CN106840975B - Device and method for monitoring undercurrent exchange flux - Google Patents
Device and method for monitoring undercurrent exchange flux Download PDFInfo
- Publication number
- CN106840975B CN106840975B CN201710138659.7A CN201710138659A CN106840975B CN 106840975 B CN106840975 B CN 106840975B CN 201710138659 A CN201710138659 A CN 201710138659A CN 106840975 B CN106840975 B CN 106840975B
- Authority
- CN
- China
- Prior art keywords
- water
- temperature
- water tank
- valve
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域technical field
本发明属于水利工程试验设备技术领域,涉及一种监测潜流交换通量的装置,本发明还涉及采用上述装置监测潜流交换通量的方法。The invention belongs to the technical field of hydraulic engineering test equipment, and relates to a device for monitoring subsurface exchange flux, and also relates to a method for monitoring subsurface exchange flux by using the device.
背景技术Background technique
潜流带是河流河床内水分饱和的沉积物层,是河水与地下水相互作用的区域,存在上覆水体与地下水之间物质和能量的交换与过渡,是河流生态系统的重要组成部分。水作为热量的优良载体,在水流动过程中会携带能量变化的信息,观测河流,湖泊、湿地、河渠底部温度场的时空分布,能够确定地下水与地表水体的交换过程。The hyporheic zone is a water-saturated sediment layer in the river bed. It is an area where river water and groundwater interact. There is an exchange and transition of material and energy between the overlying water body and groundwater. It is an important part of the river ecosystem. As an excellent carrier of heat, water will carry information on energy changes during the flow of water. Observing the temporal and spatial distribution of the temperature field at the bottom of rivers, lakes, wetlands, and canals can determine the exchange process between groundwater and surface water.
目前,研究河床潜流交换过程模式的方法大多采用室内试验去实现。查阅国内外文献,以往水槽装置多用于溶质示踪、地表水水动力变化、河床形态改变和沉积物渗透性改变等因素,研究河床的潜流交换过程模式。然而,试验过程中沉积物存在各项异性,溶质分布存在非均一性,准确测量其浓度,难度大、误差大,不能准确地模拟地表水与地下水潜流交换的瞬态过程。At present, most of the methods for studying the process mode of subsurface flow exchange in the river bed are realized by laboratory experiments. According to domestic and foreign literature, in the past, the flume device was mostly used for solute tracing, surface water hydrodynamic changes, changes in river bed morphology and sediment permeability changes, etc., to study the subsurface exchange process model of the river bed. However, the anisotropy of the sediment and the heterogeneity of the solute distribution in the test process make it difficult to measure its concentration accurately and the error is large, and it cannot accurately simulate the transient process of the subsurface flow exchange between surface water and groundwater.
发明内容Contents of the invention
本发明的目的是提供一种监测潜流交换通量的装置,解决了现有技术中存在的不能控制水槽地表水加热与冷却来研究潜流交换的瞬态过程问题。The purpose of the present invention is to provide a device for monitoring the flux of subsurface exchange, which solves the problem in the prior art that the heating and cooling of the surface water in the tank cannot be controlled to study the transient process of subsurface exchange.
本发明的另一个目的是提供一种监测潜流交换通量的方法。Another object of the present invention is to provide a method of monitoring subsurface exchange flux.
本发明所采用的技术方案是,一种监测潜流交换通量的装置,包括水槽,沿水槽内壁竖直设置有两个相互平行的挡砂板,挡砂板将水槽分为上游水箱、地表水箱、下游水箱,两个挡砂板之间的区域为地表水箱,地表水箱的内部从上之下依次分为过水层、沉积物层,上游水箱底部通过管道连通有水泵,水泵通过管道连接有出口三通,出口三通通过管道分别连通有管道加热装置和管道冷却装置,管道加热装置和管道冷却装置通过管道共同连通有进口三通,进口三通通过管道与下游水箱底部连通,进口三通还连接有供水管道,供水管道连通有供水箱,位于沉积物层的内侧壁设置有温度传感器阵列,温度传感器通过导线连接有温度记录仪,进口三通与下游水箱之间的管道上设有自循环阀门,供水管道上设置有供水阀门。The technical solution adopted in the present invention is a device for monitoring the exchange flux of subsurface flow, which includes a water tank, and two mutually parallel sand baffles are arranged vertically along the inner wall of the water tank, and the sand baffles divide the water tank into an upstream water tank and a surface water tank. , the downstream water tank, the area between the two sand baffles is the surface water tank, the interior of the surface water tank is divided into a water layer and a sediment layer from top to bottom, and the bottom of the upstream water tank is connected to a water pump through a pipeline, and the water pump is connected to a water tank through a pipeline. The outlet tee, the outlet tee is respectively connected with the pipeline heating device and the pipeline cooling device through the pipeline, the pipeline heating device and the pipeline cooling device are connected through the pipeline together with the inlet tee, the inlet tee is connected with the bottom of the downstream water tank through the pipeline, and the inlet tee It is also connected with a water supply pipeline, and the water supply pipeline is connected with a water supply tank. A temperature sensor array is arranged on the inner wall of the sediment layer, and the temperature sensor is connected to a temperature recorder through a wire. The circulation valve is provided with a water supply valve on the water supply pipeline.
管道冷却装置包括冷却水箱,出口三通通过管道连通冷却水箱,冷却水箱通过管道共同连通有进口三通,冷却水箱还连通有冷却循环水进水管和冷却循环水回水管,冷却循环水进水管连接有循环水抽水泵,冷却循环水抽水泵接通供水箱,冷却循环水回水管连接有冷却循环水回水泵,冷却循环水回水泵接通供水箱,冷却循环水回水管上设置有回水阀门,上游水箱与过水层之间设有消能孔板,消能孔板上均匀开设有多个孔,消能孔板固定在挡砂板上,下游水箱与过水层之间设置有尾门装置,尾门装置固定在挡砂板上,下游水箱内设置有水位调节板。The pipeline cooling device includes a cooling water tank, the outlet tee is connected to the cooling water tank through the pipeline, the cooling water tank is connected to the inlet tee through the pipeline, the cooling water tank is also connected to the cooling circulating water inlet pipe and the cooling circulating water return pipe, and the cooling circulating water inlet pipe is connected to There is a circulating water pump, the cooling circulating water pump is connected to the water supply tank, the cooling circulating water return pipe is connected to the cooling circulating water return pump, the cooling circulating water return pump is connected to the water supply tank, and the cooling circulating water return pipe is provided with a return valve , between the upstream water tank and the water-passing layer, there is an energy-dissipating orifice plate, and a plurality of holes are evenly opened on the energy-dissipating orifice plate, and the energy-dissipating orifice plate is fixed on the sand baffle, and a tailgate is arranged between the downstream water tank and the water-passing layer. The door device and the tailgate device are fixed on the sand baffle, and a water level regulating plate is arranged in the downstream water tank.
上游水箱与水泵之间的管道与进口三通与下游水箱之间的管道均设置为塑料伸缩软管,上游水箱与水泵之间的管道上设有电磁流量计,出口三通与管道加热装置之间的管道上设置有第一阀门,和出口三通与冷却水箱之间的管道上设置有第二阀门,管道加热装置与进口三通之间的管道上设置有第三阀门,冷却水箱与进口三通之间的管道上设置有第四阀门。The pipeline between the upstream water tank and the water pump and the pipeline between the inlet tee and the downstream water tank are all set as plastic flexible hoses, the pipeline between the upstream water tank and the water pump is equipped with an electromagnetic flowmeter, and the outlet tee and the pipeline heating device A first valve is set on the pipeline between the outlet tee and the cooling water tank, a second valve is set on the pipeline between the outlet tee and the cooling water tank, a third valve is set on the pipeline between the pipeline heating device and the inlet tee, the cooling water tank and the inlet The pipeline between the tees is provided with a fourth valve.
下游水箱底部还连接有回水管,回水管另一端接通供水箱,回水管上设置有常闭阀门。The bottom of the downstream water tank is also connected with a return pipe, the other end of the return pipe is connected to the water supply tank, and the return pipe is provided with a normally closed valve.
地表水箱设置为长方体,两个挡砂板沿地表水箱的长度方向依次布置,温度传感器在地表水箱的长度方向中间5m处等间距分布,温度传感器沿地表水箱深度方向在沉积物层下10、20、30、50cm位置依次布置。The surface water tank is set as a cuboid. Two sand baffles are arranged sequentially along the length direction of the surface water tank. The temperature sensors are distributed at equal intervals at 5m in the middle of the length direction of the surface water tank. The temperature sensors are placed 10 and 20 meters below the sediment layer along the depth direction of the surface water tank , 30, and 50cm positions are arranged in sequence.
上游水箱和下游水箱中均设置有温度监测装置。Both the upstream water tank and the downstream water tank are provided with temperature monitoring devices.
水槽底部设置有液压支撑杆和可旋转支撑杆,水槽外侧壁上固定安装有记录仪放置板,温度记录仪固定在记录仪放置板上。A hydraulic support rod and a rotatable support rod are arranged at the bottom of the water tank, a recorder placement board is fixedly installed on the outer wall of the water tank, and the temperature recorder is fixed on the recorder placement board.
管道加热装置包括温度控制器和温度加热棒。The pipeline heating device includes a temperature controller and a temperature heating rod.
本发明的另一个技术方案是,一种监测潜流交换通量的方法,采用一种监测潜流交换通量的装置,具体按照以下步骤实施:Another technical solution of the present invention is a method for monitoring subsurface exchange flux, which adopts a device for monitoring subsurface exchange flux, and is specifically implemented according to the following steps:
步骤1,向地表水箱中加入沉积物,然后关闭自循环阀门,打开供水阀门,打开水泵,由供水箱向水槽中供水至地表水箱中的地表水水位恒定;
步骤2,关闭供水阀门,打开自循环阀门,改变水泵开度待流量达到实验要求,使地表水水位稳定;
步骤3,调节地表水温度,并保存水温变化过程中温度记录仪记录的温度数据以及时间数据;
步骤3.1,开启管道加热装置将地表水加热至试验要求最高温度,待地表水加热至试验要求最高温度后,关闭管道加热装置;Step 3.1, turn on the pipeline heating device to heat the surface water to the highest temperature required by the test, and turn off the pipeline heating device after the surface water is heated to the highest temperature required by the test;
步骤3.2,打开管道冷却装置,将地表水降温至实验要求的最低温度,待地表水冷却至试验要求最低温度后,关闭管道冷却装置;Step 3.2, open the pipeline cooling device, cool down the surface water to the minimum temperature required by the experiment, and close the pipeline cooling device after the surface water is cooled to the minimum temperature required by the experiment;
步骤3.3,保存水温变化过程中温度记录仪记录的温度数据以及时间数据。Step 3.3, save the temperature data and time data recorded by the temperature recorder during the water temperature change process.
步骤4,根据温度记录仪记录的温度数据、时间数据计算地表水箱的潜流交换量,单位面积潜流交换量计算公式为:
其中:κe为有效热扩散系数m2/s,C为沉积物的比热容J/m3/℃,Cw为水的比热容J/m3/℃,Ar为不同深度的2个温度传感器温度振幅比,Where: κ e is the effective thermal diffusivity m 2 /s, C is the specific heat capacity of sediment J/m 3 /℃, C w is the specific heat capacity of water J/m 3 /℃, Ar is the temperature of two temperature sensors at different depths amplitude ratio,
v为河床入渗率;P为温度变化的周期,Δz为不同深度的两个测量点之间的直线距离。v is the infiltration rate of the river bed; P is the period of temperature change, and Δz is the linear distance between two measurement points at different depths.
本发明的特点还在于,The present invention is also characterized in that,
步骤1具体按照以下步骤实施:
步骤1.1,向地表水箱中加入沉积物,关闭自循环阀门,打开供水阀门,打开水泵,打开第一阀门,打开第三阀门,由供水箱向水槽的沉积物层中加入清水,使沉积物层达到饱和状态,即水面恰好淹没沉积物层表面,且小时内水面无下降;Step 1.1, add sediment to the surface water tank, close the self-circulation valve, open the water supply valve, turn on the water pump, open the first valve, open the third valve, add clear water to the sediment layer of the water tank from the water supply tank to make the sediment layer Saturation is reached, that is, the water level just submerges the surface of the sediment layer, and the water level does not drop within hours;
步骤1.2,调整水位调节板的角度使过水层的水深达到实验要求水位;Step 1.2, adjust the angle of the water level regulating plate so that the water depth of the water layer reaches the water level required by the experiment;
步骤3.1具体按照以下步骤实施:Step 3.1 is specifically implemented according to the following steps:
步骤3.1.1,开启管道加热装置,并在温度控制器上设置试验要求最高温度,恒温加热;Step 3.1.1, turn on the pipeline heating device, set the maximum temperature required for the test on the temperature controller, and heat at a constant temperature;
步骤3.1.2,观察温度监测装置,待地表水加热至试验要求最高温度后,关闭管道加热装置,关闭第一阀门,关闭第三阀门;Step 3.1.2, observe the temperature monitoring device, after the surface water is heated to the highest temperature required by the test, turn off the pipeline heating device, close the first valve, and close the third valve;
步骤3.2具体按照以下步骤实施:Step 3.2 is specifically implemented according to the following steps:
步骤3.2具体按照以下步骤实施:Step 3.2 is specifically implemented according to the following steps:
步骤3.2.1,打开第二阀门和第四阀门,使水流入冷却水箱;Step 3.2.1, open the second valve and the fourth valve to allow water to flow into the cooling water tank;
步骤3.2.1,待冷却水箱满后,打开冷却循环抽水泵,打开冷却循环水出水阀门;Step 3.2.1, after the cooling water tank is full, turn on the cooling circulating water pump and open the cooling circulating water outlet valve;
步骤3.2.2,打开冷却循环水回水泵;Step 3.2.2, turn on the cooling circulating water return pump;
步骤3.2.3,观察温度监测装置,当温度降至试验要求最低温度时,关闭冷却循环抽水;Step 3.2.3, observe the temperature monitoring device, when the temperature drops to the minimum temperature required by the test, turn off the cooling cycle to pump water;
步骤3.2.4,当冷却水箱中的水抽完,关闭冷却循环回水泵,此时,为一个循环周期。Step 3.2.4, when the water in the cooling water tank is exhausted, turn off the cooling circulation return water pump, at this time, it is a cycle.
本发明的有益效果是:本发明的一种监测潜流交换通量的装置,通过设置上下游水箱之间的自循环水系统,可模拟地表水与地下水潜流交换自循环,在温度控制准确地情况下完成了地表水与地下水耦合试验;通过布置在地表水箱边壁内侧的温度传感器测定不同位置的温度,从而可以利用温度示踪法研究地下水对潜流交换的影响。通过温度时序曲线定性分析方法,间接测定指定位置的孔隙水温度,进而得到潜流交换通量。The beneficial effects of the present invention are: a device for monitoring the exchange flux of the subsurface flow of the present invention can simulate the self-circulation of the subsurface flow exchange between the surface water and the underground water by setting the self-circulating water system between the upstream and downstream water tanks, and in the case of accurate temperature control The coupling test of surface water and groundwater is completed; the temperature at different positions is measured by the temperature sensor arranged inside the side wall of the surface water tank, so that the influence of groundwater on subsurface flow exchange can be studied by using the temperature tracer method. Through the qualitative analysis method of the temperature time series curve, the pore water temperature at the designated location is indirectly measured, and then the subsurface exchange flux is obtained.
附图说明Description of drawings
图1是本发明的一种监测潜流交换通量的装置的结构示意图;Fig. 1 is a structural representation of a device for monitoring subsurface exchange flux of the present invention;
图2是图1的俯视图;Fig. 2 is the top view of Fig. 1;
图3是图1的仰视图;Fig. 3 is the bottom view of Fig. 1;
图4是本发明的一种监测潜流交换通量的装置的温度传感器与温度记录仪连接关系示意图;Fig. 4 is a schematic diagram of the connection relationship between a temperature sensor and a temperature recorder of a device for monitoring subsurface exchange flux of the present invention;
图5是本发明的一种监测潜流交换通量的装置的管道冷却装置的结构示意图;Fig. 5 is a structural schematic diagram of a pipeline cooling device of a device for monitoring subsurface exchange flux of the present invention;
图6是本发明的一种监测潜流交换通量的装置的消能孔板与挡砂板安装关系示意图;Fig. 6 is a schematic diagram of the installation relationship between the energy dissipation orifice and the sand retaining plate of a device for monitoring subsurface exchange flux of the present invention;
图7是本发明的一种监测潜流交换通量的装置的局部管道连接示意图;Fig. 7 is a partial pipeline connection schematic diagram of a device for monitoring subsurface exchange flux of the present invention;
图8是本发明的一种监测潜流交换通量的装置的管道加热装置的结构示意图。Fig. 8 is a structural schematic diagram of a pipeline heating device of a device for monitoring subsurface exchange flux according to the present invention.
图中,1.水槽,2.过水层,3.沉积物层,4.上游水箱,5.下游水箱,6.消能孔板,7.尾门装置,8.水位调节板,9.第一阀门,10.温度监测装置,11.第二阀门,12.电磁流量计,13.水泵,14.出口三通,15.管道加热装置,16.管道冷却装置,17.进口三通,18.自循环阀门,19.冷却循环水进水管,20.冷却循环水回水管,21.冷却循环水抽水泵,22.回水阀门,23.冷却循环水回水泵,24.供水箱,25.供水管道,26.供水阀门,27.温度传感器,28.液压支撑杆,29.可旋转支撑杆,30.回水管,31.温度控制器,32.温度加热棒,33.温度记录仪,34.挡砂板,35.记录仪放置板,36.地表水箱,37.第三阀门,38.第四阀门,39.冷却水箱。In the figure, 1. Water tank, 2. Water-passing layer, 3. Sediment layer, 4. Upstream water tank, 5. Downstream water tank, 6. Energy dissipation orifice, 7. Tailgate device, 8. Water level regulating plate, 9. First valve, 10. Temperature monitoring device, 11. Second valve, 12. Electromagnetic flowmeter, 13. Water pump, 14. Outlet tee, 15. Pipeline heating device, 16. Pipeline cooling device, 17. Inlet tee, 18. Self-circulation valve, 19. Cooling circulating water inlet pipe, 20. Cooling circulating water return pipe, 21. Cooling circulating water pump, 22. Return water valve, 23. Cooling circulating water return pump, 24. Water supply tank, 25 .Water supply pipe, 26. Water supply valve, 27. Temperature sensor, 28. Hydraulic support rod, 29. Rotatable support rod, 30. Return water pipe, 31. Temperature controller, 32. Temperature heating rod, 33. Temperature recorder, 34. Sand retaining plate, 35. Recorder placement plate, 36. Surface water tank, 37. The third valve, 38. The fourth valve, 39. Cooling water tank.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明的一种监测潜流交换通量的装置,如图1-图3所示,包括水槽1,沿水槽1内壁竖直设置有两个相互平行的挡砂板34,挡砂板34将水槽1分为上游水箱4、地表水箱36、下游水箱5,两个挡砂板34之间的区域为地表水箱36,地表水箱36的内部从上之下依次分为过水层2、沉积物层3,上游水箱4底部通过管道连通有水泵13,水泵13通过管道连接有出口三通14,出口三通14通过管道分别连通有管道加热装置15和管道冷却装置16,管道加热装置15和管道冷却装置16通过管道共同连通有进口三通17,进口三通17通过管道与下游水箱5底部连通,进口三通17还连接有供水管道25,供水管道25连通有供水箱24,位于沉积物层3的内侧壁设置有温度传感器27 阵列,如图4所示,温度传感器27通过导线连接有温度记录仪33,进口三通17与下游水箱5之间的管道上设有自循环阀门18,供水管道25上设置有供水阀门26。A device for monitoring undercurrent exchange flux according to the present invention, as shown in Fig. 1-Fig. 1 is divided into
如图5所示,管道冷却装置16包括冷却水箱39,出口三通14通过管道连通冷却水箱39,冷却水箱39通过管道共同连通有进口三通17,冷却水箱39还连通有冷却循环水进水管19和冷却循环水回水管20,冷却循环水进水管19连接有循环水抽水泵21,冷却循环水抽水泵21接通供水箱24,冷却循环水回水管20连接有冷却循环水回水泵23,冷却循环水回水泵23接通供水箱24,冷却循环水回水管20上设置有回水阀门22,如图6所示,上游水箱4与过水层2之间设有消能孔板6,消能孔板6上均匀开设有多个孔,消能孔板6固定在挡砂板34上,下游水箱5与过水层2之间设置有尾门装置7,尾门装置7固定在挡砂板34上,下游水箱5内设置有水位调节板8。As shown in Figure 5, the pipeline cooling device 16 includes a cooling water tank 39, the outlet tee 14 is connected to the cooling water tank 39 through the pipeline, the cooling water tank 39 is connected to the inlet tee 17 through the pipeline, and the cooling water tank 39 is also connected to the cooling water inlet pipe 19 and the cooling circulating water return pipe 20, the cooling circulating water inlet pipe 19 is connected with a circulating water pump 21, the cooling circulating water pump 21 is connected to the water supply tank 24, and the cooling circulating water return pipe 20 is connected with a cooling circulating water return pump 23, The cooling circulating water return pump 23 is connected to the water supply tank 24, the cooling circulating water return pipe 20 is provided with a return valve 22, as shown in Figure 6, an energy dissipation orifice 6 is provided between the upstream water tank 4 and the water passing layer 2, A plurality of holes are evenly opened on the energy dissipation orifice plate 6, and the energy dissipation orifice plate 6 is fixed on the sand retaining plate 34, and a tailgate device 7 is arranged between the downstream water tank 5 and the water passing layer 2, and the tailgate device 7 is fixed on the barrier On the sand board 34 , a water level regulating plate 8 is arranged in the downstream water tank 5 .
如图7所示,上游水箱4与水泵13之间的管道与进口三通17与下游水箱5之间的管道均设置为塑料伸缩软管,上游水箱4与水泵13之间的管道上设有电磁流量计12,出口三通14与管道加热装置15之间的管道上设置有第一阀门9,和出口三通14与冷却水箱39之间的管道上设置有第二阀门11,管道加热装置15与进口三通17之间的管道上设置有第三阀门37,冷却水箱39与进口三通17之间的管道上设置有第四阀门38。As shown in Figure 7, the pipeline between the
下游水箱5底部还连接有回水管30,回水管30另一端接通供水箱24,回水管30上设置有常闭阀门。The bottom of the
地表水箱36设置为长方体,两个挡砂板34沿地表水箱36的长度方向依次布置,温度传感器27在地表水箱36的长度方向中间5m处等间距分布,温度传感器27沿地表水箱36深度方向在沉积物层3下10、20、30、50cm 位置依次布置。The
上游水箱4和下游水箱5中均设置有温度监测装置10。Both the
水槽1底部设置有液压支撑杆28和可旋转支撑杆29,水槽1外侧壁上固定安装有记录仪放置板35,温度记录仪31固定在记录仪放置板35上。The bottom of the
如图8所示,管道加热装置15包括温度控制器31和温度加热棒32。As shown in FIG. 8 , the
本发明一种监测潜流交换通量的装置的工作原理为:工作时,向地表水箱36中加入沉积物,然后关闭自循环阀门18,打开供水阀门26,打开水泵13,打开第一阀门9,第三阀门37,向沉积物层3中加入清水,使沉积物层达到饱和状态,即水面恰好淹没沉积物层3表面,且1小时内水面无下降,并调整水位调节板8的角度使过水层2的水深达到实验要求水位;然后,关闭供水阀门25,打开自循环阀门18,改变水泵13开度待流量达到实验要求,使地表水水位稳定;再开启管道加热装置15并在温度控制器31上设置试验要求最高温度后,调节第二阀门11,第四阀门38,使水流入冷却水箱39,同时,打开冷却循环抽水泵21,待管道冷却水箱39中水满,打开冷却循环水出水阀门22和打开冷却循环水回水泵23,通过观察温度监测装置10,当温度降至试验要求最低温度时,关闭冷却循环抽水21,当冷却水箱39中的水抽完,关闭冷却循环回水泵23;然后观察并记录温度记录仪记录的温度数据、时间数据,根据温度记录仪记录的温度数据、时间数据计算地表水箱的潜流交换量。通过管道加热装置15以及管道冷却装置16使地表水箱36中的地表水温度成周期性变化,由布置在地表水箱36内侧壁的温度传感器27阵列测定指定位置的孔隙水的温度,再根据温度时序曲线定性分析方法,由不同深度温度传感器的温度曲线相位和振幅变化研究地表水和地下水的潜流交换通量。The working principle of a device for monitoring subsurface exchange flux of the present invention is as follows: when working, add sediment to the
本发明的一种监测潜流交换通量的装置通过设置管道加热装置15和管道冷却装置16,并将管道加热装置15与冷却装置16并联起来,管道加热装置15上设置温度控制器31,冷却装置16上连接冷却循环水进水管19和冷却循环水回水管20,冷却循环水进水管19连接有循环水抽水泵21,循环水抽水泵21接通供水箱24,冷却循环水回水管20连接有循环水回水泵23,循环水回水泵23接通供水箱24,冷却循环水回水管20上设置有回水阀门22,可以解决循环水加热与冷却问题,加热时:调节各个配合的阀门,使水通过管道加热装置15,水经过安装在管道上的管道加热装置,并通过温度控制器设定试验要求温度,从而达到加热的目的;制冷时:调节各个阀门出口三通,使循环水通过管道冷却装置16,此后打开冷却循环水抽水泵21,向管道冷却装置16中泵水,待管道冷却装置中充满水,打开回水阀门22,同时打开冷却循环水回水泵20,通过与管道冷却装置中的管道形成热传递,从而使得循环水的温度得以降低,再由安装在上下游水箱的温度监测装置来选择关闭冷却装置的时间。本发明的尾门装置7为帆板门叶片,固定在挡砂板上,调节水位调节板8的角度可调节过水层2的水深;本发明的温度加热装置15的直径0.5m,长1.5m,管道冷却装置的直径0.5m,长度1.5m,冷却循环水进水管19和冷却循环水回水管20直径为0.1m;温度传感器27为TMC50-HD型,温度记录仪33采用4通道UX120-006型,一个温度记录仪33了连接4个温度传感器27,电磁流量计12的量程0-60L/s用来监测地表水循环系统的流量,水泵13为地表水循环提供动力;供水箱24为整个系统提供用水;在试验结束时,或者实验过程中地表水箱中水位过高时,可以打开回水管30上设置的常闭阀门通过回水管30将水槽1中的水回收到供水箱中,从而形成整个系统的循环;地表水箱36的长度、宽度和高度可分别为7m、0.4m和1.2m,地表水箱36的高度设置为1.2m主要是考虑到要满足潜流交换,并且不撞到地表水箱36的下边界,而宽度的设置是消除过窄地表水箱引起的边壁回流的问题;上游水箱4和下游水箱5与地表水箱连接处均为防水连接;消能孔板6为50mm厚的有机玻璃板,均匀打有192个直径为20mm的孔,消能孔板6能够消能并引导水流稳定进入地表水箱;沉积物层3厚度设置为70cm;连接管道采用直径为150mm保温不锈钢管,管道冷却装置冷却循环水管采用直径为100mm的不锈钢管,供水管道25采用直径为150mm不锈钢钢管;供水箱采用长宽高分别为2m、1.4m和1.2m的塑料箱;上游水箱4与水泵13之间的管道与进口三通17与下游水箱5之间的管道为塑料伸缩软管主要是考虑变坡之后对管道的作用力,采用可伸缩管道可有效解决变坡问题;液压支撑杆28和可旋转支撑杆29可以对水槽的角度进行微调来模拟具有一定边坡情况,温度监测装置10为温度测量仪,可直接观察测量上下游水箱水的温度。A kind of device of monitoring undercurrent exchange flux of the present invention is by setting
本发明一种监测潜流交换通量的装置中,消能孔板6能够消能并引导上游水箱4中的水流稳定进入地表水箱36中,尾门装置7能够控制从地表水箱36中流入下游水箱5并对流量进行微调,水位调节板8可通过调节其角度来控制地表水箱36内的水位,上游水箱4与水泵13之间的管道与进口三通17与下游水箱5之间的管道为塑料伸缩软管的设置可有效地适应因变坡对管道产生作用力管道的影响,通过温度监测装置10对地表水箱36中的地表水的温度进行监测,电磁流量计12用于监测管道流量,水泵13为地表水循环提供动力,管道加热装置15对循环水进行加热,管道冷却装置16对循环水进行冷却,自循环阀门18用于控制循环管道内水的启闭,冷却循环水进水管19用于将供水箱的水输送到管道冷却装置中,冷却循环水抽水泵21 将供水箱中的水抽送到管道冷却装置中,回水阀门22用于控制管道冷却装置中的水进入供水箱,冷却循环水回水泵23用于将管道冷却装置中的水泵送到供水箱中,供水箱24为整个系统提供用水,温度传感器24用于测定指定位置的孔隙水温度,液压支撑杆28和可旋转支撑杆29起到变坡作用,同时作为水槽的支撑结构,回水管30用于试验结束后将水槽中的水回收至供水箱,温度控制器31用于控制管道加热器中温度加热棒的温度,温度加热棒32能将交变电流产生的热量传递给管道加热器中的循环水,温度记录仪33用于记录温度传感器测得的温度,挡砂板34用于阻挡沉积物,防止沉积物进入上下游水箱,记录仪放置板35用于固定放置温度记录仪27。In a device for monitoring subsurface exchange flux in the present invention, the
本发明的一种监测潜流交换通量的方法,采用一种监测潜流交换通量的装置,具体按照以下步骤实施:A method for monitoring subsurface exchange flux of the present invention adopts a device for monitoring subsurface exchange flux, and is specifically implemented according to the following steps:
步骤1,向地表水箱36中加入沉积物,然后关闭自循环阀门18,打开供水阀门26,打开水泵13,由供水箱24向水槽1中供水至地表水箱36中的地表水水位恒定;
步骤2,关闭供水阀门26,打开自循环阀门18,改变水泵13开度待流量达到实验要求,使地表水水位稳定;
步骤3,调节地表水温度,并保存水温变化过程中温度记录仪记录33的温度数据以及时间数据;
步骤3.1,开启管道加热装置15将地表水加热至试验要求最高温度,待地表水加热至试验要求最高温度后,关闭管道加热装置15;Step 3.1, turn on the
步骤3.2,打开管道冷却装置16,将地表水降温至实验要求的最低温度,待地表水冷却至试验要求最低温度后,关闭管道冷却装置16;Step 3.2, open the
步骤3.3,保存水温变化过程中温度记录仪记录33的温度数据以及时间数据。Step 3.3, save the temperature data and time data recorded by the
步骤4,根据温度记录仪记录的温度数据、时间数据计算地表水箱的潜流交换量,单位面积潜流交换量计算公式为:
其中:κe为有效热扩散系数m2/s,C为沉积物的比热容J/m3/℃,Cw为水的比热容J/m3/℃,Ar为不同深度的2个温度传感器温度振幅比,Where: κ e is the effective thermal diffusivity m 2 /s, C is the specific heat capacity of sediment J/m 3 /℃, C w is the specific heat capacity of water J/m 3 /℃, Ar is the temperature of two temperature sensors at different depths amplitude ratio,
v为河床入渗率;P为温度变化的周期,Δz为不同深度的两个测量点之间的直线距离。v is the infiltration rate of the river bed; P is the period of temperature change, and Δz is the linear distance between two measurement points at different depths.
步骤1具体按照以下步骤实施:
步骤1.1,向地表水箱36中加入沉积物,关闭自循环阀门18,打开供水阀门26,打开水泵13,打开第一阀门9,打开第三阀门37,由供水箱24向水槽1的沉积物层3中加入清水,使沉积物层达到饱和状态,即水面恰好淹没沉积物层3表面,且1小时内水面无下降;Step 1.1, add sediment in
步骤1.2,调整水位调节板8的角度使过水层2的水深达到实验要求水位;Step 1.2, adjust the angle of the water
步骤3.1具体按照以下步骤实施:Step 3.1 is specifically implemented according to the following steps:
步骤3.1.1,开启管道加热装置15,并在温度控制器31上设置试验要求最高温度,恒温加热;Step 3.1.1, turn on the
步骤3.1.2,观察温度监测装置10,待地表水加热至试验要求最高温度后,关闭管道加热装置15,关闭第一阀门9,关闭第三阀门37;Step 3.1.2, observe the
步骤3.2具体按照以下步骤实施:Step 3.2 is specifically implemented according to the following steps:
步骤3.2具体按照以下步骤实施:Step 3.2 is specifically implemented according to the following steps:
步骤3.2.1,打开第二阀门11和第四阀门38,使水流入冷却水箱39;Step 3.2.1, open the
步骤3.2.1,待冷却水箱39满后,打开冷却循环抽水泵21,打开冷却循环水出水阀门22;Step 3.2.1, after the cooling
步骤3.2.2,打开冷却循环水回水泵23;Step 3.2.2, turn on the cooling circulating
步骤3.2.3,观察温度监测装置10,当温度降至试验要求最低温度时,关闭冷却循环抽水21;Step 3.2.3, observe the
步骤3.2.4,当冷却水箱39中的水抽完,关闭冷却循环回水泵23,此时,为一个循环周期。Step 3.2.4, when the water in the cooling
本发明的温度变化周期P是通过传感器测得温度,对其绘制出相应的温度变化曲线分析得到。The temperature change period P of the present invention is obtained by analyzing the temperature measured by a sensor and drawing a corresponding temperature change curve.
本发明在确定有效的热扩散系数κe时,对于同一组温度传感器所测数据,振幅和相位分别表示的水流速度应是一致,河床入渗速率关于振幅的方程为:When the present invention determines the effective thermal diffusivity κ e , for the data measured by the same group of temperature sensors, the water velocity represented by the amplitude and the phase should be consistent, and the equation of the river bed infiltration rate about the amplitude is:
河床入渗速率关于相位的方程为:The equation of riverbed infiltration rate with respect to phase is:
即就是:vAr=vΔΦ,此时便得到有效热扩散系数κe;That is: v Ar = v ΔΦ , then the effective thermal diffusivity κ e is obtained;
其中, in,
本发明在确定河床入渗率v时,对于同一组温度传感器所测数据,振幅和相位分别表示的水流速度应是一致,即就是:vAr=vΔΦ,此时,vAr=vΔΦ=v即为河床入渗率。When the present invention determines the infiltration rate v of the river bed, for the data measured by the same group of temperature sensors, the water flow velocity represented by the amplitude and phase should be consistent, that is: v Ar =v ΔΦ , at this time, v Ar =v ΔΦ = v is the infiltration rate of the riverbed.
实施例Example
假设室温为16℃即水的初始温度为16℃,实验要求升温到26℃,降温到16℃;Assuming that the room temperature is 16°C, that is, the initial temperature of the water is 16°C, the experiment requires heating to 26°C and cooling to 16°C;
步骤1,向地表水箱36中加入沉积物,然后关闭自循环阀门18,打开供水阀门26,打开水泵13,由供水箱24向水槽1中供水至地表水箱36中的地表水水位恒定,具体按照以下步骤实施:
步骤1.1,向地表水箱36中加入沉积物,关闭自循环阀门18,打开供水阀门26,打开水泵13,打开第一阀门9,打开第三阀门37,由供水箱24向水槽1的沉积物层3中加入清水,使沉积物层达到饱和状态,即水面恰好淹没沉积物层3表面,且1小时内水面无下降;Step 1.1, add sediment in
步骤1.2,调整水位调节板8的角度使过水层2的水深达到实验要求水位;Step 1.2, adjust the angle of the water
步骤2,关闭供水阀门26,打开自循环阀门18,改变水泵13开度待流量达到实验要求,使地表水水位稳定;
步骤3,调节地表水温度,并保存水温变化过程中温度记录仪记录33的温度数据以及时间数据;
步骤3.1,开启管道加热装置15将地表水加热至试验要求最高温度,待地表水加热26℃后,关闭管道加热装置15,具体按照以下步骤实施:Step 3.1: Turn on the
步骤3.1.1,开启管道加热装置15,并在温度控制器31上设置恒温26℃,恒温加热;Step 3.1.1, turn on the
步骤3.1.2,观察温度监测装置10,待地表水加热至26℃后,关闭管道加热装置15,关闭第一阀门9,关闭第三阀门37;Step 3.1.2, observe the
步骤3.2,打开管道冷却装置16,待地表水冷却至16℃后,关闭管道冷却装置16,具体按照以下步骤实施:Step 3.2, turn on the
步骤3.2.1,打开第二阀门11和第四阀门38,使水流入冷却水箱39;Step 3.2.1, open the
步骤3.2.1,待冷却水箱满后,打开冷却循环抽水泵21,待管道冷却装置16中水满,打开冷却循环水出水阀门22;Step 3.2.1, after the cooling water tank is full, turn on the
步骤3.2.2,打开冷却循环水回水泵23;Step 3.2.2, turn on the cooling circulating
步骤3.2.3,观察温度监测装置10,当温度降至16℃时,关闭冷却循环抽水21;Step 3.2.3, observe the
步骤3.2.4,当冷却水箱39中的水抽完,关闭冷却循环回水泵23,此时,为一个循环周期。Step 3.2.4, when the water in the cooling
步骤3.3,保存水温变化过程中温度记录仪记录33的温度数据以及时间数据。Step 3.3, save the temperature data and time data recorded by the
步骤4,根据温度记录仪记录的温度数据、时间数据计算地表水箱的潜流交换量,单位面积潜流交换量计算公式为:
其中:κe为有效热扩散系数m2/s,C为沉积物的比热容J/m3/℃,Cw为水的比热容J/m3/℃,Ar为不同深度的2个温度传感器温度振幅比,Where: κ e is the effective thermal diffusivity m 2 /s, C is the specific heat capacity of sediment J/m 3 /℃, C w is the specific heat capacity of water J/m 3 /℃, Ar is the temperature of two temperature sensors at different depths amplitude ratio,
v为河床入渗率;P为温度变化的周期,Δz为不同深度的两个测量点之间的直线距离。v is the infiltration rate of the river bed; P is the period of temperature change, and Δz is the linear distance between two measurement points at different depths.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710138659.7A CN106840975B (en) | 2017-03-09 | 2017-03-09 | Device and method for monitoring undercurrent exchange flux |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710138659.7A CN106840975B (en) | 2017-03-09 | 2017-03-09 | Device and method for monitoring undercurrent exchange flux |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106840975A CN106840975A (en) | 2017-06-13 |
CN106840975B true CN106840975B (en) | 2023-03-03 |
Family
ID=59145017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710138659.7A Active CN106840975B (en) | 2017-03-09 | 2017-03-09 | Device and method for monitoring undercurrent exchange flux |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106840975B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108982595A (en) * | 2018-05-03 | 2018-12-11 | 河海大学 | Simulate field high density pollution object undercurrent exchange in-situ test device and test method |
CN109632575B (en) * | 2018-11-01 | 2019-10-29 | 西安理工大学 | A kind of device and its monitoring method monitoring Riparian Zone undercurrent exchange rate |
CN109799324A (en) * | 2019-01-11 | 2019-05-24 | 河海大学 | A kind of lateral undercurrent exchange measuring device in river and its measurement method |
CN110095384A (en) * | 2019-04-11 | 2019-08-06 | 西安理工大学 | A kind of indoor set and monitoring method monitoring undercurrent Flux |
CN112484959B (en) * | 2020-10-30 | 2021-11-23 | 中国地质大学(北京) | Subsurface flow exchange research experimental device capable of changing surface water and underground water replenishing and discharging relation |
CN112556985B (en) * | 2020-12-16 | 2021-10-08 | 同济大学 | Adjustable length of riparian lateral undercurrent exchange simulation device and test method |
CN112816177B (en) * | 2020-12-30 | 2021-12-07 | 同济大学 | Riparian zone lateral undercurrent exchange process simulation method based on dye tracing |
CN114112300B (en) * | 2021-11-22 | 2022-10-25 | 同济大学 | A simulation device and test method for lateral undercurrent exchange of tidal river banks and beaches |
CN115931644B (en) * | 2022-11-25 | 2023-09-15 | 河海大学 | A method and device for measuring subsurface exchange flux |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5863433A (en) * | 1996-12-02 | 1999-01-26 | Tennessee Valley Authority United States Corp. | Reciprocating subsurface-flow constructed wetlands for improving wastewater treatment |
KR101366057B1 (en) * | 2012-10-26 | 2014-02-26 | 한국지질자원연구원 | Permeameter for in-situ measurements of saturated hydraulic conductivity |
CN104697742B (en) * | 2015-03-31 | 2017-05-03 | 河海大学 | Simulation test model device for studying hyporheic exchange under drive of flood pulse and using method thereof |
CN106153293B (en) * | 2016-06-22 | 2019-04-09 | 长安大学 | A kind of measurement device and measurement method of subsurface flux based on temperature tracer |
-
2017
- 2017-03-09 CN CN201710138659.7A patent/CN106840975B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106840975A (en) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106840975B (en) | Device and method for monitoring undercurrent exchange flux | |
CN106017965B (en) | A kind of U-shaped ground heat exchanger heat-moisture transmission performance simulating test device and test method | |
Zhang et al. | The coupling effect of ventilation and groundwater flow on the thermal performance of tunnel lining GHEs | |
CN202442821U (en) | Soil source heat pump buried pipe heat exchanging and soil thermal property testing apparatus | |
CN106644385A (en) | Surface water and underground water undercurrent exchange self-loop test device and usage method thereof | |
CN108286237B (en) | A physical model and experimental method for the influence of sediment-laden water flow on the water temperature structure of stratified reservoirs | |
CN106290107B (en) | The coarse intersection crack permeation flow tester of one kind and method | |
CN206235584U (en) | A kind of experimental system for verifying energy stake Calculation of Heat Transfer model under the conditions of seepage action of ground water | |
CN109520915B (en) | Low-pressure low-altitude difference natural circulation test device | |
CN106769779A (en) | A kind of device and method for calculating seepage action of ground water speed and direction | |
CN206573436U (en) | A kind of device for monitoring undercurrent Flux | |
CN205879561U (en) | Wet transmission performance simulating measurement setup of U type ground pipe laying heat exchanger heat | |
CN204694654U (en) | Combined type ground source heat pump rock soil thermal physical property and buried pipe heat exchange capacity tester | |
CN202854601U (en) | Water-through intelligent temperature control testing system | |
CN210323010U (en) | Experimental device for simulating the effect of groundwater seepage on sand freezing construction | |
CN102830730B (en) | System and method for intelligent water supply temperature control test | |
Wu et al. | Experimental study of seawater seepage and heat transfer in a laboratory vertical beach well | |
Witte | The GEOTHEX geothermal heat exchanger, characterisation of a novel high efficiency heat exchanger design | |
CN104280257A (en) | Heat exchange capability testing equipment of underground heat exchanger of ground source heat pump | |
CN103175732A (en) | Test bed for simulating thermal fatigue phenomenon of nuclear power station pipeline | |
CN206515039U (en) | A kind of undercurrent of coupling about surface water and ground water exchanges self-loopa experimental rig | |
CN105865746A (en) | Experiment device and method for detecting relationship between seepage and pressure/temperature | |
CN110095384A (en) | A kind of indoor set and monitoring method monitoring undercurrent Flux | |
CN113029894A (en) | Test bed for simulating three-dimensional heat seepage coupling transfer of soil body in karst area | |
CN110608977B (en) | Measuring method for lateral undercurrent exchange in indoor simulation natural river course evolution process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |