion联合仿真建模,充分利用各软件在各自学科领域的建模优势,使自动找平系统的机械结构、液压系统和控制系统的模型更准确、更有针对性,实现机、电、液一体化仿真。2、采用图形化建模、三维实体建模,避免了繁杂的数学模型推导,简化了建模过程,模型更直观、简洁。3、利用仿真模型替代物理样机对自动找平系统进行研究,模型参数修改方便,降低试验成本,缩短试验周期。Beneficial effects: The simulation modeling method for the automatic leveling system of the paver provided by the present invention adopts multi-software joint simulation modeling, makes full use of the modeling advantages of each software in their respective discipline fields, and realizes the mechanical, electrical and hydraulic automatic leveling system. Integrated modeling improves the accuracy of simulation modeling and simplifies the modeling process; at the same time, it reduces the test cost and shortens the design cycle. It has the following advantages: 1. Adopt AMESim and VL motion co-simulation modeling, make full use of the modeling advantages of each software in their respective disciplines, and make the models of the mechanical structure, hydraulic system and control system of the automatic leveling system more accurate and targeted. It can realize the integrated simulation of machine, electricity and hydraulic. 2. The use of graphical modeling and three-dimensional solid modeling avoids complicated mathematical model derivation, simplifies the modeling process, and makes the model more intuitive and concise. 3. Use the simulation model to replace the physical prototype to study the automatic leveling system. It is convenient to modify the model parameters, reduce the test cost and shorten the test period.
附图说明Description of drawings
图1为本发明的建模流程图;Fig. 1 is the modeling flow chart of the present invention;
图2为自动找平系统动力学模型;Figure 2 is the dynamic model of the automatic leveling system;
图3为自动找平系统电液系统模型。Figure 3 shows the electro-hydraulic system model of the automatic leveling system.
具体实施方式Detailed ways
下面结合具体实施例对本发明作更进一步的说明。The present invention will be further described below in conjunction with specific embodiments.
如图1所示,为一种摊铺机自动找平系统仿真建模方法,包括以下步骤:As shown in Figure 1, it is a simulation modeling method for an automatic leveling system of a paver, including the following steps:
步骤一:在Pro/E软件中建立摊铺机自动找平系统的三维实体模型。Step 1: Establish a three-dimensional solid model of the paver automatic leveling system in Pro/E software.
根据摊铺机自动找平系统各部件实际结构尺寸和相互运动关系,建立三维实体模型。为简化模型,提高建模效率,忽略次要零件,如螺栓、销钉等;同时将无相对运动的零件或部件定义为同一零件。According to the actual structure size and mutual motion relationship of each component of the paver automatic leveling system, a three-dimensional solid model is established. In order to simplify the model and improve the modeling efficiency, secondary parts, such as bolts, pins, etc., are ignored; at the same time, parts or components without relative motion are defined as the same part.
步骤二:将三维实体模型导入VL motion软件,在VL motion软件中建立摊铺机自动找平系统的动力学模型,如图2所示。Step 2: Import the three-dimensional solid model into the VL motion software, and establish the dynamic model of the paver automatic leveling system in the VL motion software, as shown in Figure 2.
本发明动力学模型采用的主要运动副和约束如表1所示。The main kinematic pairs and constraints adopted by the dynamic model of the present invention are shown in Table 1.
表1摊铺机自动找平系统主要运动副和约束Table 1 The main kinematic pairs and constraints of the paver automatic leveling system
需要设置车体速度驱动,模拟摊铺速度,驱动形式选择“One-Body VelocityDriver”,延坐标轴方向,速度大小可以编辑。It is necessary to set the vehicle body speed drive, simulate the paving speed, and select "One-Body VelocityDriver" for the drive form. The speed can be edited along the direction of the coordinate axis.
需要设置熨平板支持力,模拟混合料对熨平板的作用力,作用力方向与熨平板底面垂直,作用力大小可以编辑。It is necessary to set the support force of the screed to simulate the force of the mixture on the screed. The direction of the force is perpendicular to the bottom surface of the screed, and the magnitude of the force can be edited.
根据自动找平系统仿真建模需求,添加联合仿真控制节点。其中输入控制节点包括:找平油缸位移、找平油缸速度和熨平板仰角;输出控制节点:找平油缸输出力。上述输入、输出均是相对VL motion动力学模型而言。According to the simulation modeling requirements of the automatic leveling system, a joint simulation control node is added. The input control nodes include: leveling cylinder displacement, leveling cylinder speed and screed elevation angle; output control nodes: leveling cylinder output force. The above input and output are relative to the VL motion dynamic model.
步骤三:在AMESim软件中建立摊铺机自动找平系统的电液系统模型,如图3所示,即液压系统模型和控制系统模型;Step 3: Establish the electro-hydraulic system model of the paver automatic leveling system in AMESim software, as shown in Figure 3, namely the hydraulic system model and the control system model;
AMESim采用图形化物理建模方式,此建模方式直观、简洁,避免了繁琐的数学建模过程,因此,仅需根据自动找平系统原理进行图形化建模即可。AMESim adopts the graphical physical modeling method, which is intuitive and concise, and avoids the tedious mathematical modeling process. Therefore, it is only necessary to perform graphical modeling according to the principle of the automatic leveling system.
自动找平液压系统关键元件为电磁换向阀和双向平衡阀,根据元件内部实际结构和尺寸,采用液压元件设计库(HCD)搭建模型,更好的保证模型的准确性;其它元件采用液压库元件;将所有液压元件正确连接,完成自动找平液压系统建模。The key components of the automatic leveling hydraulic system are the electromagnetic reversing valve and the two-way balance valve. According to the actual structure and size of the components, the hydraulic component design library (HCD) is used to build the model to better ensure the accuracy of the model; other components use hydraulic library components ; Connect all hydraulic components correctly to complete the modeling of the automatic leveling hydraulic system.
自动找平控制系统涉及PWM控制、灵敏度选择、死区及比例区设置等控制逻辑。利用AMESim软件中的信号控制库,按照自动找平控制系统逻辑,建立控制系统模型,并与液压系统正确连接。The automatic leveling control system involves control logic such as PWM control, sensitivity selection, dead zone and proportional zone settings. Using the signal control library in the AMESim software, according to the logic of the automatic leveling control system, the control system model is established and correctly connected with the hydraulic system.
步骤四:在VL motion软件中进行设置计算,生成动力学模型仿真接口文件;在AMESim软件中通过interface模块加载上述仿真接口文件,生成联合仿真接口,实现机、电、液一体化联合仿真;Step 4: Perform setting calculation in VL motion software to generate a dynamic model simulation interface file; load the above-mentioned simulation interface file through the interface module in AMESim software, generate a co-simulation interface, and realize the co-simulation of machine, electricity and hydraulic integration;
在VL motion动力学模型中进行求解设置,联合仿真方法选择“AMESIM_COSIM”。设置完成后,进行分析计算,生成扩展名为“.vlcosim”仿真接口文件,保存至工作目录中。Set the solution settings in the VL motion dynamic model, and select "AMESIM_COSIM" for the co-simulation method. After the setting is completed, perform analysis and calculation, generate a simulation interface file with the extension ".vlcosim", and save it to the working directory.
运用AMESim软件中的interface模块导入上述扩展名为“.vlcosim”仿真接口文件,生成联合仿真接口,并与找平液压系统和控制系统正确连接。Use the interface module in the AMESim software to import the above-mentioned simulation interface file with the extension ".vlcosim", generate a co-simulation interface, and correctly connect with the leveling hydraulic system and control system.
上述联合仿真接口设置完成后,动力学模型和电液系统模型之间的可进行数据传输和信息交互,实现机、电、液一体化仿真。After the above co-simulation interface is set, data transmission and information exchange can be carried out between the dynamic model and the electro-hydraulic system model to realize the integrated simulation of mechanics, electricity and hydraulics.
步骤五:在AMESim电液系统模型中和VL motion动力学模型中查看仿真结果。Step 5: View the simulation results in the AMESim electro-hydraulic system model and the VL motion dynamic model.
联合仿真完成后,可在AMESim电液系统模型中查看液压系统和控制系统全部参数的仿真计算结果,同时可查看仿真接口包含的找平油缸位移、找平油缸速度、找平油缸输出力和熨平板仰角4个动力学参数仿真结果;After the co-simulation is completed, the simulation calculation results of all parameters of the hydraulic system and control system can be viewed in the AMESim electro-hydraulic system model, and the leveling cylinder displacement, leveling cylinder speed, leveling cylinder output force and screed elevation angle included in the simulation interface can be viewed4 simulation results of dynamic parameters;
AMESim软件中的联合仿真结果可导入VL motion软件,查看所有动力学参数的仿真曲线,同时可对整个自动找平系统的运动过程进行动画演示。The co-simulation results in AMESim software can be imported into VL motion software to view the simulation curves of all dynamic parameters, and at the same time, the motion process of the entire automatic leveling system can be animated.
除上述实施例外,本发明还可以有其它替代方案。除Pro/E意外,VL motion提供与CATIA,I-DEAS,UG等其他主流CAD软件的接口,因此,自动找平系统三维实体建模同样可以利用CATIA,I-DEAS,UG等建模软件完成,上述所有替代方案均在本发明要求的保护范围内。In addition to the above-mentioned embodiments, the present invention may also have other alternatives. In addition to Pro/E, VL motion provides interfaces with other mainstream CAD software such as CATIA, I-DEAS, UG, etc. Therefore, the 3D solid modeling of automatic leveling system can also be completed by modeling software such as CATIA, I-DEAS, UG, etc. All of the above alternatives are within the scope of protection claimed by the present invention.
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only the preferred embodiment of the present invention, it should be pointed out that: for those skilled in the art, without departing from the principle of the present invention, several improvements and modifications can also be made, and these improvements and modifications are also It should be regarded as the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710186798.7A CN106874629B (en) | 2017-03-27 | 2017-03-27 | Simulation modeling method for automatic leveling system of paver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710186798.7A CN106874629B (en) | 2017-03-27 | 2017-03-27 | Simulation modeling method for automatic leveling system of paver |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106874629A CN106874629A (en) | 2017-06-20 |
CN106874629B true CN106874629B (en) | 2020-06-16 |
Family
ID=59173624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710186798.7A Active CN106874629B (en) | 2017-03-27 | 2017-03-27 | Simulation modeling method for automatic leveling system of paver |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106874629B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111709193B (en) * | 2020-08-19 | 2021-01-05 | 北京工业大数据创新中心有限公司 | Automatic feature extraction method and device based on system dynamics graph |
CN112363483A (en) * | 2020-11-02 | 2021-02-12 | 中国第一汽车股份有限公司 | Speed changer virtual calibration model modeling method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102663194A (en) * | 2012-04-16 | 2012-09-12 | 三一重型装备有限公司 | Heading machine collaborative simulation method and model thereof |
CN103303124A (en) * | 2013-06-24 | 2013-09-18 | 广东惠利普路桥信息工程有限公司 | Intelligent control system and control method for traveling of paver |
CN104504191A (en) * | 2014-12-21 | 2015-04-08 | 吉林大学 | Four-wheel-drive electric vehicle simulation modeling method based on AMESim |
CN105354399A (en) * | 2015-12-14 | 2016-02-24 | 北京航空航天大学 | Multidisciplinary and reliable modeling method of hydraulic servo mechanism based on failure mechanism |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9690881B2 (en) * | 2013-07-16 | 2017-06-27 | Siemens Product Lifecycle Management Software Inc. | Synchronization and automatic code generation of 3D and 1D models using functional modeling |
US9741162B2 (en) * | 2014-04-22 | 2017-08-22 | Siemens Industry Software Nv | Functional visualization in system-level multi-domain simulators |
-
2017
- 2017-03-27 CN CN201710186798.7A patent/CN106874629B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102663194A (en) * | 2012-04-16 | 2012-09-12 | 三一重型装备有限公司 | Heading machine collaborative simulation method and model thereof |
CN103303124A (en) * | 2013-06-24 | 2013-09-18 | 广东惠利普路桥信息工程有限公司 | Intelligent control system and control method for traveling of paver |
CN104504191A (en) * | 2014-12-21 | 2015-04-08 | 吉林大学 | Four-wheel-drive electric vehicle simulation modeling method based on AMESim |
CN105354399A (en) * | 2015-12-14 | 2016-02-24 | 北京航空航天大学 | Multidisciplinary and reliable modeling method of hydraulic servo mechanism based on failure mechanism |
Non-Patent Citations (2)
Title |
---|
《基于AMESim的摊铺机自调平系统的仿真研究》;付辰琦;《信息技术》;20141231(第15期);第19-21页 * |
《基于VL Motion 和AMESim 的液压六自由度平台联合仿真及试验研究》;熊伟 等;《液压与气动》;20151231(第3期);第11-14页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106874629A (en) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210090326A1 (en) | Modeling method for asphalt mixture by coupling discrete element method and finite difference method | |
CN105550464B (en) | A kind of new submodel finite element method based on cut-boundary deformation constraint | |
CN106354924A (en) | FMI-based equipment cooperation simulation system and construction method | |
CN111899343A (en) | Traffic dispersion method in municipal engineering based on BIM technology | |
CN102750420B (en) | Method for establishing virtual prototype of hydraulic excavator | |
CN105447278A (en) | Method for producing typified form under assistance of BIM (building information modeling) model | |
CN106372293A (en) | Three-dimensional reference line-based BIM creation method for building | |
CN109885966A (en) | The method of the conflict of sliding slot section of jurisdiction and preferred arrangement based on BIM technology | |
CN114139270B (en) | Proximity engineering construction load test method and system based on digital twinning | |
CN102663194A (en) | Heading machine collaborative simulation method and model thereof | |
CN108009349A (en) | A kind of river Two-Dimensional Water Quality numerical simulator calculates grid optimization method for drafting | |
CN106874629B (en) | Simulation modeling method for automatic leveling system of paver | |
CN115408823A (en) | Road and bridge engineering cost management construction method based on BIM technology | |
CN117171862B (en) | Bridge engineering land investigation drilling point position checking method and equipment | |
CN110990914A (en) | BIM technology-based large boiler installation method | |
CN115081294B (en) | Analysis method for water filling process of high-water-head reinforced concrete lining pressure tunnel | |
CN115455754A (en) | Mine hydraulic support design method based on digital twinning | |
CN110909407A (en) | Cave laboratory and vertical shaft BIM model creation method based on BIM | |
CN114706322A (en) | Automatic control simulation system for attitude of shield machine | |
CN208547543U (en) | Tunnel 3D model loading test bench | |
CN117034800A (en) | Fluent-based flow field analysis method for reciprocating water injection pump | |
CN108090283A (en) | The finite element method of tunnel-vehicle coupled vibrations under a kind of DYNAMIC LOADING OF DRIVING TRAIN ON BRIDGES | |
CN103810310A (en) | Parameterization determination method for pitch foaming module equipment oriented to bituminous mixing plant | |
CN103489217B (en) | Based on the modeling method of the buildings of column system | |
CN111898302B (en) | A visual simulation method of rigid-flexible coupling dynamics of hydraulic supports with gaps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |