CN106843292A - The motion control method and system of a kind of radioactive solid waste bucket detection means - Google Patents
The motion control method and system of a kind of radioactive solid waste bucket detection means Download PDFInfo
- Publication number
- CN106843292A CN106843292A CN201710178364.2A CN201710178364A CN106843292A CN 106843292 A CN106843292 A CN 106843292A CN 201710178364 A CN201710178364 A CN 201710178364A CN 106843292 A CN106843292 A CN 106843292A
- Authority
- CN
- China
- Prior art keywords
- detector
- solid waste
- radioactive
- radioactive solid
- initial detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002285 radioactive effect Effects 0.000 title claims abstract description 530
- 238000001514 detection method Methods 0.000 title claims abstract description 473
- 239000002910 solid waste Substances 0.000 title claims abstract description 330
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000007246 mechanism Effects 0.000 claims abstract description 180
- 230000001360 synchronised effect Effects 0.000 claims abstract description 18
- 239000002699 waste material Substances 0.000 claims description 107
- 230000005855 radiation Effects 0.000 claims description 33
- 238000012360 testing method Methods 0.000 claims description 14
- 238000011065 in-situ storage Methods 0.000 claims description 12
- 230000001052 transient effect Effects 0.000 claims 8
- 230000008450 motivation Effects 0.000 claims 5
- 238000007689 inspection Methods 0.000 claims 3
- 239000007787 solid Substances 0.000 claims 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 2
- 238000013101 initial test Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 35
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000009659 non-destructive testing Methods 0.000 description 4
- 239000002901 radioactive waste Substances 0.000 description 3
- 239000002900 solid radioactive waste Substances 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T7/00—Details of radiation-measuring instruments
- G01T7/08—Means for conveying samples received
- G01T7/10—Means for conveying samples received using turntables
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
技术领域technical field
本申请涉及放射性物质检测技术领域,更为具体地说,涉及一种放射性固体废物桶检测装置的运动控制方法和系统。The present application relates to the technical field of radioactive material detection, and more specifically, to a motion control method and system for a radioactive solid waste barrel detection device.
背景技术Background technique
随着新能源技术的不断发展,核能作为一种高效率的新能源,被广泛应用于发电等领域。然而,在核能发电的过程中容易产生大量的中低放射性废物,这些中低放射性废物要求装桶、并根据放射性核素类型和活度等进行保存和运输。由于桶内的中低放射性废物具有放射性,因此,无损检测技术已成为桶内核素类型和核素活度的主要检测方法。With the continuous development of new energy technologies, nuclear energy, as a high-efficiency new energy, is widely used in power generation and other fields. However, in the process of nuclear power generation, it is easy to generate a large amount of low- and medium-level radioactive waste. These low- and medium-level radioactive wastes are required to be packed in drums, and stored and transported according to the type and activity of radionuclides. Because the low- and medium-level radioactive waste in the barrel is radioactive, non-destructive testing technology has become the main detection method for the type and activity of the nuclide in the barrel.
放射性固体废物桶的无损检测装置主要包括使用TGS(Tomographic GammaScanning,层析伽马扫描技术)和SGS(Segented Gamma Scanning分段丫扫描技术)的检测装置。其中,SGS技术相对简单,可认为是TGS技术的简化,对应地,SGS的无损检测装置的控制方法也可认为是TGS无损检测装置的控制方法的简化。上述放射性固体废物桶的检测装置需要对放射性固体废物桶进行水平方向和旋转角度的扫描以及上下分段扫描,而且各运动机构为分立结构,从而使得检测装置的各运动机构和检测器件的协调性不高,进而检测效率较低。The non-destructive testing devices for radioactive solid waste barrels mainly include testing devices using TGS (Tomographic Gamma Scanning, tomographic gamma scanning technology) and SGS (Segented Gamma Scanning segmental gamma scanning technology). Among them, the SGS technology is relatively simple and can be considered as a simplification of the TGS technology. Correspondingly, the control method of the SGS nondestructive testing device can also be considered as a simplification of the control method of the TGS nondestructive testing device. The detection device of the above-mentioned radioactive solid waste barrel needs to scan the radioactive solid waste barrel in the horizontal direction and rotation angle, as well as up and down segmented scanning, and each movement mechanism is a discrete structure, so that the coordination of each movement mechanism and detection device of the detection device is not high, and the detection efficiency is low.
发明内容Contents of the invention
本申请的目的是提供一种放射性固体废物桶检测装置的运动控制的技术方案,以解决背景技术中所介绍的现有技术中放射性固体废物桶检测装置的各运动机构和检测器件的协调性不高,检测效率较低的问题。The purpose of this application is to provide a technical solution for the motion control of the radioactive solid waste barrel detection device, so as to solve the inconsistency of the various motion mechanisms and detection devices of the radioactive solid waste barrel detection device in the prior art introduced in the background art. High and low detection efficiency.
为了解决上述技术问题,本申请提供如下技术方案:In order to solve the above technical problems, the application provides the following technical solutions:
根据本申请的第一方面,提供了一种放射性固体废物桶检测装置的运动控制方法,其中,放射性固体废物桶检测装置包括放射源竖直运动机构以及放射源;探测器竖直运动机构、探测器水平运动机构以及探测器,所述放射源的准直孔与所述探测器的准直孔相互平行;设置于所述放射源竖直运动机构和探测器竖直运动机构之间的废物桶水平运动机构,所述废物桶水平运动机构的长边垂直于所述放射源和探测器所在的竖直面;以及滑动连接于所述废物桶水平运动机构的废物桶旋转平台;According to the first aspect of the present application, a motion control method of a radioactive solid waste barrel detection device is provided, wherein the radioactive solid waste barrel detection device includes a radioactive source vertical movement mechanism and a radioactive source; a detector vertical movement mechanism, a detection The horizontal movement mechanism of the radiation source and the detector, the collimation holes of the radiation source and the collimation holes of the detector are parallel to each other; the waste bucket arranged between the vertical movement mechanism of the radiation source and the vertical movement mechanism of the detector A horizontal movement mechanism, the long side of the waste barrel horizontal movement mechanism is perpendicular to the vertical plane where the radioactive source and detector are located; and a waste barrel rotating platform slidably connected to the waste barrel horizontal movement mechanism;
所述放射性固体废物桶检测装置的运动控制方法,包括:根据所述放射性固体废物桶的体积将所述放射性固体废物桶划分为多个体素;沿轴向将所述放射性固体废物桶划分为多个检测层面,其中,每个检测层面包括多个体素;从所述多个检测层面中选取初始检测层面,确定过所述初始检测层面的圆心且与所述竖直面垂直相交直线的交点作为放射性固体废物桶的初始检测位置;根据所述放射性固体废物桶的初始检测位置,分别计算放射源的初始检测位置和探测器的初始检测位置,其中,所述放射性固体废物桶、放射源和探测器的初始检测位置水平共线;根据所述放射性固体废物桶的质量和初始检测位置,计算所述放射性固体废物桶的运动轨迹,其中,所述放射性固体废物桶的运动轨迹为所述初始检测层面的最外圈体素从体素原位移动至所述放射性固体废物桶的初始检测位置的运动轨迹;根据所述放射性固体废物桶的运动轨迹和放射源的初始检测位置计算放射源的运动轨迹,以及根据所述放射性固体废物桶的运动轨迹和探测器的初始检测位置计算所述探测器的运动轨迹;分别根据所述放射性固体废物桶、放射源和探测器的运动轨迹,控制所述废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,以使所述放射性固体废物桶、放射源和探测器分别同步移动至所述各自的初始检测位置;控制所述探测器检测所述放射性固体废物桶内的放射性核素。The motion control method of the radioactive solid waste barrel detection device includes: dividing the radioactive solid waste barrel into multiple voxels according to the volume of the radioactive solid waste barrel; dividing the radioactive solid waste barrel into multiple voxels along the axial direction. A detection level, wherein each detection level includes a plurality of voxels; an initial detection level is selected from the plurality of detection levels, the center of the circle of the initial detection level is determined and the intersection point of a straight line perpendicular to the vertical plane is used as The initial detection position of the radioactive solid waste barrel; according to the initial detection position of the radioactive solid waste barrel, calculate the initial detection position of the radioactive source and the initial detection position of the detector, wherein, the radioactive solid waste barrel, radioactive source and detector The initial detection position of the detector is horizontally collinear; according to the quality of the radioactive solid waste barrel and the initial detection position, the trajectory of the radioactive solid waste barrel is calculated, wherein the trajectory of the radioactive solid waste barrel is the initial detection The movement trajectory of the outermost voxel on the layer moving from the original position of the voxel to the initial detection position of the radioactive solid waste barrel; calculate the movement of the radioactive source according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the radioactive source trajectory, and calculate the motion trajectory of the detector according to the motion trajectory of the radioactive solid waste bucket and the initial detection position of the detector; respectively control the motion trajectory of the radioactive solid waste bucket, radioactive source and detector The waste barrel horizontal movement mechanism, the radioactive source vertical movement mechanism, the detector vertical movement mechanism and the detector horizontal movement mechanism operate synchronously, so that the radioactive solid waste barrel, radioactive source and detector move synchronously to the respective Initial detection position: controlling the detector to detect radionuclides in the radioactive solid waste barrel.
可选地,所述控制探测器检测所述放射性固体废物桶内的放射性核素,包括:Optionally, the control detector detects radionuclides in the radioactive solid waste bucket, including:
控制所述放射源和探测器开启,以检测所述放射性固体废物桶内的放射性核素;controlling the radioactive source and the detector to be turned on, so as to detect the radionuclide in the radioactive solid waste barrel;
控制所述废物桶旋转平台按预设角度步进旋转;Controlling the rotating platform of the waste bin to rotate step by step according to a preset angle;
每当所述废物桶旋转平台旋转一周时,控制所述废物桶水平运动机构向所述放射性固体废物桶的初始检测位置方向移动预定距离,重复执行所述控制废物桶旋转平台按预设角度步进旋转的步骤;Whenever the waste barrel rotating platform rotates one circle, control the waste barrel horizontal movement mechanism to move a predetermined distance to the initial detection position of the radioactive solid waste barrel, and repeat the control of the waste barrel rotating platform to step by step according to the preset angle. step into rotation;
当所述初始检测层面的最内圈放射性核素检测完毕时,计算所述放射性固体废物桶的其他检测层面的初始检测位置,根据所述其他检测层面的初始检测位置同步调整所述废物桶旋转平台、放射源和探测器的位置,按预设顺序检测所述放射性固体废物桶内其他各个检测层面的放射性核素。When the detection of the innermost radionuclide on the initial detection level is completed, calculate the initial detection positions of the other detection levels of the radioactive solid waste barrel, and adjust the rotation of the waste barrel synchronously according to the initial detection positions of the other detection levels The positions of the platform, the radioactive source and the detector are used to detect radionuclides at other detection levels in the radioactive solid waste barrel in a preset order.
可选地,所述计算放射性固体废物桶的其他检测层面的初始检测位置,根据所述其他检测层面的初始检测位置同步调整所述废物桶旋转平台、放射源和探测器的位置,包括:Optionally, the calculating the initial detection positions of other detection levels of the radioactive solid waste barrel, and synchronously adjusting the positions of the waste barrel rotating platform, radioactive sources and detectors according to the initial detection positions of the other detection levels include:
根据所述放射性固体废物桶的初始检测位置以及相邻检测层面之间的高度差,计算所述其他检测层面的初始检测位置;calculating the initial detection positions of the other detection levels according to the initial detection positions of the radioactive solid waste barrel and the height difference between adjacent detection levels;
根据所述其他检测层面的初始检测位置,计算所述放射源的检测点和探测器的检测点的位置,其中,所述其他检测层面的初始检测位置、放射源的检测点和探测器的检测点水平共线;Calculate the position of the detection point of the radioactive source and the detection point of the detector according to the initial detection position of the other detection level, wherein the initial detection position of the other detection level, the detection point of the radioactive source and the detection point of the detector point horizontal collinear;
控制废物桶旋转平台、放射源竖直运动机构和探测器竖直运动机构同步运行,以使所述放射性固体废物桶、放射源和探测器分别同步移动至所述其他检测层面的初始检测位置、放射源的检测点和探测器的检测点。Controlling the waste barrel rotary platform, the vertical movement mechanism of the radioactive source and the vertical movement mechanism of the detector to operate synchronously, so that the radioactive solid waste barrel, the radioactive source and the detector move synchronously to the initial detection positions of the other detection levels, The detection point of the radioactive source and the detection point of the detector.
可选地,所述根据放射性固体废物桶的初始检测位置和质量,计算所述放射性固体废物桶的运动轨迹,包括:Optionally, the calculating the trajectory of the radioactive solid waste barrel according to the initial detected position and mass of the radioactive solid waste barrel includes:
确定所述放射性固体废物桶的废物桶原点的位置,根据所述废物桶原点的位置以及初始检测层面的圆心与所述最外圈体素的中心点之间距离计算所述体素原位的位置;Determine the position of the origin of the waste barrel of the radioactive solid waste barrel, and calculate the original position of the voxel according to the position of the origin of the waste barrel and the distance between the center point of the initial detection level and the center point of the outermost voxel. Location;
根据所述体素原位的位置以及所述放射性固体废物桶的初始检测位置,计算所述放射性固体废物桶的运动距离;calculating the movement distance of the radioactive solid waste barrel according to the in-situ position of the voxel and the initial detection position of the radioactive solid waste barrel;
根据所述放射性固体废物桶的运动距离和质量,计算所述放射性固体废物桶的运动时间和瞬时运动速度。According to the moving distance and mass of the radioactive solid waste barrel, the moving time and instantaneous moving speed of the radioactive solid waste barrel are calculated.
可选地,所述根据放射性固体废物桶的运动轨迹和放射源的初始检测位置计算放射源的运动轨迹,以及根据放射性固体废物桶的运动轨迹和探测器的初始检测位置计算探测器的运动轨迹,包括:Optionally, calculating the movement trajectory of the radioactive source according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the radioactive source, and calculating the movement trajectory of the detector according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the detector ,include:
计算放射源原点与放射源的初始检测位置之间的距离;Calculate the distance between the origin of the radioactive source and the initial detection position of the radioactive source;
根据所述放射性固体废物桶的运动时间以及所述放射源原点与放射源的初始检测位置之间的距离,计算所述放射源的瞬时运动速度;calculating the instantaneous moving speed of the radioactive source according to the moving time of the radioactive solid waste barrel and the distance between the origin of the radioactive source and the initial detection position of the radioactive source;
以及,as well as,
计算探测器原点与探测器的初始检测位置之间的距离,其中,所述探测器原点与探测器的初始检测位置之间的距离包括探测器原点与探测器的初始检测位置之间的竖直距离、以及探测器原点和探测器的初始检测位置的水平距离;Calculate the distance between the origin of the detector and the initial detection position of the detector, wherein the distance between the origin of the detector and the initial detection position of the detector includes the vertical distance between the origin of the detector and the initial detection position of the detector distance, and the horizontal distance between the origin of the detector and the initial detection position of the detector;
根据所述放射性固体废物桶的运动时间和所述探测器原点与探测器的初始检测位置之间的竖直距离,计算所述探测器水平运动机构沿所述探测器竖直运动机构的瞬时运动速度;Calculate the instantaneous movement of the detector horizontal movement mechanism along the detector vertical movement mechanism according to the movement time of the radioactive solid waste barrel and the vertical distance between the origin of the detector and the initial detection position of the detector speed;
根据所述放射性固体废物桶的运动时间和所述探测器原点与探测器的初始检测位置之间的水平距离,计算所述探测器沿所述探测器水平运动机构的瞬时运动速度。According to the movement time of the radioactive solid waste bucket and the horizontal distance between the origin of the detector and the initial detection position of the detector, the instantaneous moving speed of the detector along the horizontal movement mechanism of the detector is calculated.
根据本申请的第二方面,提供了一种放射性固体废物桶检测装置的运动控制系统,其中,放射性固体废物桶检测装置包括放射源竖直运动机构以及放射源;探测器竖直运动机构、探测器水平运动机构以及探测器,所述放射源的准直孔与所述探测器的准直孔相互平行;设置于所述放射源竖直运动机构和探测器竖直运动机构之间的废物桶水平运动机构,所述废物桶水平运动机构的长边垂直于所述放射源和探测器所在的竖直面;以及滑动连接于所述废物桶水平运动机构的废物桶旋转平台;According to the second aspect of the present application, a motion control system of a radioactive solid waste barrel detection device is provided, wherein the radioactive solid waste barrel detection device includes a radioactive source vertical movement mechanism and a radioactive source; a detector vertical movement mechanism, a detection The horizontal movement mechanism of the radiation source and the detector, the collimation holes of the radiation source and the collimation holes of the detector are parallel to each other; the waste bucket arranged between the vertical movement mechanism of the radiation source and the vertical movement mechanism of the detector A horizontal movement mechanism, the long side of the waste barrel horizontal movement mechanism is perpendicular to the vertical plane where the radioactive source and detector are located; and a waste barrel rotating platform slidably connected to the waste barrel horizontal movement mechanism;
所述放射性固体废物桶检测装置的运动控制系统,包括:体素划分模块,用于根据所述放射性固体废物桶的体积将所述放射性固体废物桶划分为多个体素;层面划分模块,用于沿轴向将所述放射性固体废物桶划分为多个检测层面,其中,每个检测层面包括多个体素;层面选取模块,用于从所述多个检测层面中选取初始检测层面;检测位置确定模块,用于确定过所述初始检测层面圆心且与所述竖直面垂直相交的直线的交点作为放射性固体废物桶的初始检测位置;位置计算模块,用于根据所述放射性固体废物桶的初始检测位置,分别计算放射源的初始检测位置和探测器的初始检测位置,其中,所述放射性固体废物桶、放射源和探测器的初始检测位置水平共线;第一轨迹计算模块,用于根据所述放射性固体废物桶的质量和初始检测位置,计算所述放射性固体废物桶的运动轨迹,其中,所述放射性固体废物桶的运动轨迹为所述初始检测层面的最外圈体素从体素原位移动至所述放射性固体废物桶的初始检测位置的运动轨迹;第二轨迹计算模块,用于根据所述放射性固体废物桶的运动轨迹和放射源的初始检测位置计算放射源的运动轨迹,以及根据所述放射性固体废物桶的运动轨迹和探测器的初始检测位置计算所述探测器的运动轨迹;同步运行控制模块,用于分别根据所述放射性固体废物桶、放射源和探测器的运动轨迹,控制所述废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,以使所述放射性固体废物桶、放射源和探测器分别同步移动至所述各自的初始检测位置;检测控制模块,控制所述探测器检测所述放射性固体废物桶内的放射性核素。The motion control system of the radioactive solid waste barrel detection device includes: a voxel division module, used to divide the radioactive solid waste barrel into multiple voxels according to the volume of the radioactive solid waste barrel; a layer division module, used to The radioactive solid waste barrel is divided into multiple detection levels along the axial direction, wherein each detection level includes a plurality of voxels; a level selection module is used to select an initial detection level from the multiple detection levels; the detection position is determined A module for determining the intersection point of a straight line passing through the center of the initial detection level and perpendicular to the vertical plane as the initial detection position of the radioactive solid waste barrel; a position calculation module for determining the initial detection position of the radioactive solid waste barrel according to the initial The detection position is to calculate the initial detection position of the radioactive source and the initial detection position of the detector respectively, wherein the initial detection positions of the radioactive solid waste barrel, the radioactive source and the detector are horizontally collinear; the first trajectory calculation module is used to calculate the initial detection position according to the mass of the radioactive solid waste barrel and the initial detection position, and calculate the movement trajectory of the radioactive solid waste barrel, wherein the movement trajectory of the radioactive solid waste barrel is the voxel from the outermost circle of the initial detection level The movement trajectory of the initial detection position of the radioactive solid waste barrel moved in situ; the second trajectory calculation module is used to calculate the movement trajectory of the radioactive source according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the radioactive source, And calculate the movement trajectory of the detector according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the detector; the synchronous operation control module is used to calculate according to the movement of the radioactive solid waste barrel, radioactive source and detector respectively trajectory, controlling the synchronous operation of the waste barrel horizontal movement mechanism, the radioactive source vertical movement mechanism, the detector vertical movement mechanism and the detector horizontal movement mechanism, so that the radioactive solid waste barrel, radioactive source and detector move synchronously respectively To the respective initial detection positions; a detection control module, controlling the detectors to detect radionuclides in the radioactive solid waste barrel.
可选地,所述检测控制模块,包括:Optionally, the detection control module includes:
启动控制子模块,用于控制所述放射源和探测器开启,以检测所述放射性固体废物桶内的放射性核素;Start the control submodule, which is used to control the opening of the radioactive source and the detector, so as to detect the radionuclide in the radioactive solid waste barrel;
旋转控制子模块,用于控制所述废物桶旋转平台按预设角度步进旋转;The rotation control sub-module is used to control the rotation platform of the waste bucket to rotate step by step according to a preset angle;
移动控制子模块,用于每当所述废物桶旋转平台旋转一周时,控制所述废物桶水平运动机构向所述放射性固体废物桶的初始检测位置方向移动预定距离,重复执行所述控制废物桶旋转平台按预设角度步进旋转的步骤;The movement control sub-module is used to control the horizontal motion mechanism of the waste barrel to move a predetermined distance to the initial detection position of the radioactive solid waste barrel every time the waste barrel rotating platform rotates once, and repeatedly execute the control waste barrel The step of rotating the rotating platform step by step according to the preset angle;
位置调整子模块,用于当所述初始检测层面的最内圈放射性核素检测完毕时,计算所述放射性固体废物桶的其他检测层面的初始检测位置,根据所述其他检测层面的初始检测位置同步调整所述废物桶旋转平台、放射源和探测器的位置;The position adjustment sub-module is used to calculate the initial detection position of other detection levels of the radioactive solid waste barrel when the detection of the innermost radionuclide of the initial detection level is completed, according to the initial detection positions of the other detection levels Synchronously adjust the positions of the waste bin rotary platform, radioactive source and detector;
核素检测子模块,用于按预设顺序检测所述放射性固体废物桶内其他各个检测层面的放射性核素。The nuclide detection submodule is used to detect radionuclides at other detection levels in the radioactive solid waste barrel in a preset sequence.
可选地,所述位置调整子模块,包括:Optionally, the position adjustment submodule includes:
第一位置计算子模块,用于根据所述放射性固体废物桶的初始检测位置以及相邻检测层面之间的高度差,计算所述其他检测层面的初始检测位置;The first position calculation submodule is used to calculate the initial detection position of the other detection levels according to the initial detection position of the radioactive solid waste barrel and the height difference between adjacent detection levels;
第二位置计算子模块,用于根据所述其他检测层面的初始检测位置,计算所述放射源的检测点和探测器的检测点的位置,其中,所述其他检测层面的初始检测位置、放射源的检测点和探测器的检测点水平共线;The second position calculation submodule is used to calculate the position of the detection point of the radiation source and the detection point of the detector according to the initial detection position of the other detection level, wherein the initial detection position of the other detection level, radiation The detection point of the source and the detection point of the detector are horizontally collinear;
运行控制子模块,用于控制废物桶旋转平台、放射源竖直运动机构和探测器竖直运动机构同步运行,以使所述放射性固体废物桶、放射源和探测器分别同步移动至所述其他检测层面的初始检测位置、放射源的检测点和探测器的检测点。The operation control sub-module is used to control the synchronous operation of the rotary platform of the waste barrel, the vertical movement mechanism of the radioactive source and the vertical movement mechanism of the detector, so that the radioactive solid waste barrel, the radioactive source and the detector move synchronously to the other The initial detection position of the detection level, the detection point of the radioactive source and the detection point of the detector.
可选地,所述第一轨迹计算模块,包括:Optionally, the first trajectory calculation module includes:
废物桶原点位置确定子模块,用于确定所述放射性固体废物桶的废物桶原点的位置;The submodule for determining the origin position of the waste barrel is used to determine the position of the origin of the waste barrel of the radioactive solid waste barrel;
体素原位计算子模块,用于根据所述废物桶原点的位置以及初始检测层面的圆心与所述最外圈体素的中心点之间距离计算所述体素原位的位置;The voxel in-situ calculation submodule is used to calculate the in-situ position of the voxel according to the position of the origin of the waste bin and the distance between the center of the initial detection level and the center point of the outermost voxel;
第一运动距离计算子模块,用于根据所述体素原位的位置以及所述放射性固体废物桶的初始检测位置,计算所述放射性固体废物桶的运动距离;The first movement distance calculation submodule is used to calculate the movement distance of the radioactive solid waste barrel according to the original position of the voxel and the initial detection position of the radioactive solid waste barrel;
时间速度计算子模块,用于根据所述放射性固体废物桶的运动距离和质量,计算所述放射性固体废物桶的运动时间和瞬时运动速度。The time velocity calculation sub-module is used to calculate the movement time and instantaneous velocity of the radioactive solid waste barrel according to the movement distance and mass of the radioactive solid waste barrel.
可选地,所述第二轨迹计算模块,包括:Optionally, the second trajectory calculation module includes:
第二运动距离计算子模块,用于计算放射源原点与放射源的初始检测位置之间的距离;The second motion distance calculation submodule is used to calculate the distance between the origin of the radioactive source and the initial detection position of the radioactive source;
第一运动速度计算子模块,用于根据所述放射性固体废物桶的运动时间以及所述放射源原点与放射源的初始检测位置之间的距离,计算所述放射源的瞬时运动速度;The first moving speed calculation sub-module is used to calculate the instantaneous moving speed of the radioactive source according to the moving time of the radioactive solid waste barrel and the distance between the origin of the radioactive source and the initial detection position of the radioactive source;
以及,as well as,
第三运动距离计算子模块,用于计算探测器原点与探测器的初始检测位置之间距离,其中,所述探测器原点与探测器的初始检测位置之间的距离包括探测器原点与探测器的初始检测位置之间的竖直距离,以及探测器原点和探测器的初始检测位置的水平距离;The third movement distance calculation sub-module is used to calculate the distance between the origin of the detector and the initial detection position of the detector, wherein the distance between the origin of the detector and the initial detection position of the detector includes the distance between the origin of the detector and the initial detection position of the detector. The vertical distance between the initial detection positions of , and the horizontal distance between the origin of the detector and the initial detection position of the detector;
第二运动速度计算子模块,用于根据所述放射性固体废物桶的运动时间以及所述探测器原点与探测器的初始检测位置之间的竖直距离,计算所述探测器水平运动机构沿所述探测器竖直运动机构的瞬时运动速度;The second movement speed calculation sub-module is used to calculate the movement time of the radioactive solid waste barrel and the vertical distance between the origin of the detector and the initial detection position of the detector, and calculate the The instantaneous speed of motion of the vertical motion mechanism of the detector;
第三运动速度计算子模块,用于根据所述放射性固体废物桶的运动时间以及所述探测器原点与探测器的初始检测位置之间的水平距离,计算所述探测器沿所述探测器水平运动机构的瞬时运动速度。The third movement speed calculation submodule is used to calculate the movement time of the radioactive solid waste barrel and the horizontal distance between the origin of the detector and the initial detection position of the detector, and calculate the horizontal speed of the detector along the detector. The instantaneous movement speed of the movement mechanism.
通过上述工作过程可以得出,本申请提供的放射性固体废物桶检测装置的移动控制方案,通过确定放射性固体废物桶的初始检测位置,并通过该放射性固体废物桶的初始检测位置,确定放射源和探测器的初始检测位置,进而能够规划放射性固体废物桶、放射源和探测器的运动轨迹,从而能够根据放射性固体废物桶、放射源和探测器的运动轨迹,控制废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,以控制放射性固体废物桶、放射源和探测器同步移动至各自的初始检测位置。由于各个机构的控制过程均同步一次性进行,因此各个机构的协调性以及探测器的检测效率较高。Through the above working process, it can be concluded that the mobile control scheme of the radioactive solid waste barrel detection device provided by the application determines the initial detection position of the radioactive solid waste barrel, and determines the radioactive source and the radioactive solid waste barrel through the initial detection position of the radioactive solid waste barrel The initial detection position of the detector, and then the movement trajectory of the radioactive solid waste barrel, radioactive source and detector can be planned, so that the horizontal movement mechanism of the waste barrel and the radioactive source can be controlled according to the movement trajectory of the radioactive solid waste barrel, radioactive source and detector. The vertical movement mechanism, the detector vertical movement mechanism and the detector horizontal movement mechanism operate synchronously to control the radioactive solid waste barrel, radioactive source and detector to move synchronously to their respective initial detection positions. Since the control process of each mechanism is carried out synchronously and once, the coordination of each mechanism and the detection efficiency of the detector are relatively high.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the accompanying drawings that need to be used in the description of the embodiments will be briefly introduced below. Other drawings can also be obtained based on these drawings.
图1是本申请实施例示出的一种放射性固体废物桶检测装置的结构图;Fig. 1 is a structural diagram of a radioactive solid waste barrel detection device shown in the embodiment of the present application;
图2是本申请实施例示出的一种放射性固体废物桶检测装置的运动关节的模拟结构图;Fig. 2 is a simulated structure diagram of a kinematic joint of a radioactive solid waste barrel detection device shown in an embodiment of the present application;
图3是本申请实施例示出的第一种放射性固体废物桶检测装置的运动控制方法的流程图;Fig. 3 is a flow chart of the motion control method of the first radioactive solid waste barrel detection device shown in the embodiment of the present application;
图4是图3所示实施例示出的第一种运动轨迹计算方法的流程图;Fig. 4 is a flow chart of the first motion trajectory calculation method shown in the embodiment shown in Fig. 3;
图5是图3所示实施例示出的第二种运动轨迹计算方法的流程图;Fig. 5 is a flow chart of the second motion trajectory calculation method shown in the embodiment shown in Fig. 3;
图6是图3所示实施例示出的一种放射性核素检测方法的运动流程图;Fig. 6 is a motion flow diagram of a radionuclide detection method shown in the embodiment shown in Fig. 3;
图7是本申请实施例示出的第二种放射性固体废物桶检测装置的运动控制方法的流程图;Fig. 7 is a flow chart of the motion control method of the second radioactive solid waste barrel detection device shown in the embodiment of the present application;
图8是本申请实施例示出的一种检测层面的体素划分的结构图;FIG. 8 is a structural diagram of voxel division at a detection level shown in an embodiment of the present application;
图9是本申请实施例示出的一种放射性固体废物桶检测装置的运动控制系统的结构图;Fig. 9 is a structural diagram of a motion control system of a radioactive solid waste barrel detection device shown in an embodiment of the present application;
图10是图9所示实施例示出的一种检测控制模块的结构图;Fig. 10 is a structural diagram of a detection control module shown in the embodiment shown in Fig. 9;
图11是图9所示实施例示出的一种第一轨迹计算模块的结构图;Fig. 11 is a structural diagram of a first trajectory calculation module shown in the embodiment shown in Fig. 9;
图12是图9所示实施例示出的一种第二轨迹计算模块的结构图。Fig. 12 is a structural diagram of a second trajectory calculation module shown in the embodiment shown in Fig. 9 .
图1至图12中所示各结构与附图标记的对应关系如下:The corresponding relationship between each structure shown in Fig. 1 to Fig. 12 and reference numerals is as follows:
1-放射源竖直运动机构、2-放射源、3-探测器竖直运动机构、4-探测器水平运动机构、5-探测器、6-废物桶水平运动机构、7-废物桶旋转平台。1-radiation source vertical movement mechanism, 2-radiation source, 3-detector vertical movement mechanism, 4-detector horizontal movement mechanism, 5-detector, 6-waste barrel horizontal movement mechanism, 7-waste barrel rotation platform .
具体实施方式detailed description
本申请实施例提供的放射性固体废物桶检测装置的运动控制方案,解决了背景技术中所介绍的核素检测装置的各运动机构和检测器件的协调性不高,进而检测效率低下的问题。另外,本申请下述各实施例提供的放射性固体废物桶检测装置的运动控制方法和系统适用于TGS技术,基于此方法进行的相关改进也适用于SGS技术的扫描方式,并在本申请的保护范围之内。The motion control scheme of the radioactive solid waste barrel detection device provided in the embodiment of the present application solves the problem of low coordination between the various motion mechanisms and detection devices of the nuclide detection device introduced in the background art, and thus the problem of low detection efficiency. In addition, the motion control method and system of the radioactive solid waste barrel detection device provided in the following embodiments of this application are applicable to TGS technology, and related improvements based on this method are also applicable to the scanning method of SGS technology, and are protected under the protection of this application. within range.
为了使本技术领域的人员更好地理解本申请实施例中的技术方案,并使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请实施例中的技术方案作进一步详细的说明。In order to enable those skilled in the art to better understand the technical solutions in the embodiments of the present application, and to make the above-mentioned purposes, features and advantages of the embodiments of the present application more obvious and understandable, the technical solutions in the embodiments of the present application are described below in conjunction with the accompanying drawings The program is described in further detail.
请参见图1,图1为本申请实施例提供的一种放射性固体废物桶检测装置的结构示意图,如图1所示,该放射性固体废物桶检测装置包括:Please refer to Fig. 1. Fig. 1 is a schematic structural diagram of a radioactive solid waste barrel detection device provided in the embodiment of the present application. As shown in Fig. 1, the radioactive solid waste barrel detection device includes:
放射源竖直运动机构1以及放射源2;放射源2位于放射源竖直运动机构1上,能够在驱动电机(图中未标记)的驱动下,沿着放射源竖直运动机构1竖直运动;The radiation source vertical movement mechanism 1 and the radiation source 2; the radiation source 2 is located on the radiation source vertical movement mechanism 1, and can be driven vertically along the radiation source vertical movement mechanism 1 under the drive of the drive motor (not marked in the figure). sports;
探测器竖直运动机构3、探测器水平运动机构4以及探测器5,探测器水平运动机构4位于探测器竖直运动机构3上,在驱动电机的驱动下,探测器水平运动机构4能够沿着探测器竖直运动机构3做竖直方向的运动;探测器5位于探测器水平运动机构4上,在驱动电机的驱动下,探测器5能够沿着探测器水平运动机构做水平方向的运动。其中,放射源2的准直孔与探测器5的准直孔相互平行;因此当放射源2与探测器5相互平齐时,探测器5能够检测到放射源2发出且经过放射性固体废物桶衰减后的射线。The detector vertical movement mechanism 3, the detector horizontal movement mechanism 4 and the detector 5, the detector horizontal movement mechanism 4 is located on the detector vertical movement mechanism 3, driven by the drive motor, the detector horizontal movement mechanism 4 can move along the Move vertically with the detector vertical motion mechanism 3; detector 5 is located on the detector horizontal motion mechanism 4, driven by the drive motor, the detector 5 can move horizontally along the detector horizontal motion mechanism . Wherein, the collimating holes of the radioactive source 2 and the collimating holes of the detector 5 are parallel to each other; therefore, when the radioactive source 2 and the detector 5 are flush with each other, the detector 5 can detect that the radioactive source 2 emits and passes through the radioactive solid waste barrel Attenuated rays.
设置于放射源竖直运动机构1和探测器竖直运动机构3之间的废物桶水平运动机构6,其中,废物桶水平运动机构6的长边垂直于放射源2和探测器5所在的竖直面。本实施例中的放射性固体废物桶检测装置还包括滑动连接于废物桶水平运动机构6的废物桶旋转平台7。The waste barrel horizontal movement mechanism 6 is arranged between the radiation source vertical movement mechanism 1 and the detector vertical movement mechanism 3, wherein, the long side of the waste barrel horizontal movement mechanism 6 is perpendicular to the vertical position where the radiation source 2 and the detector 5 are located. face up. The radioactive solid waste barrel detection device in this embodiment also includes a waste barrel rotating platform 7 slidably connected to the waste barrel horizontal movement mechanism 6 .
废物桶水平运动机构6设置于放射源竖直运动机构1和探测器竖直运动机构3之间,且长边垂直于放射源2和探测器5所在的竖直面,则废物桶水平运动机构6上的废物桶旋转平台7能够在驱动电机的驱动下沿着废物桶水平运动机构6的长边做垂直于上述竖直面的运动。从而能够将废物桶旋转平台7上的放射性固体废物桶移动至放射源2和探测器5之间进行检测。为了实现对放射性固体废物桶的各检测层面各部位放射性核素的检测,废物桶旋转平台7能够旋转,从而使得探测器5能够探测到放射性固体废物桶的每层检测层面各部位的放射性核素。The waste barrel horizontal movement mechanism 6 is arranged between the radioactive source vertical movement mechanism 1 and the detector vertical movement mechanism 3, and the long side is perpendicular to the vertical plane where the radioactive source 2 and the detector 5 are located, then the waste barrel horizontal movement mechanism The trash can rotary platform 7 on the 6 can move vertically to the above-mentioned vertical plane along the long side of the waste bucket horizontal motion mechanism 6 under the drive of the drive motor. Therefore, the radioactive solid waste barrel on the waste barrel rotating platform 7 can be moved between the radioactive source 2 and the detector 5 for detection. In order to realize the detection of radionuclides at each detection level and part of the radioactive solid waste barrel, the waste barrel rotating platform 7 can rotate, so that the detector 5 can detect the radionuclides at each detection level of the radioactive solid waste barrel .
具体地,结合图2所示,为研究放射性固体废物桶的运动情况,可对放射性固体废物桶检测装置进行建系,以放射性固体废物桶位于上述废物桶水平运动机构末端时、放射性固体废物桶底面的圆心即废物桶旋转平台的圆心为坐标原点,以过坐标原点、且平行于废物桶水平运动机构的长边的直线为Y轴,以水平方向上垂直于上述废物桶水平机构的长边的直线为X轴,以过坐标原点的竖直方向的直线为Z轴。废物桶旋转平台7通过旋转关节a与废物桶水平运动机构6绕Z轴转动相连,且废物桶旋转平台7通过移动关节b与废物桶水平运动机构6沿Y轴滑动连接,放射源2通过移动关节c能够与放射源竖直运动机构1沿Z轴滑动连接,探测器水平运动机构4通过移动关节d能够与探测器竖直运动机构3沿Z轴滑动连接,探测器5通过移动关节e能够与探测器水平运动机构4沿X轴滑动连接。Specifically, as shown in Figure 2, in order to study the movement of the radioactive solid waste barrel, the detection device for the radioactive solid waste barrel can be built. When the radioactive solid waste barrel is located at the end of the waste barrel horizontal movement mechanism, the radioactive solid waste barrel The center of the bottom surface, that is, the center of the waste bin rotating platform, is the origin of the coordinates, the Y axis is the straight line passing through the origin of the coordinates and parallel to the long side of the horizontal movement mechanism of the waste bin, and the long side perpendicular to the horizontal movement mechanism of the waste bin in the horizontal direction The straight line of is the X-axis, and the straight line passing through the origin of the coordinates is the Z-axis. The waste barrel rotating platform 7 is connected with the waste barrel horizontal movement mechanism 6 around the Z axis through the rotating joint a, and the waste barrel rotating platform 7 is slidingly connected with the waste barrel horizontal movement mechanism 6 along the Y axis through the moving joint b, and the radioactive source 2 moves through The joint c can be slidably connected with the radiation source vertical motion mechanism 1 along the Z axis, the detector horizontal motion mechanism 4 can be slidably connected with the detector vertical motion mechanism 3 along the Z axis by moving the joint d, and the detector 5 can be slidably connected with the detector vertical motion mechanism 3 by moving the joint e It is slidingly connected with the detector horizontal motion mechanism 4 along the X axis.
由于放射源竖直运动机构1和探测器竖直运动机构3上放射源2和探测器水平运动机构4均能够上下移动,即沿Z轴方向移动;探测器5能够沿着探测器水平运动机构4做水平移动,即沿X轴方向移动;废物桶旋转平台7能够沿着废物桶水平运动机构6做垂直于放射源2和探测器5所在竖直面的前后移动,即沿Y轴方向移动;废物桶旋转平台7自身能够旋转,即绕Z轴旋转。因此,本申请实施例示出的放射性固体废物桶检测装置能够实现四自由度的核素检测。Since the radiation source 2 and the detector horizontal movement mechanism 4 on the radiation source vertical movement mechanism 1 and the detector vertical movement mechanism 3 can move up and down, that is, move along the Z-axis direction; the detector 5 can move along the detector horizontal movement mechanism 4. Move horizontally, that is, move along the X-axis direction; the waste bin rotating platform 7 can move forward and backward along the waste bin horizontal movement mechanism 6 perpendicular to the vertical plane where the radioactive source 2 and the detector 5 are located, that is, move along the Y-axis direction ; The waste bin rotating platform 7 can rotate itself, that is, rotate around the Z axis. Therefore, the radioactive solid waste barrel detection device shown in the embodiment of the present application can realize nuclide detection with four degrees of freedom.
请参见图3,图3为本申请实施例示出的一种放射性固体废物桶检测装置的运动控制方法的流程图,该运动控制方法用于控制图1所示的放射性固体废物桶检测装置。如图3所示,该放射性固体废物桶检测装置的运动控制方法包括以下步骤:Please refer to FIG. 3 . FIG. 3 is a flowchart of a motion control method of a radioactive solid waste barrel detection device shown in an embodiment of the present application. The motion control method is used to control the radioactive solid waste barrel detection device shown in FIG. 1 . As shown in Figure 3, the motion control method of the radioactive solid waste barrel detection device comprises the following steps:
S110:根据放射性固体废物桶的体积将放射性固体废物桶划分为多个体素。S110: Divide the radioactive solid waste barrel into multiple voxels according to the volume of the radioactive solid waste barrel.
体素是放射性固体废物桶的体积元素,每个体素均占有相同大小的体积,在本申请实施例中也是检测放射性核素的最小单元。通过将放射性固体废物桶划分为多个体素,能够对放射性固体废物桶内的放射性核素进行精确细致的检测。A voxel is a volume element of a solid radioactive waste barrel, and each voxel occupies the same volume, and is also the smallest unit for detecting radionuclides in this embodiment of the present application. By dividing the radioactive solid waste barrel into multiple voxels, the radionuclide in the radioactive solid waste barrel can be accurately and meticulously detected.
S120:沿轴向将放射性固体废物桶划分为多个检测层面,其中,每个检测层面包括多个体素。S120: Divide the radioactive solid waste barrel into multiple detection levels along the axis, where each detection level includes multiple voxels.
在本申请实施例中通过将放射性固体废物桶划分为多个检测层面,在每次对检测层面内的放射性核素进行检测时,探测器和放射源均移动至与每个检测层面相同高度的位置。由于每个检测层面包括多个体素,在具体的核素检测时能够通过体素的位置来确定每个检测层面中需要进行核素检测的位置点。In the embodiment of this application, by dividing the radioactive solid waste barrel into multiple detection levels, each time the radionuclide in the detection level is detected, the detector and the radioactive source are moved to the same height as each detection level. Location. Since each detection level includes a plurality of voxels, the position of the nuclide detection in each detection level can be determined by the position of the voxel during the specific nuclide detection.
如图8所示,放射性固体废物桶划分为多个检测层面,则每个检测层面为k层,每个检测层面的高为H,每个检测层面均可分割为i*j的多个矩阵,则每个体素的长乘宽为L*W,因此每个体素的体积为L*W*H。As shown in Figure 8, the radioactive solid waste barrel is divided into multiple detection levels, each detection level is k layers, the height of each detection level is H, and each detection level can be divided into multiple matrices of i*j , then the length times width of each voxel is L*W, so the volume of each voxel is L*W*H.
S130:从多个检测层面中选取初始检测层面,确定过初始检测层面圆心且与竖直面垂直相交直线的交点作为放射性固体废物桶的初始检测位置。S130: Select an initial detection level from multiple detection levels, and determine an intersection point of a straight line passing through the center of the initial detection level and perpendicular to the vertical plane as the initial detection position of the radioactive solid waste barrel.
在检测放射性固体废物桶内的放射性核素时,需要从放射性固体废物桶的初始检测层面开始检测,相应地,需要预先通过废物桶水平运动机构移动废物桶旋转平台,控制放射性固体废物桶移动至探测器和放射源之间;同时需要控制探测器和放射源移动至与该初始检测层面相平齐的位置,以开始对该初始检测层面内的放射性核素进行检测。优选地,该初始检测层面为放射性固体废物桶中所有检测层面中最下一层检测层面。When detecting the radionuclides in the radioactive solid waste barrel, it is necessary to start the detection from the initial detection level of the radioactive solid waste barrel. Between the detector and the radioactive source; at the same time, it is necessary to control the detector and the radioactive source to move to a position flush with the initial detection level, so as to start detecting radionuclides in the initial detection level. Preferably, the initial detection level is the lowest detection level among all the detection levels in the radioactive solid waste barrel.
由于废物桶水平运动机构的长边垂直于放射源和探测器所在的竖直面,过初始检测层面圆心且与竖直面垂直相交的直线,是与废物桶水平运动机构的长边平行的,即与废物桶水平运动机构上废物桶旋转平台的移动方向相同。该垂直于竖直面的直线与竖直面的交点即初始检测位置。当放射性固体废物桶移动至该初始检测位置时,放射性固体废物桶的初始检测层面将位于移动至放射源和探测器之间,同时,由于放射源和探测器分别与初始检测层面相平齐,因此探测器能够对该检测层面上的放射性核素进行准确和快速检测。Since the long side of the horizontal movement mechanism of the waste bin is perpendicular to the vertical plane where the radioactive source and the detector are located, the straight line passing through the center of the initial detection level and perpendicular to the vertical plane is parallel to the long side of the horizontal movement mechanism of the waste bin. That is, it is in the same direction as the movement direction of the waste barrel rotary platform on the waste barrel horizontal movement mechanism. The intersection of the straight line perpendicular to the vertical plane and the vertical plane is the initial detection position. When the radioactive solid waste barrel moves to the initial detection position, the initial detection level of the radioactive solid waste barrel will be located between the moved radioactive source and the detector, and at the same time, since the radioactive source and the detector are respectively flush with the initial detection level, Therefore, the detector can perform accurate and rapid detection of radionuclides on the detection level.
S140:根据放射性固体废物桶的初始检测位置,分别计算放射源的初始检测位置和探测器的初始检测位置,其中,放射性固体废物桶、放射源和探测器的初始检测位置水平共线。S140: According to the initial detection position of the radioactive solid waste barrel, respectively calculate the initial detection position of the radioactive source and the initial detection position of the detector, wherein the initial detection positions of the radioactive solid waste barrel, the radioactive source, and the detector are horizontally collinear.
根据放射性固体废物桶的初始检测位置,能够计算放射源的初始检测位置和探测器的初始检测位置,进而能够控制放射源和探测器移动至与该初始检测层面相平齐的位置,从而能够控制探测器对放射源发出的、穿过该初始检测层面的放射性核素的射线进行快速检测。According to the initial detection position of the radioactive solid waste barrel, the initial detection position of the radioactive source and the initial detection position of the detector can be calculated, and then the radioactive source and the detector can be controlled to move to a position flush with the initial detection level, so that the Detectors perform rapid detection of radiation from radioactive sources passing through the initial detection level of radionuclide radiation.
S150:根据放射性固体废物桶的质量和初始检测位置,计算放射性固体废物桶的运动轨迹,其中,放射性固体废物桶的运动轨迹为初始检测层面的最外圈体素从体素原位移动至放射性固体废物桶的初始检测位置的运动轨迹。具体可选取最外圈体素的体素中心或体素重心从体素原位移动至放射性固体废物桶的初始检测位置的运动轨迹。S150: According to the mass of the radioactive solid waste barrel and the initial detection position, calculate the movement trajectory of the radioactive solid waste barrel, wherein the movement trajectory of the radioactive solid waste barrel is that the outermost voxel at the initial detection level moves from the original position of the voxel to the radioactive The trajectory of the initial detection position of the solid waste bin. Specifically, the movement trajectory of the voxel center or the voxel center of gravity of the outermost voxel moving from the original position of the voxel to the initial detection position of the radioactive solid waste barrel can be selected.
通过确定放射性固体废物桶的初始检测位置,能够确定放射性固体废物桶中初始检测层面的最外圈体素从体素原位至该初始检测位置的运动距离;通过确定放射性固体废物桶的质量,能够确定废物桶水平运动机构的负载,从而能够进一步计算放射性固体废物桶在废物桶水平运动机构上的移动过程中所需要的输出功率,进而计算出放射性固体废物桶的运动时间和瞬时运动速度,以控制放射性固体废物桶平稳移动至初始检测位置。其中,本实施例中的最外圈体素为初始检测层面中最靠近放射源和探测器所在竖直面的放射性体素。By determining the initial detection position of the radioactive solid waste barrel, the movement distance of the outermost voxel of the initial detection level in the radioactive solid waste barrel from the original position of the voxel to the initial detection position can be determined; by determining the mass of the radioactive solid waste barrel, The load of the horizontal movement mechanism of the waste barrel can be determined, so that the output power required for the movement of the solid radioactive waste barrel on the horizontal movement mechanism of the waste barrel can be further calculated, and then the movement time and instantaneous speed of the solid radioactive waste barrel can be calculated. To control the radioactive solid waste barrel to move smoothly to the initial detection position. Wherein, the outermost voxel in this embodiment is the radioactive voxel closest to the vertical plane where the radioactive source and the detector are located in the initial detection level.
结合图8所示,当初始检测层面的最外圈体素移动至放射性固体废物桶的初始检测位置时,最外圈体素中沿Y轴方向的体素,其中心点1将与初始检测位置重合。该沿Y轴方向的体素从体素原位移动至初始检测位置的轨迹即放射性固体废物桶的运动轨迹。As shown in Figure 8, when the outermost voxel on the initial detection level moves to the initial detection position of the radioactive solid waste barrel, the center point 1 of the voxel along the Y axis in the outermost voxel will be the same as the initial detection The location coincides. The trajectory of the voxel moving from the original position of the voxel to the initial detection position along the Y axis is the trajectory of the radioactive solid waste barrel.
其中,放射性固体废物桶的运动轨迹包括放射性固体废物桶的运动距离、运动时间和瞬时运动速度。作为一种优选的实施例,如图4所示,步骤S150:根据放射性固体废物桶的初始检测位置和质量,计算放射性固体废物桶的运动轨迹,具体包括:Wherein, the motion track of the radioactive solid waste barrel includes the moving distance, moving time and instantaneous moving speed of the radioactive solid waste barrel. As a preferred embodiment, as shown in Figure 4, step S150: Calculate the trajectory of the radioactive solid waste barrel according to the initial detection position and mass of the radioactive solid waste barrel, specifically including:
S151:确定放射性固体废物桶的废物桶原点的位置,根据废物桶原点的位置以及初始检测层面的圆心与最外圈体素的中心点之间距离计算体素原位的位置。S151: Determine the position of the origin of the waste barrel of the radioactive solid waste barrel, and calculate the original position of the voxel according to the position of the origin of the waste barrel and the distance between the center of the initial detection level and the center point of the outermost voxel.
放射性固体废物桶的废物桶原点为放射性停留于预设的最初位置时废物桶中心点的位置,在确定该放射性固体废物桶的废物桶原点的位置时,能够根据废物桶原点的位置计算初始检测层面的圆心的位置,在得到初始检测层面的圆心的位置后,通过计算初始检测层面的圆心与最外圈体素的中心点之间距离,即能够计算出体素原位的位置,进而根据该体素原位的位置准确计算放射性固体废物桶至初始检测位置的运动距离。上述最外圈体素的中心点即为图8所示实施例中的初始检测层面的最外圈体素中沿Y轴的体素的中心点。The origin of the waste barrel of the radioactive solid waste barrel is the position of the center point of the waste barrel when the radioactivity stays at the preset initial position. When determining the position of the origin of the waste barrel of the radioactive solid waste barrel, the initial detection can be calculated according to the position of the origin of the waste barrel The position of the center of the layer, after obtaining the position of the center of the initial detection layer, by calculating the distance between the center of the initial detection layer and the center point of the outermost voxel, the original position of the voxel can be calculated, and then according to The in-situ position of the voxel accurately calculates the movement distance from the radioactive solid waste barrel to the initial detection position. The center point of the outermost voxel above is the center point of the voxel along the Y axis in the outermost voxel of the initial detection level in the embodiment shown in FIG. 8 .
S152:根据体素原位的位置以及放射性固体废物桶的初始检测位置,计算放射性固体废物桶的运动距离。S152: Calculate the movement distance of the radioactive solid waste barrel according to the original position of the voxel and the initial detection position of the radioactive solid waste barrel.
从初始检测层面的最外层体素的体素原位至上述放射性固体废物桶的初始检测位置的距离,即放射性固体废物桶的运动距离。通过该距离能够控制废物桶水平运动机构准确运行,进而准确控制放射性固体废物桶的移动。The distance from the original position of the voxel in the outermost voxel of the initial detection level to the initial detection position of the radioactive solid waste barrel is the movement distance of the radioactive solid waste barrel. The distance can be used to control the accurate operation of the horizontal movement mechanism of the waste barrel, thereby accurately controlling the movement of the radioactive solid waste barrel.
S153:根据放射性固体废物桶的运动距离和质量,计算放射性固体废物桶的运动时间和瞬时运动速度。S153: Calculate the movement time and instantaneous movement speed of the radioactive solid waste barrel according to the movement distance and mass of the radioactive solid waste barrel.
在计算得到放射性固体废物桶的运动距离后,根据放射性固体废物桶的质量并结合废物桶旋转平台的质量,能够得到废物桶水平运动机构的负载,通过该负载能够推动该放射性固体废物桶稳定运行的输出功率,进而计算放射性固体废物桶从体素原位运行至初始检测位置需要的运动时间,进而计算得到放射性固体废物桶的瞬时运动速度。After calculating the movement distance of the radioactive solid waste barrel, according to the mass of the radioactive solid waste barrel combined with the mass of the waste barrel rotating platform, the load of the horizontal movement mechanism of the waste barrel can be obtained, through which the radioactive solid waste barrel can be pushed to run stably output power, and then calculate the movement time required for the radioactive solid waste barrel to move from the original position of the voxel to the initial detection position, and then calculate the instantaneous movement speed of the radioactive solid waste barrel.
S160:根据放射性固体废物桶的运动轨迹和放射源的初始检测位置计算放射源的运动轨迹,以及根据放射性固体废物桶的运动轨迹和探测器的初始检测位置计算探测器的运动轨迹。S160: Calculate the movement trajectory of the radioactive source according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the radioactive source, and calculate the movement trajectory of the detector according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the detector.
在本申请实施例中,放射性固体废物桶、放射源和探测器均同步运行,因此探测器、放射源与放射性固体废物桶的运动时间均相同。通过根据放射性固体废物桶的运动轨迹,能够准确确定放射性固体废物桶的运动时间。通过该放射性固体废物桶的运动时间以及放射源的初始检测位置,能够计算放射源从放射源原点移动至放射源的初始检测位置的运动距离和运动速度;并且通过放射性固体废物桶的运动时间和探测器的初始检测位置,能够计算探测器从探测器原点移动至探测器的初始检测位置的运动距离和运动速度,进而能够实现放射性固体废物桶、放射源和探测器的协调同步运行。其中,优选地,放射源的初始检测位置为放射源的准直孔的初始检测位置,探测器的初始检测位置具体为探测器的准直孔的初始检测位置。In the embodiment of the present application, the radioactive solid waste barrel, the radioactive source, and the detector all operate synchronously, so the movement time of the detector, the radioactive source, and the radioactive solid waste barrel are all the same. According to the movement trajectory of the radioactive solid waste barrel, the movement time of the radioactive solid waste barrel can be accurately determined. Through the movement time of the radioactive solid waste barrel and the initial detection position of the radioactive source, the movement distance and movement speed of the radioactive source from the origin of the radioactive source to the initial detection position of the radioactive source can be calculated; and through the movement time and the initial detection position of the radioactive solid waste barrel The initial detection position of the detector can calculate the movement distance and movement speed of the detector from the origin of the detector to the initial detection position of the detector, and then realize the coordinated and synchronous operation of the radioactive solid waste barrel, radioactive source and detector. Wherein, preferably, the initial detection position of the radiation source is the initial detection position of the collimation hole of the radiation source, and the initial detection position of the detector is specifically the initial detection position of the collimation hole of the detector.
S170:分别根据放射性固体废物桶、放射源和探测器的运动轨迹,控制废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,以使放射性固体废物桶、放射源和探测器分别同步移动至各自的初始检测位置。S170: Control the horizontal movement mechanism of the waste barrel, the vertical movement mechanism of the radioactive source, the vertical movement mechanism of the detector, and the horizontal movement mechanism of the detector according to the movement trajectories of the radioactive solid waste barrel, radioactive source and detector, so that the radioactive The solid waste barrel, radioactive source and detector move synchronously to their respective initial detection positions.
通过控制废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,能够控制放射性固体废物桶、放射源和探测器同步移动至各自的初始检测位置,从而实现对放射性固体废物桶、放射源和探测器的协调同步运行。By controlling the synchronous operation of the horizontal movement mechanism of the waste barrel, the vertical movement mechanism of the radioactive source, the vertical movement mechanism of the detector and the horizontal movement mechanism of the detector, it is possible to control the radioactive solid waste barrel, the radioactive source and the detector to move synchronously to their respective initial detection positions , so as to realize the coordinated and synchronous operation of radioactive solid waste barrels, radioactive sources and detectors.
与放射性固体废物桶的运动轨迹相同,放射源的运动轨迹包括放射源的运动距离、运动时间和瞬时运动速度;并且探测器的运动轨迹包括探测器的运动距离、运动时间和瞬时运动速度。作为一种优选的实施例,如图5所示,步骤S170:根据放射性固体废物桶的运动轨迹和放射源的初始检测位置计算放射源的运动轨迹,以及根据放射性固体废物桶的运动轨迹和探测器的初始检测位置计算探测器的运动轨迹,具体包括:The same as the movement trajectory of the radioactive solid waste barrel, the movement trajectory of the radioactive source includes the movement distance, movement time and instantaneous movement speed of the radioactive source; and the movement trajectory of the detector includes the movement distance, movement time and instantaneous movement speed of the detector. As a preferred embodiment, as shown in Figure 5, step S170: calculate the motion trajectory of the radioactive source according to the motion trajectory of the radioactive solid waste barrel and the initial detection position of the radioactive source, and calculate the Calculate the motion trajectory of the detector based on the initial detection position of the detector, including:
S171:计算放射源原点与放射源的初始检测位置之间的距离。S171: Calculate the distance between the origin of the radioactive source and the initial detection position of the radioactive source.
S172:根据放射性固体废物桶的运动时间以及放射源原点与放射源的初始检测位置之间的距离,计算放射源的瞬时运动速度。S172: Calculate the instantaneous moving speed of the radioactive source according to the moving time of the radioactive solid waste barrel and the distance between the origin of the radioactive source and the initial detection position of the radioactive source.
在本申请实施例中,由于放射性固体废物桶、放射源和探测器均同步运行,因此放射性固体废物桶的运动时间即放射源的运动时间,在计算得到放射源原点与放射源的初始检测位置之间的距离后,结合上述放射性固体废物桶的运动时间,能够规划放射源的在各个时刻的瞬时运动速度,从而保证放射源沿放射源竖直运动机构平稳运行。以及,In the embodiment of this application, since the radioactive solid waste barrel, the radioactive source and the detector are all running synchronously, the movement time of the radioactive solid waste barrel is the movement time of the radioactive source. After the distance between them, combined with the movement time of the above-mentioned radioactive solid waste barrel, the instantaneous movement speed of the radioactive source at each moment can be planned, so as to ensure the smooth operation of the radioactive source along the vertical movement mechanism of the radioactive source. as well as,
S173:计算探测器原点与探测器的初始检测位置之间的距离,其中,探测器原点与探测器的初始检测位置之间的距离包括探测器原点与探测器的初始检测位置之间的竖直距离,以及探测器原点和探测器的初始检测位置的水平距离。S173: Calculate the distance between the origin of the detector and the initial detection position of the detector, wherein the distance between the origin of the detector and the initial detection position of the detector includes the vertical distance between the origin of the detector and the initial detection position of the detector distance, and the horizontal distance between the detector origin and the detector's initial detection position.
S174:根据放射性固体废物桶的运动时间以及探测器原点与探测器的初始检测位置之间的竖直距离,计算探测器水平运动机构沿探测器竖直运动机构的瞬时运动速度。S174: According to the movement time of the radioactive solid waste barrel and the vertical distance between the origin of the detector and the initial detection position of the detector, calculate the instantaneous movement speed of the detector horizontal movement mechanism along the detector vertical movement mechanism.
由于放射性固体废物桶、放射源和探测器均同步运行,因此放射性固体废物桶的运动时间即探测器的运动时间;并且由于探测器的运动机构包括探测器竖直运动机构与探测器水平运动机构两部分,因此需要计算探测器原点与探测器的初始检测位置之间的竖直距离以及探测器原点和探测器的初始检测位置的水平距离。在计算得到探测器原点与探测器的初始检测位置之间的竖直距离后,结合放射性固体废物桶的运动时间,即能够规划探测器水平运动机构沿探测器竖直运动机构的瞬时运动速度,以协调探测器在竖直方向上与放射性固体废物桶同步平稳运行。Because the radioactive solid waste barrel, the radioactive source and the detector all run synchronously, the movement time of the radioactive solid waste barrel is the movement time of the detector; and because the movement mechanism of the detector includes the vertical movement mechanism of the detector and the horizontal movement mechanism of the detector Therefore, it is necessary to calculate the vertical distance between the origin of the detector and the initial detection position of the detector and the horizontal distance between the origin of the detector and the initial detection position of the detector. After calculating the vertical distance between the origin of the detector and the initial detection position of the detector, combined with the movement time of the radioactive solid waste barrel, the instantaneous movement speed of the horizontal movement mechanism of the detector along the vertical movement mechanism of the detector can be planned, In order to coordinate the detector to run synchronously and smoothly with the radioactive solid waste barrel in the vertical direction.
S175:根据放射性固体废物桶的运动时间以及探测器原点与探测器的初始检测位置之间的水平距离,计算探测器沿探测器水平运动机构的瞬时运动速度。S175: According to the movement time of the radioactive solid waste barrel and the horizontal distance between the origin of the detector and the initial detection position of the detector, calculate the instantaneous movement speed of the detector along the horizontal movement mechanism of the detector.
在计算探测器原点与探测器的初始检测位置之间的水平距离后,根据该水平距离以及放射性固体废物桶的运动时间,能够计算探测器沿探测器水平运动机构的瞬时运动速度,从而协调探测器水平运动机构控制探测器在水平方向上与放射性固体废物桶同步平稳运行。After calculating the horizontal distance between the origin of the detector and the initial detection position of the detector, according to the horizontal distance and the movement time of the radioactive solid waste barrel, the instantaneous movement speed of the detector along the horizontal movement mechanism of the detector can be calculated, so as to coordinate the detection The horizontal motion mechanism of the detector controls the detector to run synchronously and smoothly with the radioactive solid waste barrel in the horizontal direction.
S180:控制探测器检测放射性固体废物桶内的放射性核素。S180: The control detector detects the radionuclide in the radioactive solid waste barrel.
本申请实施例提供的放射性固体废物桶检测装置的运动控制方法,通过确定放射性固体废物桶的初始检测位置,并通过该放射性固体废物桶的初始检测位置确定放射源和探测器的初始检测位置,进而能够规划放射性固体废物桶、放射源和探测器的运动轨迹,从而能够根据放射性固体废物桶、放射源和探测器的运动轨迹,控制废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,以控制放射性固体废物桶、放射源和探测器同步移动至各自的初始检测位置。由于各个机构的控制过程均协调控制且同步进行,因此各个机构的协调性以及探测器的检测效率较高。The motion control method of the radioactive solid waste barrel detection device provided in the embodiment of the present application determines the initial detection position of the radioactive solid waste barrel, and determines the initial detection positions of the radioactive source and the detector through the initial detection position of the radioactive solid waste barrel, Furthermore, the movement trajectory of the radioactive solid waste barrel, radioactive source and detector can be planned, so that the horizontal movement mechanism of the waste barrel, the vertical movement mechanism of the radioactive source, and the detector can be controlled according to the movement trajectory of the radioactive solid waste barrel, radioactive source and detector. The vertical movement mechanism and the detector horizontal movement mechanism operate synchronously to control the radioactive solid waste barrel, radioactive source and detector to move synchronously to their respective initial detection positions. Because the control process of each mechanism is coordinated and controlled and carried out synchronously, the coordination of each mechanism and the detection efficiency of the detector are relatively high.
作为一种优选的实施例,如图6所示,图3所示实施例中的步骤S180:控制探测器检测放射性固体废物桶内的放射性核素,包括以下步骤:As a preferred embodiment, as shown in FIG. 6, step S180 in the embodiment shown in FIG. 3: controlling the detector to detect the radionuclide in the radioactive solid waste bucket includes the following steps:
S181:控制放射源和探测器开启,以检测放射性固体废物桶内的放射性核素。S181: Control the radioactive source and the detector to be turned on, so as to detect the radionuclide in the radioactive solid waste barrel.
在初始检测层面的最外圈体素的体素中心点移动至该初始检测位置后,放射源和探测器开启后,放射源发出的射线,能够经过位于初始检测位置的放射性核素,因此探测器能够接收该经过位于初始检测位置的放射性核素衰减的射线,通过检测该射线,即能够检测放射性固体废物桶内位于该初始检测位置的放射性核素。After the voxel center point of the outermost voxel on the initial detection level moves to the initial detection position, after the radiation source and the detector are turned on, the radiation emitted by the radiation source can pass through the radionuclide at the initial detection position, so the detection The detector can receive the radiation attenuated by the radionuclide at the initial detection position, and by detecting the radiation, it can detect the radionuclide at the initial detection position in the radioactive solid waste barrel.
S182:控制废物桶旋转平台按预设角度步进旋转。S182: Control the rotating platform of the waste bin to rotate step by step according to a preset angle.
在探测器检测初始检测层面的最外圈体素的放射性核素时,通过控制废物桶旋转平台按预设角度步进旋转,初始检测层面的最外圈各体素包含的放射性核素均能够被检测到,进而实现初始检测层面的最外圈体素的内所有放射性核素的检测。When the detector detects the radionuclide in the outermost voxel at the initial detection level, by controlling the waste bucket rotating platform to step and rotate at a preset angle, the radionuclide contained in each voxel in the outermost circle at the initial detection level can be are detected, and then realize the detection of all radionuclides in the outermost circle voxels of the initial detection level.
S183:每当废物桶旋转平台旋转一周时,控制废物桶水平运动机构向放射性固体废物桶的初始检测位置方向移动预定距离,重复执行控制废物桶旋转平台按预设角度步进旋转的步骤。S183: Control the horizontal motion mechanism of the waste barrel to move a predetermined distance toward the initial detection position of the radioactive solid waste barrel every time the rotating platform of the waste barrel rotates once, and repeat the step of controlling the rotating platform of the waste barrel to rotate step by step according to a preset angle.
通过每当废物桶旋转平台旋转一周时,控制废物桶水平运动机构向放射性固体废物桶的初始检测位置方向移动预定距离,然后再次控制废物桶旋转平台步进旋转,能够使得放射性固体废物桶的初始检测层面的各圈体素由外圈到内圈均得到检测,其中,上述废物桶水平运动机构所移动的预定距离为相邻两体素中心点的间隔距离。By controlling the waste barrel horizontal movement mechanism to move a predetermined distance to the initial detection position direction of the radioactive solid waste barrel every time the waste barrel rotating platform rotates one revolution, and then controlling the waste barrel rotating platform to step and rotate again, the initial position of the radioactive solid waste barrel can be made Each circle of voxels on the detection level is detected from the outer circle to the inner circle, wherein the predetermined distance moved by the horizontal movement mechanism of the waste bucket is the distance between the center points of two adjacent voxels.
S184:当初始检测层面的最内圈核素检测完毕时,计算放射性固体废物桶的其他检测层面的初始检测位置,根据其他检测层面的初始检测位置同步调整废物桶旋转平台、放射源和探测器的位置,按预设顺序检测放射性固体废物桶内其他各个检测层面的放射性核素。S184: When the detection of the innermost nuclide at the initial detection level is completed, calculate the initial detection positions of other detection levels of the radioactive solid waste barrel, and synchronously adjust the waste barrel rotating platform, radioactive source and detector according to the initial detection positions of other detection levels position, and detect radionuclides at other detection levels in the radioactive solid waste barrel in a preset sequence.
通过计算放射性固体废物桶的其他检测层面的初始检测位置,能够根据其他检测层面的初始检测位置同步调整废物桶旋转平台、放射源和探测器的位置,从而检测放射性固体废物桶的各检测层面的放射性核素,实现整个放射性固体废物桶的所有放射性核素的整体检测。By calculating the initial detection positions of other detection levels of the radioactive solid waste barrel, the positions of the waste barrel rotating platform, radioactive source and detector can be adjusted synchronously according to the initial detection positions of other detection levels, so as to detect the position of each detection level of the radioactive solid waste barrel Radionuclides, to achieve the overall detection of all radionuclides in the entire radioactive solid waste barrel.
其中,步骤S184:计算放射性固体废物桶内其他检测层面的初始检测位置,根据其他检测层面的初始检测位置同步调整废物桶旋转平台、放射源和探测器的位置,包括:Among them, step S184: calculating the initial detection positions of other detection levels in the radioactive solid waste barrel, and synchronously adjusting the positions of the waste barrel rotating platform, radioactive source and detector according to the initial detection positions of other detection levels, including:
根据放射性固体废物桶的初始检测位置以及相邻检测层面之间的高度差,计算其他检测层面的初始检测位置;其中相邻检测层面之间的高度差为相邻检测层面的中心点之间的距离;According to the initial detection position of the radioactive solid waste barrel and the height difference between adjacent detection levels, calculate the initial detection position of other detection levels; where the height difference between adjacent detection levels is the distance between the center points of adjacent detection levels distance;
放射性固体废物桶中所有检测层面的初始检测位置均竖直对齐,因此,在对放射性固体废物桶的各个检测层面内的放射性核素进行检测时,根据初始检测层面的初始检测位置以及相邻检测层面之间的高度差,即可得到其他检测层面的初始检测位置。例如:根据放射性固体废物桶的最下端的初始检测层面的初始检测位置的坐标加上相邻检测层面之间高度差,即可得到放射性固体废物桶下端第二层检测层面的初始检测位置的坐标。The initial detection positions of all detection levels in the radioactive solid waste barrel are vertically aligned, therefore, when detecting radionuclides in each detection level of the radioactive solid waste barrel, according to the initial detection position of the initial detection level and adjacent detection The height difference between layers can be used to obtain the initial detection positions of other detection layers. For example: according to the coordinates of the initial detection position of the initial detection level at the lowest end of the radioactive solid waste barrel plus the height difference between adjacent detection levels, the coordinates of the initial detection position of the second detection level at the lower end of the radioactive solid waste barrel can be obtained .
根据其他检测层面的初始检测位置,计算放射源的检测点和探测器的检测点的位置;其中,其他检测层面的初始检测位置以及放射源和探测器的检测点水平共线;Calculate the position of the detection point of the radioactive source and the detection point of the detector according to the initial detection position of other detection levels; wherein, the initial detection position of other detection levels and the detection point of the radioactive source and the detector are horizontally collinear;
放射源的检测点和探测器的检测点均与所述其他检测层面的初始检测位置水平共线,通过计算放射源的检测点和探测器的检测点的位置,然后控制放射源和探测器移动至各自的检测点,能够通过探测器检测其他检测层面内的各放射性核素。Both the detection point of the radioactive source and the detection point of the detector are horizontally collinear with the initial detection positions of the other detection levels, by calculating the positions of the detection point of the radioactive source and the detection point of the detector, and then controlling the movement of the radioactive source and the detector To the respective detection points, each radionuclide in other detection levels can be detected by detectors.
控制废物桶旋转平台、放射源竖直运动机构和探测器竖直运动机构同步运行,以使放射性固体废物桶、放射源和探测器分别运动至其他检测层面的初始检测位置、放射源的检测点和探测器的检测点;Control the synchronous operation of the rotary platform of the waste barrel, the vertical movement mechanism of the radioactive source and the vertical movement mechanism of the detector, so that the radioactive solid waste barrel, the radioactive source and the detector move to the initial detection position of other detection levels and the detection point of the radioactive source respectively and the detection point of the detector;
在计算其他检测层面的初始检测位置以及放射源和探测器的检测点后,通过控制废物桶旋转平台、放射源竖直运动机构和探测器竖直运动机构同步运行,能够使得放射性固体废物桶、放射源和探测器分别移动至各自的检测点,从而实现对所述其他检测层面内放射性核素的检测;其中,放射性固体废物桶的检测过程中,该其他检测层面的最外圈体素的体素中心点首先移动至该初始检测位置,控制废物桶旋转平台旋转,以检测上述其他检测层面中最外圈所有体素,在其他检测层面的最外圈体素的所有放射性核素均检测完毕后,再控制废物桶水平移动平台向前移动预定距离,重复执行上述步骤,以由外至内检测其他检测层面的各圈体素。After calculating the initial detection positions of other detection levels and the detection points of radioactive sources and detectors, the radioactive solid waste barrels, radioactive solid waste barrels, The radioactive source and the detector move to their respective detection points, so as to realize the detection of radionuclides in the other detection levels; wherein, during the detection process of the radioactive solid waste barrel, the outermost voxels of the other detection levels The center point of the voxel first moves to the initial detection position, and controls the rotation of the waste bin rotating platform to detect all the voxels in the outermost circle in the other detection levels mentioned above, and all radionuclides in the outermost circle voxels in other detection levels are detected After the completion, control the horizontal moving platform of the waste bin to move forward for a predetermined distance, and repeat the above steps to detect each circle of voxels in other detection levels from the outside to the inside.
作为一种优选的实施例,请参见图7,图7为本申请一示例性实施例示出的一种核素检测装置的运动控制方法的流程图,结合图1、图2、图7和图8所示内容,图7所示的运动控制方法,包括以下步骤:As a preferred embodiment, please refer to Fig. 7, Fig. 7 is a flowchart of a motion control method for a nuclide detection device shown in an exemplary embodiment of the present application, combined with Fig. 1, Fig. 2, Fig. 7 and Fig. 8, the motion control method shown in FIG. 7 includes the following steps:
S701:初始化核素检测装置的各个运动机构,在初始化的过程中,首先将放射性固体废物桶沿竖直方向分为k层,即体素的高为H,剖面分割为i*j矩阵,即体素的长乘宽为L*W,当初始化完毕后,开始启动核素检测装置。S701: Initialize each movement mechanism of the nuclide detection device. During the initialization process, the radioactive solid waste barrel is first divided into k layers along the vertical direction, that is, the height of the voxel is H, and the section is divided into an i*j matrix, namely The length multiplied by the width of the voxel is L*W, and the nuclide detection device starts to start after the initialization is completed.
S702:控制图2所示的a、b、c、d和e各关节分别回归原点,即控制废物桶旋转平台、废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构回归各自的初始位置。S702: Control the joints a, b, c, d and e shown in Figure 2 to return to the original point respectively, that is, control the waste barrel rotating platform, the waste barrel horizontal movement mechanism, the radioactive source vertical movement mechanism, the detector vertical movement mechanism and The horizontal motion mechanisms of the detectors return to their respective initial positions.
S703:获取体素的体积L*W*H。S703: Acquire the volume L*W*H of the voxel.
S704:推导Y轴体素中心点坐标集(0,yj,zk),该体素中心点坐标集,即放射性固体废物桶在初始检测位置时,最外圈体素的中心点。S704: Deriving the Y-axis voxel center point coordinate set (0, y j , z k ), the voxel center point coordinate set is the center point of the outermost voxel when the radioactive solid waste barrel is at the initial detection position.
S705:推导放射源坐标集(x1i,yj,zk),该放射源坐标集与体素中心点坐标集平齐,即在同一平行于X轴的水平直线上。S705: Deriving a radioactive source coordinate set (x 1i , y j , z k ), the radioactive source coordinate set is aligned with the voxel central point coordinate set, that is, on the same horizontal straight line parallel to the X axis.
S706:推导探测器坐标集(x2i,yj,zk),其中,探测器坐标集与体素中心点坐标集平齐。S706: Deriving a detector coordinate set (x 2i , y j , z k ), where the detector coordinate set is equal to the voxel central point coordinate set.
S707:测量放射性固体废物桶的质量。S707: Measure the mass of the barrel of radioactive solid waste.
S708:分别规划线性关节b、c、d、e运动轨迹;具体地,根据放射性固体废物桶的质量,和体素中心点坐标集(0,yj,zk),规划旋转关节a和线性关节b的运动轨迹;根据体素中心点坐标集(0,yj,zk),规划线性关节c、d和e的运动轨迹。 S708 : Plan the motion trajectories of the linear joints b, c, d, and e respectively ; specifically, plan the rotary joints a and linear The trajectory of joint b; according to the voxel center point coordinate set (0, y j , z k ), plan the trajectory of linear joints c, d and e.
S709:放射源和探测器沿Z轴运动至各自的测点,即各自的初始检测位置。S709: The radioactive source and the detector move to their respective measurement points along the Z axis, that is, their respective initial detection positions.
S710:探测器沿X轴运动,以调整探测器检测距离。S710: the detector moves along the X axis to adjust the detection distance of the detector.
S711:废物桶旋转平台沿废物桶水平运动机构的Y轴运动至测点,该测点即初始检测位置(0,yj,zk)。S711: The rotating platform of the waste bin moves along the Y-axis of the horizontal movement mechanism of the waste bin to the measuring point, which is the initial detection position (0, y j , z k ).
S712:废物桶旋转平台绕Z轴步进旋转,同时开启探测器的检测模式。S712: The waste bin rotating platform rotates in steps around the Z axis, and at the same time turns on the detection mode of the detector.
S713:判断废物桶旋转平台是否旋转360度;若是,则执行步骤S714;若否,则返回执行步骤S712。S713: Determine whether the waste bin rotating platform has rotated 360 degrees; if yes, perform step S714; if not, return to step S712.
S714:控制废物桶旋转平台向前移动[0,W,0],运动至测点2,即放射源准直孔和探测器准直孔的水平连线穿过测点2;然后判断当前测点是否等于j/2或j/2+1;若是则执行步骤S715;若否,则返回执行步骤S711。通过该方法,检测完毕第一检测层面的所有核素。S714: Control the waste bin rotating platform to move forward [0, W, 0], and move to measuring point 2, that is, the horizontal line connecting the collimation hole of the radioactive source and the collimating hole of the detector passes through the measuring point 2; then judge the current measuring point Whether the point is equal to j/2 or j/2+1; if yes, execute step S715; if not, return to execute step S711. Through this method, all nuclides in the first detection level are detected.
S715:判断第k层是否检测完毕;若是,则执行步骤S716;若否,则返回执行步骤S709。S715: Determine whether the detection of the kth layer is completed; if yes, execute step S716; if not, return to execute step S709.
S716:控制a、b、c、d和e关节分别回归原点,即控制废物桶旋转平台、废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构回归各自的初始位置。S716: Control the joints a, b, c, d and e to return to the origin respectively, that is, control the return of the waste bucket rotary platform, waste bucket horizontal movement mechanism, radioactive source vertical movement mechanism, detector vertical movement mechanism and detector horizontal movement mechanism their respective initial positions.
另外,本申请上述实施例提供的放射性固体废物桶检测装置的运动控制方法,是使用直角坐标为例进行定位和运动控制的,相应地,使用极坐标进行定位和运动控制的方法也在本申请的保护范围之内。In addition, the motion control method of the radioactive solid waste barrel detection device provided in the above embodiments of the present application uses Cartesian coordinates as an example for positioning and motion control. Correspondingly, the method of using polar coordinates for positioning and motion control is also used in this application within the scope of protection.
基于同一申请构思,本申请实施例还提供了一种放射性固体废物桶检测装置的运动控制系统,由于系统对应的方法是本申请实施例中的放射性固体废物桶检测装置的运动控制方法,并且该系统解决问题的原理与方法相似,因此该系统的实施可以参见方法的实施,重复之处不再赘述。Based on the same application idea, the embodiment of the present application also provides a motion control system for the radioactive solid waste barrel detection device, since the method corresponding to the system is the motion control method of the radioactive solid waste barrel detection device in the embodiment of the present application, and the The principle of the system to solve the problem is similar to the method, so the implementation of the system can refer to the implementation of the method, and the repetition will not be repeated.
请参见图9,图9为本申请实施例提供的一种放射性固体废物桶检测装置的运动控制系统结构示意图,本实施例提供的运动控制系统用于控制图1所示的放射性固体废物桶检测装置,如图9所示,该放射性固体废物桶检测装置的运动控制系统,包括:Please refer to Figure 9. Figure 9 is a schematic structural diagram of the motion control system of a radioactive solid waste barrel detection device provided in the embodiment of the present application. The motion control system provided in this embodiment is used to control the detection of the radioactive solid waste barrel shown in Figure 1. Device, as shown in Figure 9, the motion control system of this radioactive solid waste barrel detection device, comprises:
体素划分模块901,用于根据放射性固体废物桶的体积将放射性固体废物桶划分为多个体素;A voxel division module 901, configured to divide the radioactive solid waste barrel into multiple voxels according to the volume of the radioactive solid waste barrel;
层面划分模块902,用于沿轴向将放射性固体废物桶划分为多个检测层面,其中,每个检测层面包括多个体素;A level division module 902, configured to divide the radioactive solid waste barrel into multiple detection levels along the axial direction, wherein each detection level includes a plurality of voxels;
层面选取模块903,用于从多个检测层面中选取初始检测层面;A level selection module 903, configured to select an initial detection level from multiple detection levels;
检测位置确定模块904,用于确定过初始检测层面圆心且与竖直面垂直相交直线的交点作为放射性固体废物桶的初始检测位置;The detection position determination module 904 is used to determine the intersection point of the straight line passing through the center of the initial detection level and perpendicular to the vertical plane as the initial detection position of the radioactive solid waste barrel;
位置计算模块905,用于根据放射性固体废物桶的初始检测位置,分别计算放射源的初始检测位置和探测器的初始检测位置,其中,放射性固体废物桶、放射源和探测器的初始检测位置水平共线;The position calculation module 905 is used to calculate the initial detection position of the radioactive source and the initial detection position of the detector respectively according to the initial detection position of the radioactive solid waste barrel, wherein the initial detection positions of the radioactive solid waste barrel, the radioactive source and the detector are horizontally Collinear;
第一轨迹计算模块906,用于根据放射性固体废物桶的质量和初始检测位置,计算放射性固体废物桶的运动轨迹,其中,放射性固体废物桶的运动轨迹为初始检测层面的最外圈体素从体素原位移动至放射性固体废物桶的初始检测位置的运动轨迹;The first trajectory calculation module 906 is used to calculate the movement trajectory of the radioactive solid waste barrel according to the mass of the radioactive solid waste barrel and the initial detection position, wherein the movement trajectory of the radioactive solid waste barrel is the outermost voxel at the initial detection level from The trajectory of the voxel moving in situ to the initial detection position of the radioactive solid waste barrel;
第二轨迹计算模块907,用于根据放射性固体废物桶的运动轨迹和放射源的初始检测位置计算放射源的运动轨迹,以及根据放射性固体废物桶的运动轨迹和探测器的初始检测位置计算探测器的运动轨迹;The second trajectory calculation module 907 is configured to calculate the movement trajectory of the radioactive source according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the radioactive source, and calculate the detector according to the movement trajectory of the radioactive solid waste barrel and the initial detection position of the detector track of movement;
同步运行控制模块908,用于分别根据放射性固体废物桶、放射源和探测器的运动轨迹,控制废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,以使放射性固体废物桶、放射源和探测器分别同步移动至各自的初始检测位置;The synchronous operation control module 908 is used to control the horizontal movement mechanism of the waste barrel, the vertical movement mechanism of the radioactive source, the vertical movement mechanism of the detector and the horizontal movement mechanism of the detector according to the movement tracks of the radioactive solid waste barrel, radioactive source and detector respectively Synchronous operation, so that the radioactive solid waste barrel, radioactive source and detector move synchronously to their respective initial detection positions;
检测控制模块909,控制探测器检测放射性固体废物桶内的放射性核素。The detection control module 909 controls the detector to detect the radionuclide in the radioactive solid waste barrel.
本申请实施例提供的放射性固体废物桶检测装置的运动控制系统,通过确定放射性固体废物桶的初始检测位置,并通过该放射性固体废物桶的初始检测位置,确定放射源和探测器的初始检测位置,进而能够规划放射性固体废物桶、放射源和探测器的运动轨迹,从而能够根据放射性固体废物桶、放射源和探测器的运动轨迹,控制废物桶水平运动机构、放射源竖直运动机构、探测器竖直运动机构和探测器水平运动机构同步运行,以控制放射性固体废物桶、放射源和探测器同步移动至各自的初始检测位置。由于各个机构的控制过程均同步一次性进行,因此各个机构的协调性以及探测器的检测效率较高。The motion control system of the radioactive solid waste barrel detection device provided in the embodiment of the present application determines the initial detection position of the radioactive solid waste barrel, and determines the initial detection position of the radioactive source and the detector through the initial detection position of the radioactive solid waste barrel , and then the movement trajectory of the radioactive solid waste barrel, radioactive source and detector can be planned, so that the horizontal movement mechanism of the waste barrel, the vertical movement mechanism of the radioactive source, the detection The vertical movement mechanism of the detector and the horizontal movement mechanism of the detector operate synchronously to control the radioactive solid waste barrel, radioactive source and detector to move synchronously to their respective initial detection positions. Since the control process of each mechanism is carried out synchronously and once, the coordination of each mechanism and the detection efficiency of the detector are relatively high.
其中,如图10所示,图9所示实施例中的检测控制模块909,包括:启动控制子模块9091,用于控制放射源和探测器开启,以检测放射性固体废物桶内的放射性核素;Wherein, as shown in FIG. 10, the detection control module 909 in the embodiment shown in FIG. 9 includes: a startup control submodule 9091, which is used to control the opening of the radioactive source and the detector, so as to detect the radionuclide in the radioactive solid waste barrel ;
旋转控制子模块9092,用于控制废物桶旋转平台按预设角度步进旋转;The rotation control sub-module 9092 is used to control the waste bucket rotation platform to rotate step by step according to the preset angle;
移动控制子模块9093,用于每当废物桶旋转平台旋转一周时,控制废物桶水平运动机构向废物桶的初始检测位置方向移动预定距离,重复执行控制废物桶旋转平台按预设角度步进旋转的步骤;The movement control sub-module 9093 is used to control the horizontal movement mechanism of the waste bin to move a predetermined distance in the direction of the initial detection position of the waste bin every time the rotating platform of the waste bin rotates once, and repeatedly execute the stepwise rotation of the rotating platform of the waste bin to control the rotation of the waste bin at a preset angle A step of;
位置调整子模块9094,用于当初始检测层面的最内圈放射性核素检测完毕时,计算放射性固体废物桶的其他检测层面的初始检测位置,根据其他检测层面的初始检测位置同步调整废物桶旋转平台、放射源和探测器的位置;The position adjustment sub-module 9094 is used to calculate the initial detection position of other detection levels of the radioactive solid waste barrel when the detection of the innermost radionuclide of the initial detection level is completed, and adjust the rotation of the waste barrel synchronously according to the initial detection positions of other detection levels The location of platforms, radioactive sources and detectors;
核素检测子模块9095,用于按预设顺序检测放射性固体废物桶内其他各个检测层面的放射性核素。其中,位置调整子模块9094,包括:第一位置计算子模块,用于根据放射性固体废物桶的初始检测位置以及相邻检测层面之间的高度差,计算其他检测层面的初始检测位置;第二位置计算子模块,用于根据其他检测层面的初始检测位置,计算放射源的检测点和探测器的检测点的位置;其中,其他检测层面的初始检测位置、放射源和探测器的检测点水平共线;运行控制子模块,用于控制废物桶旋转平台、放射源竖直运动机构和探测器竖直运动机构同步运行,以使放射性固体废物桶、放射源和探测器分别移动至其他检测层面的初始检测位置、放射源的检测点和探测器的检测点。The nuclide detection sub-module 9095 is used to detect radionuclides at other detection levels in the radioactive solid waste barrel in a preset sequence. Among them, the position adjustment sub-module 9094 includes: a first position calculation sub-module, which is used to calculate the initial detection position of other detection levels according to the initial detection position of the radioactive solid waste barrel and the height difference between adjacent detection levels; The position calculation sub-module is used to calculate the position of the detection point of the radioactive source and the detection point of the detector according to the initial detection position of other detection levels; wherein, the initial detection position of other detection levels, the detection point level of the radioactive source and the detector Collinear; the operation control sub-module is used to control the synchronous operation of the rotary platform of the waste barrel, the vertical movement mechanism of the radioactive source and the vertical movement mechanism of the detector, so that the radioactive solid waste barrel, the radioactive source and the detector can move to other detection levels respectively The initial detection position, the detection point of the radioactive source and the detection point of the detector.
作为一种优选的实施例,如图11所示,图9所示实施例提供的第一轨迹计算模块906,包括:废物桶原点位置确定子模块9061,用于确定放射性固体废物桶的废物桶原点的位置;体素原位计算子模块9062,用于根据废物桶原点的位置以及初始检测层面的圆心与最外圈体素的中心点之间距离计算体素原位的位置;第一运动距离计算子模块9063,用于根据体素原位的位置以及放射性固体废物桶的初始检测位置,计算放射性固体废物桶的运动距离;时间速度计算子模块9064,用于根据放射性固体废物桶的运动距离和质量,计算放射性固体废物桶的运动时间和瞬时运动速度。As a preferred embodiment, as shown in Figure 11, the first trajectory calculation module 906 provided by the embodiment shown in Figure 9 includes: a waste barrel origin position determination sub-module 9061, which is used to determine the waste barrel of the radioactive solid waste barrel The position of the origin; the voxel in-situ calculation sub-module 9062, which is used to calculate the original position of the voxel according to the position of the origin of the waste bin and the distance between the center of the initial detection level and the center point of the outermost voxel; the first movement The distance calculation submodule 9063 is used to calculate the movement distance of the radioactive solid waste barrel according to the original position of the voxel and the initial detection position of the radioactive solid waste barrel; the time velocity calculation submodule 9064 is used to calculate the movement distance of the radioactive solid waste barrel according to the movement of the radioactive solid waste barrel Distance and mass, calculate the movement time and instantaneous movement speed of the radioactive solid waste barrel.
作为一种优选的实施例,如图12所示,图9所示实施例中的第二轨迹计算模块907,包括:第二运动距离计算子模块9071,用于计算放射源原点与放射源的初始检测位置之间的距离;As a preferred embodiment, as shown in Figure 12, the second trajectory calculation module 907 in the embodiment shown in Figure 9 includes: a second movement distance calculation sub-module 9071, which is used to calculate the distance between the origin of the radiation source and the distance between the radiation source the distance between initial detection positions;
第一运动速度计算子模块9072,用于根据放射性固体废物桶的运动时间以及放射源原点与放射源的初始检测位置之间的距离,计算放射源的瞬时运动速度;以及,The first moving speed calculation sub-module 9072 is used to calculate the instantaneous moving speed of the radioactive source according to the moving time of the radioactive solid waste barrel and the distance between the origin of the radioactive source and the initial detection position of the radioactive source; and,
第三运动距离计算子模块9073,用于计算探测器原点与探测器的初始检测位置之间距离,其中,探测器原点与探测器的初始检测位置之间的距离包括探测器原点与探测器的初始检测位置之间的竖直距离,以及探测器原点和探测器的初始检测位置的水平距离;The third movement distance calculation sub-module 9073 is used to calculate the distance between the origin of the detector and the initial detection position of the detector, wherein the distance between the origin of the detector and the initial detection position of the detector includes the distance between the origin of the detector and the initial detection position of the detector. the vertical distance between the initial detection positions, and the horizontal distance between the origin of the detector and the initial detection position of the detector;
第二运动速度计算子模块9074,用于根据放射性固体废物桶的运动时间和探测器原点与探测器的初始检测位置之间的竖直距离,计算探测器水平运动机构沿探测器竖直运动机构的瞬时运动速度;The second movement speed calculation sub-module 9074 is used to calculate the horizontal movement mechanism of the detector along the vertical movement mechanism of the detector according to the movement time of the radioactive solid waste barrel and the vertical distance between the origin of the detector and the initial detection position of the detector. the instantaneous speed of motion;
第三运动速度计算子模块9075,用于根据放射性固体废物桶的运动时间和探测器原点与探测器的初始检测位置之间的水平距离,计算探测器沿探测器水平运动机构的瞬时运动速度。The third movement speed calculation sub-module 9075 is used to calculate the instantaneous movement speed of the detector along the horizontal movement mechanism of the detector according to the movement time of the radioactive solid waste barrel and the horizontal distance between the origin of the detector and the initial detection position of the detector.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其它实施例的不同之处。Each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
以上所述的本申请实施方式,并不构成对本申请保护范围的限定。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请的保护范围之内。The embodiments of the present application described above are not intended to limit the scope of protection of the present application. Any modifications, equivalent replacements and improvements made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710178364.2A CN106843292B (en) | 2017-03-23 | 2017-03-23 | Motion control method and system of radioactive solid waste barrel detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710178364.2A CN106843292B (en) | 2017-03-23 | 2017-03-23 | Motion control method and system of radioactive solid waste barrel detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106843292A true CN106843292A (en) | 2017-06-13 |
CN106843292B CN106843292B (en) | 2019-12-27 |
Family
ID=59129590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710178364.2A Active CN106843292B (en) | 2017-03-23 | 2017-03-23 | Motion control method and system of radioactive solid waste barrel detection device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106843292B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107942365A (en) * | 2017-11-02 | 2018-04-20 | 中广核工程有限公司 | A kind of radioactive measuring method of nuclear power station pail for used dressings and measuring device |
CN110570969A (en) * | 2018-06-28 | 2019-12-13 | 中核四川环保工程有限责任公司 | overpressure treatment method for radioactive incineration ash |
CN110703307A (en) * | 2019-10-17 | 2020-01-17 | 四川轻化工大学 | Nuclear waste packaging body dual-mode synchronous scanning detection device and detection method |
CN111924449A (en) * | 2020-06-05 | 2020-11-13 | 成都理工大学 | Nuclear waste package scanning detection device |
CN112034504A (en) * | 2020-07-30 | 2020-12-04 | 武汉雅洛诗商贸有限公司 | Atmospheric radioactive scene radiation level detection station |
CN113759769A (en) * | 2021-08-09 | 2021-12-07 | 中国核电工程有限公司 | Control system and method for nondestructive detector of high-level waste barrel |
CN114119398A (en) * | 2021-11-17 | 2022-03-01 | 四川轻化工大学 | Reconstruction method of sector NaI (Tl) detector array TGS transmission image |
CN115728804A (en) * | 2022-11-21 | 2023-03-03 | 中国兵器装备集团自动化研究所有限公司 | A waste bucket dose rate detection device |
CN118169733A (en) * | 2024-05-11 | 2024-06-11 | 山西中辐核仪器有限责任公司 | Sample sampling platform applied to detection of radioactive waste barrels |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135625A (en) * | 2010-12-21 | 2011-07-27 | 上海交通大学 | Dual-detector segmenting gamma-scanning measuring device and scanning method thereof |
CN102253401A (en) * | 2011-04-28 | 2011-11-23 | 上海交通大学 | Mechanical device used for scanning measurement of chromatographic Gamma |
CN103245681A (en) * | 2013-05-10 | 2013-08-14 | 中国原子能科学研究院 | Neutron gamma combined measuring equipment |
CN104714245A (en) * | 2015-02-09 | 2015-06-17 | 上海交通大学 | Semi-tomographic gamma scanning method for the measurement of low and medium radioactive waste barrels |
FR3019999A1 (en) * | 2014-04-17 | 2015-10-23 | Toshiba Kk | |
CN106251273A (en) * | 2016-08-16 | 2016-12-21 | 四川理工学院 | The KXG of a kind of radioactive solid waste and method |
-
2017
- 2017-03-23 CN CN201710178364.2A patent/CN106843292B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135625A (en) * | 2010-12-21 | 2011-07-27 | 上海交通大学 | Dual-detector segmenting gamma-scanning measuring device and scanning method thereof |
CN102253401A (en) * | 2011-04-28 | 2011-11-23 | 上海交通大学 | Mechanical device used for scanning measurement of chromatographic Gamma |
CN103245681A (en) * | 2013-05-10 | 2013-08-14 | 中国原子能科学研究院 | Neutron gamma combined measuring equipment |
FR3019999A1 (en) * | 2014-04-17 | 2015-10-23 | Toshiba Kk | |
CN104714245A (en) * | 2015-02-09 | 2015-06-17 | 上海交通大学 | Semi-tomographic gamma scanning method for the measurement of low and medium radioactive waste barrels |
CN106251273A (en) * | 2016-08-16 | 2016-12-21 | 四川理工学院 | The KXG of a kind of radioactive solid waste and method |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107942365A (en) * | 2017-11-02 | 2018-04-20 | 中广核工程有限公司 | A kind of radioactive measuring method of nuclear power station pail for used dressings and measuring device |
CN107942365B (en) * | 2017-11-02 | 2020-05-15 | 深圳中广核工程设计有限公司 | Method and device for measuring radioactivity of waste barrel of nuclear power station |
CN110570969A (en) * | 2018-06-28 | 2019-12-13 | 中核四川环保工程有限责任公司 | overpressure treatment method for radioactive incineration ash |
CN110703307A (en) * | 2019-10-17 | 2020-01-17 | 四川轻化工大学 | Nuclear waste packaging body dual-mode synchronous scanning detection device and detection method |
CN111924449A (en) * | 2020-06-05 | 2020-11-13 | 成都理工大学 | Nuclear waste package scanning detection device |
CN111924449B (en) * | 2020-06-05 | 2022-03-29 | 成都理工大学 | Nuclear waste packaging body scanning detection device |
CN112034504A (en) * | 2020-07-30 | 2020-12-04 | 武汉雅洛诗商贸有限公司 | Atmospheric radioactive scene radiation level detection station |
CN113759769A (en) * | 2021-08-09 | 2021-12-07 | 中国核电工程有限公司 | Control system and method for nondestructive detector of high-level waste barrel |
CN114119398A (en) * | 2021-11-17 | 2022-03-01 | 四川轻化工大学 | Reconstruction method of sector NaI (Tl) detector array TGS transmission image |
CN115728804A (en) * | 2022-11-21 | 2023-03-03 | 中国兵器装备集团自动化研究所有限公司 | A waste bucket dose rate detection device |
CN118169733A (en) * | 2024-05-11 | 2024-06-11 | 山西中辐核仪器有限责任公司 | Sample sampling platform applied to detection of radioactive waste barrels |
CN118169733B (en) * | 2024-05-11 | 2024-07-09 | 山西中辐核仪器有限责任公司 | Sample sampling platform applied to detection of radioactive waste barrels |
Also Published As
Publication number | Publication date |
---|---|
CN106843292B (en) | 2019-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106843292B (en) | Motion control method and system of radioactive solid waste barrel detection device | |
CN107942365B (en) | Method and device for measuring radioactivity of waste barrel of nuclear power station | |
CN106460372B (en) | The method and system of actual loading weight for excavating equipment of digging up mine | |
CN105277963B (en) | Three dimensions gamma ray radiator positioning searching apparatus and method | |
CN104714245A (en) | Semi-tomographic gamma scanning method for the measurement of low and medium radioactive waste barrels | |
CN111801571A (en) | Method and apparatus for multi-element analysis based on neutron activation, and uses | |
BR112020007591A2 (en) | method to automatically measure the linear dimensions of manufactured objects, and, installation to automatically measure the linear dimensions of a region | |
CN104603603B (en) | Radiation imaging device capable of acquiring matter-element information and image-based selection | |
CN112558135A (en) | Detection system and method for radioactive characteristics of nuclear facility waste package | |
Reiter et al. | SimCT: a simulation tool for X-ray imaging | |
WO2020067115A1 (en) | Nondestructive inspecting system, and nondestructive inspecting method | |
EP3129748B1 (en) | Method for automated pipe measurement and alignment | |
CN111812136B (en) | TBM-mounted mineral composition detection method, advanced geological prediction method and system | |
CN109540938A (en) | A kind of device and method for the measurement of bundle of steam generator area cross section quality | |
CN110161490A (en) | Range Measurement System with layout systematic function | |
CN103185891B (en) | The accurate metering facility of accelerator bundle of rays | |
CN107270831B (en) | Dead zone stereo profile high-precision scanning detection method and device in a kind of hole | |
CN205139378U (en) | Three dimensions gamma radiation source location search device | |
McDougall et al. | Probabilistic-based robotic radiation mapping using sparse data | |
JP2017150977A (en) | Measurement device | |
Wang et al. | High-efficiency Monte Carlo simulation based on CADIS method for Gamma Density Measurement | |
KR100948461B1 (en) | 3D imaging method and apparatus of object composition | |
Choi et al. | Use of the BINP HLS to measure vertical changes in the locations of the building and ground at the PAL-XFEL | |
CN109827606A (en) | A rotating platform for calibrating multi-space channel pinhole imaging detection equipment | |
CN110456407A (en) | A kind of middle low-level waste storage integrated measuring system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |