CN106837295A - Intelligent safe and efficient automatic drilling control system and control method - Google Patents
Intelligent safe and efficient automatic drilling control system and control method Download PDFInfo
- Publication number
- CN106837295A CN106837295A CN201710056408.4A CN201710056408A CN106837295A CN 106837295 A CN106837295 A CN 106837295A CN 201710056408 A CN201710056408 A CN 201710056408A CN 106837295 A CN106837295 A CN 106837295A
- Authority
- CN
- China
- Prior art keywords
- drilling
- drilling rig
- curve
- drill pipe
- control module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 474
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000001514 detection method Methods 0.000 claims abstract description 68
- 238000005457 optimization Methods 0.000 claims abstract description 4
- 239000003245 coal Substances 0.000 claims description 21
- 238000010276 construction Methods 0.000 claims description 19
- 230000007423 decrease Effects 0.000 claims description 12
- 230000000007 visual effect Effects 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000002893 slag Substances 0.000 claims description 4
- 239000003034 coal gas Substances 0.000 claims description 3
- 239000011435 rock Substances 0.000 claims description 3
- 238000011897 real-time detection Methods 0.000 abstract description 2
- 238000005086 pumping Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 208000001408 Carbon monoxide poisoning Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B45/00—Measuring the drilling time or rate of penetration
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/04—Measuring depth or liquid level
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Earth Drilling (AREA)
Abstract
智能化安全高效钻进自动控制系统及控制方法,包括钻机驱动参数检测模块、回转钻进参数检测模块、钻机控制模块、钻机泵站、钻机回转器、钻具。该系统能够自动检测钻进过程中的扭矩T、推力F1和提拔力F2,以及钻进深度L、钻杆回转速度ω和钻进速度ν,并将这些检测的关键参数自动传递给钻机控制模块并优化钻杆回转速度和钻进速度,并将优化结果传递给钻机泵站驱动钻机回转器实施钻进。本发明实现了对孔内钻具受力情况进行实时检测,基于孔内钻具受力变化情况,该系统能够及时自动调整钻具的回转速度ω和钻进速度ν,从而保证了钻具在孔内的处于最佳工况状态,减少了卡钻、断钻、钻孔瓦斯燃烧等孔内事故,有利于实现安全高效钻进。
An intelligent, safe and efficient drilling automatic control system and control method include a drilling rig drive parameter detection module, a rotary drilling parameter detection module, a drilling rig control module, a drilling rig pump station, a drilling rig gyrator, and a drilling tool. The system can automatically detect torque T, thrust F 1 and lifting force F 2 during drilling, as well as drilling depth L, drill pipe rotation speed ω and drilling speed ν, and automatically transmit these detected key parameters to the drilling rig The control module optimizes the rotary speed and drilling speed of the drill pipe, and transmits the optimization results to the drilling rig pump station to drive the drilling rig gyrator to implement drilling. The invention realizes the real-time detection of the force of the drilling tool in the hole. Based on the change of the force of the drilling tool in the hole, the system can automatically adjust the rotation speed ω and the drilling speed ν of the drilling tool in time, thereby ensuring that the drilling tool is The hole is in the best working condition, which reduces the accidents in the hole such as drill sticking, broken drill, drilling gas burning, etc., which is conducive to the realization of safe and efficient drilling.
Description
技术领域technical field
本发明属于钻探工程技术领域,具体涉及一种智能化安全高效钻进自动控制系统及控制方法。The invention belongs to the technical field of drilling engineering, and in particular relates to an intelligent, safe and efficient drilling automatic control system and a control method.
背景技术Background technique
煤层气(煤矿瓦斯)是赋存在煤层及煤系地层的烃类气体,是威胁煤矿安全生产、增加大气温室效应的有害气体,同时也是一种优质清洁能源。我国地面井预抽煤层瓦斯受地质条件、投资成本等因素限制,仅少数矿区适用,以井下瓦斯抽采为主地面井抽采为辅的上下联动抽采方式是我国瓦斯防治与利用的必然发展趋势。井下瓦斯抽采以钻孔施工技术最为关键,钻进深度和效率决定着瓦斯抽采的范围和进度,间接影响煤层的开采效率、安全生产及经济效益。目前,我国50%以上的煤矿赋存有松软高瓦斯煤层,松软高瓦斯煤层以Ⅲ类碎粒煤(煤坚固性系数f=0.25~0.5)和Ⅳ类糜棱煤(f<0.3)为主。钻进过程中,受地应力、瓦斯压力及钻杆扰动等因素影响,孔壁变形量大,局部易失稳塌孔,钻孔堵塞后,如未能及时发现和疏通,钻杆旋转阻力剧增,将会形成卡钻、断钻、钻孔一氧化碳中毒及钻孔瓦斯燃烧等孔内事故。Coalbed methane (coal mine gas) is a hydrocarbon gas that exists in coal seams and coal-measure formations. It is a harmful gas that threatens coal mine safety production and increases the greenhouse effect of the atmosphere. It is also a high-quality clean energy. my country's ground well pre-extraction of coal seam gas is limited by geological conditions, investment costs and other factors, and is only applicable to a few mining areas. The underground gas extraction method is the inevitable development of my country's gas prevention and utilization. trend. Drilling construction technology is the key to underground gas drainage. Drilling depth and efficiency determine the scope and progress of gas drainage, and indirectly affect the mining efficiency, safety production and economic benefits of coal seams. At present, more than 50% of the coal mines in my country have soft and high gassy coal seams, and the soft and high gassy coal seams are mainly Class III crushed coal (coal firmness coefficient f=0.25~0.5) and Class IV mylonitic coal (f<0.3) . During the drilling process, due to factors such as ground stress, gas pressure and drill pipe disturbance, the deformation of the hole wall is large, and the hole is easily unstable and collapsed locally. Increment will cause in-hole accidents such as drill stuck, broken drill, carbon monoxide poisoning in the drill hole, and gas burning in the drill hole.
当前,我国煤矿井下瓦斯抽采钻孔主要依靠常规液压钻机施工,常规液压钻机以人工操作为主,难以提前预判煤体深部发生钻孔严重收缩、塌孔、小型喷孔等动力现象,因此,难以应对孔内突发动力现象造成的卡钻、断钻等难题。河南很多矿区的煤层属于松软易塌孔煤层,如平煤八矿、义煤新安矿、焦煤古汉山矿等等,很多钻孔施工地段,一个工作日,一台钻机每天只能施工一个钻孔,且钻孔很难达到设计深度,施工效率极低,严重影响煤层瓦斯抽采的进度。针对现有技术难题,本发明提供一种智能化安全高效钻进自动控制系统及控制方法,实现了对孔内钻具受力情况进行实时检测,基于孔内钻具受力变化情况,该系统能够及时自动调整钻具的回转速度ω和钻进速度ν,从而保证了钻具在孔内的处于最佳工况状态,减少了卡钻、断钻、钻孔瓦斯燃烧等孔内事故,有利于保障钻进安全、提高钻进深度和钻进效率。At present, the underground gas drainage drilling in my country's coal mines mainly relies on conventional hydraulic drilling rigs. Conventional hydraulic drilling rigs are mainly operated manually, and it is difficult to predict in advance the dynamic phenomena such as severe shrinkage, hole collapse, and small injection holes in deep coal bodies. Therefore, , It is difficult to deal with problems such as drill sticking and drill breakage caused by sudden dynamic phenomena in the hole. The coal seams in many mining areas in Henan are soft and easy to collapse, such as Pingmei No. 8 Mine, Yimei Xin’an Mine, Coking Coal Guhanshan Mine, etc. In many drilling construction sites, one drilling rig can only perform one drilling operation per day. It is difficult to drill holes to reach the design depth, and the construction efficiency is extremely low, which seriously affects the progress of coal seam gas drainage. Aiming at the existing technical problems, the present invention provides an intelligent, safe and efficient drilling automatic control system and control method, which realizes real-time detection of the force of the drilling tool in the hole. Based on the change of the force of the drilling tool in the hole, the system It can automatically adjust the rotary speed ω and the drilling speed ν of the drilling tool in time, thus ensuring that the drilling tool is in the best working condition in the hole, reducing accidents in the hole such as stuck drill, broken drill, and gas burning in the drill hole. It is beneficial to ensure drilling safety, improve drilling depth and drilling efficiency.
发明内容Contents of the invention
本发明的目的是提供一种智能化安全高效钻进自动控制系统及控制方法,解决常规液压钻机不能实时检测钻具受力情况、难以预判孔内动力现象、孔内事故频发、钻进效率低、钻孔深度浅、钻孔事故频发的问题。The purpose of the present invention is to provide an intelligent, safe and efficient drilling automatic control system and control method to solve the problem that the conventional hydraulic drilling rig cannot detect the force of the drilling tool in real time, it is difficult to predict the dynamic phenomenon in the hole, frequent accidents in the hole, and the drilling Low efficiency, shallow drilling depth and frequent drilling accidents.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
智能化安全高效钻进自动控制系统,包括钻机驱动参数检测模块、回转钻进参数检测模块、钻机控制模块、钻机泵站、钻机回转器、钻具,所述的钻机驱动参数检测模块与钻机泵站连接,用于检测钻进过程中的扭矩T、推力F1和提拔力F2;回转钻进参数检测模块与钻机回转器连接,用于检测钻进深度L、钻杆回转速度ω和钻进速度ν;钻机控制模块根据钻机驱动参数检测模块、回转钻进参数检测模块检测的数据结果优化钻杆回转速度和钻进速度,并将优化结果传递给钻机泵站驱动钻机回转器实施钻进。The intelligent, safe and efficient drilling automatic control system includes a drilling rig driving parameter detection module, a rotary drilling parameter detection module, a drilling rig control module, a drilling rig pump station, a drilling rig gyrator, and a drilling tool. The drilling rig driving parameter detection module and the drilling rig pump Station connection, used to detect the torque T, thrust F1 and lifting force F2 in the drilling process ; the rotary drilling parameter detection module is connected with the rotator of the drilling rig, used to detect the drilling depth L, the rotary speed ω of the drill pipe and the drilling The drilling speed ν; the drilling rig control module optimizes the rotary speed and drilling speed of the drill pipe according to the data results detected by the drilling rig driving parameter detection module and the rotary drilling parameter detection module, and transmits the optimization results to the drilling rig pump station to drive the drilling rig gyrator to implement drilling .
智能化安全高效钻进自动控制系统,所述的钻机驱动参数检测模块包括扭矩检测模块、推力检测模块、提拔力检测模块;扭矩检测模块通过自动检测钻机泵站驱动钻机回转器运转的油压数据并传输到钻机控制模块,钻机控制模块将该数据自动转化为扭矩T;推力检测模块通过自动检测钻机泵站驱动钻机向前推进的油压数据并传输到钻机控制模块,钻机控制模块将该数据自动转化为推力F1;提拔力检测模块通过自动检测钻机泵站驱动钻机向外提拔钻杆的油压数据并传输到钻机控制模块,钻机控制模块将该数据自动转化为提拔力F2。An intelligent, safe and efficient drilling automatic control system, the rig driving parameter detection module includes a torque detection module, a thrust detection module, and a lifting force detection module; the torque detection module automatically detects the oil pressure data of the drilling rig gyrator driven by the drilling rig pump station And transmitted to the drilling rig control module, the drilling rig control module automatically converts the data into torque T; the thrust detection module automatically detects the oil pressure data of the drilling rig pump station to drive the drilling rig forward and transmits it to the drilling rig control module, and the drilling rig control module takes the data Automatically converted into thrust F 1 ; the lifting force detection module automatically detects the oil pressure data of the drilling rig pumping station to drive the drilling rig to lift the drill pipe outward and transmits it to the drilling rig control module, which automatically converts the data into lifting force F 2 .
智能化安全高效钻进自动控制系统,所述的回转钻进参数检测模块包括钻进深度检测模块、回转速度检测模块、钻进速度检测模块;钻进深度检测模块通过自动检测记录钻进钻进深度L并传输到钻机控制模块;回转速度检测模块通过自动检测记录钻杆回转速度ω并传输到钻机控制模块;钻进速度检测模块通过自动检测记录钻机回转器夹持钻具钻进速度ν并传输到钻机控制模块。An intelligent, safe and efficient drilling automatic control system, the rotary drilling parameter detection module includes a drilling depth detection module, a rotary speed detection module, and a drilling speed detection module; the drilling depth detection module records the drilling depth through automatic detection The depth L is transmitted to the drilling rig control module; the rotation speed detection module records the rotation speed ω of the drill pipe through automatic detection and transmits it to the drilling rig control module; transmitted to the rig control module.
智能化安全高效钻进自动控制系统,所述的钻机控制模块为可视化操作平台,内置安全钻进自动控制应用程序,操作人员进入该程序操作界面进行选择对象、设置参数,在该程序中设置煤层坚固性系数f、煤体瓦斯压力P、煤层埋深H、钻孔设计深度Ls、钻孔倾角α、钻孔直径D、钻杆直径d、钻杆类型,安全钻进自动控制应用程序自动生成该钻孔施工的初始参照曲线,其中包括:钻进扭矩T0与深度L关系曲线、钻进推力F10与深度L关系曲线、退钻提拨力F20与深度L关系曲线、钻杆回转速度ω0与钻进深度L关系曲线、钻进速度ν0与钻进深度L关系曲线。An intelligent safe and efficient drilling automatic control system, the drilling rig control module is a visual operation platform, with a built-in safe drilling automatic control application program, the operator enters the program operation interface to select objects and set parameters, and set the coal seam in the program Firmness factor f, coal gas pressure P, coal seam burial depth H, borehole design depth L s , borehole inclination α, borehole diameter D, drill pipe diameter d, drill pipe type, safe drilling automatic control application program automatic Generate the initial reference curve for the drilling construction, including: the relationship curve between drilling torque T 0 and depth L, the relationship curve between drilling thrust F 10 and depth L, the relationship curve between drilling force F 20 and depth L, and the relationship curve of drill pipe The relationship curve between the rotation speed ω 0 and the drilling depth L, and the relationship curve between the drilling speed ν 0 and the drilling depth L.
智能化安全高效钻进自动控制系统,所述的钻机控制模块自动接收钻进过程中的扭矩T、推力F1、退钻提拔力F2、钻进深度L、钻杆回转速度ω和钻进速度ν,内置安全钻进自动控制应用程序自动生成钻进过程中的工况曲线,其中包括:钻进扭矩T1与深度L关系曲线、钻进推力F11与深度L关系曲线、退钻提拨力F21与深度L关系曲线、钻杆回转速度ω1与钻进深度L关系曲线、钻进速度ν1与钻进深度L关系曲线。An intelligent, safe and efficient drilling automatic control system, the drilling rig control module automatically receives the torque T, thrust F 1 , drilling pull-out force F 2 , drilling depth L, drill pipe rotation speed ω and drilling Speed ν, the built-in safety drilling automatic control application program automatically generates the working condition curve during the drilling process, including: the relationship curve between drilling torque T 1 and depth L, the relationship curve between drilling thrust F 11 and depth L, the drilling lift The relationship curve between pulling force F 21 and depth L, the relationship curve between drill pipe rotation speed ω 1 and drilling depth L, and the relationship curve between drilling speed ν 1 and drilling depth L.
智能化安全高效钻进自动控制系统的控制方法,采用如权利要求1所述的智能化安全高效钻进自动控制系统,包括以下步骤:The control method of the intelligent safe and efficient drilling automatic control system adopts the intelligent safe and efficient drilling automatic control system as claimed in claim 1, comprising the following steps:
(1)进入钻机控制模块可视化操作平台,基于权利要求4设置待施工钻孔的初始参数,系统自动生成该钻孔施工的初始参照曲线;(1) Enter the visual operation platform of the drilling rig control module, set the initial parameters of the drilling hole to be constructed based on claim 4, and the system automatically generates the initial reference curve for the drilling construction;
(2)将钻杆安装在钻机上,连接好排渣动力系统,启动钻机施工钻孔,待安装在钻机上的首根钻杆没入岩层中后,在钻杆尾部加长钻杆,该工序循环进行;(2) Install the drill pipe on the drilling rig, connect the slag discharge power system, start the drilling rig to drill holes, and after the first drill pipe installed on the drilling rig is submerged in the rock formation, lengthen the drill pipe at the end of the drill pipe, and the process cycle conduct;
(3)启动钻机开始施工钻孔后,基于权利要求5系统自动生成该钻孔施工的钻进过程中的工况曲线,工况曲线在钻机控制模块可视化操作平台界面实时动态显示,该钻孔施工的工况曲线与初始参照曲线在同一界面、同一坐标系中对比显示;(3) After starting the drilling rig and starting the drilling, the system automatically generates the working condition curve in the drilling process of the drilling construction based on claim 5, and the working condition curve is displayed dynamically in real time on the visual operation platform interface of the drilling rig control module. The working condition curve of the construction and the initial reference curve are compared and displayed in the same interface and the same coordinate system;
(4)施工过程中,与初始参照曲线相比较,同一钻孔深度位置,当工况曲线扭矩T、推力F1和提拔力F2大小发生超过10%以上的波动时,钻机控制模块将自动优化钻杆回转速度ω和钻进速度ν,以保障安全钻进;(4) During the construction process, compared with the initial reference curve, at the same drilling depth position, when the operating condition curve torque T, thrust F 1 and lifting force F 2 fluctuate by more than 10%, the drilling rig control module will automatically Optimize the drill pipe rotation speed ω and drilling speed ν to ensure safe drilling;
(5)待钻进到钻孔设计深度后停钻,退出钻杆;(5) Stop drilling after drilling to the design depth of the drilling hole, and exit the drill pipe;
(6)、调整钻机位置,对另一个钻孔进行钻进作业;(6) Adjust the position of the drilling rig and perform drilling operations on another hole;
(7)、重复步骤(1)、(2)、(3)、(4)、(5)、(6)。(7), repeat steps (1), (2), (3), (4), (5), (6).
智能化安全高效钻进自动控制系统的控制方法,步骤(4)钻机控制模块自动优化钻杆回转速度ω和钻进速度ν的具体方式为:In the control method of an intelligent, safe and efficient drilling automatic control system, in step (4) the drill rig control module automatically optimizes the drill pipe rotation speed ω and the drilling speed ν in a specific manner as follows:
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现0~10%波动时,钻机控制模块将自动保持钻杆回转速度ω不变,钻进速度ν不变;When drilling, at the same drilling depth position, compared with the initial reference curve, when the operating condition curve torque T and thrust F 1 fluctuate by 0~10%, the drilling rig control module will automatically keep the drill pipe rotation speed ω constant, The drilling speed ν remains unchanged;
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现10%~20%波动时,钻机控制模块将自动保持钻杆回转速度ω不变,钻进速度ν降低幅度为0~10%;When drilling, at the same drilling depth position, compared with the initial reference curve, when the operating condition curve torque T and thrust F 1 fluctuate by 10%~20%, the drilling rig control module will automatically keep the drill pipe rotation speed ω constant , the decrease of drilling speed ν is 0~10%;
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现20%~40%波动时,钻机控制模块将自动增加钻杆回转速度ω幅度为5%~20%,钻进速度ν降低幅度为5~20%;When drilling, at the same drilling depth position, compared with the initial reference curve, when the operating condition curve torque T and thrust F 1 fluctuate by 20% to 40%, the drilling rig control module will automatically increase the drill pipe rotation speed ω by 5%~20%, the decrease of drilling speed ν is 5~20%;
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现40%~60%波动时,钻机控制模块将自动增加钻杆回转速度ω幅度为20%~40%,钻进速度ν降低幅度为15~40%;When drilling, at the same drilling depth position, compared with the initial reference curve, when the operating condition curve torque T and thrust F 1 fluctuate by 40%~60%, the drilling rig control module will automatically increase the drill pipe rotation speed ω by 20%~40%, the decrease of drilling speed ν is 15~40%;
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现大于60%波动时,钻机控制模块将自动增加钻杆回转速度ω幅度大于40%,钻进速度ν降低幅度大于40%;When drilling, at the same drilling depth position, compared with the initial reference curve, when the torque T and thrust F 1 of the working condition curve fluctuate by more than 60%, the drilling rig control module will automatically increase the rotation speed ω of the drill pipe by more than 40% , the decrease in drilling speed ν is greater than 40%;
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现0~10%波动时,钻机控制模块将自动保持钻杆回转速度ω不变;When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 0~10%, the drilling rig control module will automatically keep the drill pipe rotation speed ω unchanged;
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现10%~20%波动时,钻机控制模块将自动增加钻杆回转速度ω幅度为5%~15%;When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 10%~20%, the drilling rig control module will automatically increase the rotation speed ω of the drill pipe by 5% ~15%;
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现20%~40%波动时,钻机控制模块将自动增加钻杆回转速度ω幅度为10%~30%;When backing out the drill, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 20%~40%, the drilling rig control module will automatically increase the rotation speed ω of the drill pipe by 10% ~30%;
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现40%~60%波动时,钻机控制模块将自动增加钻杆回转速度ω幅度为20%~40%;When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 40%~60%, the drilling rig control module will automatically increase the rotation speed ω of the drill pipe by 20% ~40%;
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现大于60%波动时,钻机控制模块将自动增加钻杆回转速度ω幅度大于40%。When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by more than 60%, the drilling rig control module will automatically increase the rotation speed ω of the drill pipe by more than 40%.
附图说明Description of drawings
图1是本发明智能化安全高效钻进自动控制系统工作原理图;Fig. 1 is a working principle diagram of the intelligent safe and efficient drilling automatic control system of the present invention;
图2是本发明钻机驱动参数检测模块工作流程图;Fig. 2 is a working flow diagram of the drilling rig driving parameter detection module of the present invention;
图3是本发明回转钻进参数检测模块工作流程图;Fig. 3 is a working flow chart of the rotary drilling parameter detection module of the present invention;
图4是本发明扭矩T 小于10%波动时钻进扭矩T与深度L关系曲线图;Fig. 4 is a curve diagram of drilling torque T and depth L when the torque T of the present invention fluctuates less than 10%;
图5是本发明未调控钻进扭矩T与深度L关系曲线图;Fig. 5 is a graph showing the relationship between the unregulated drilling torque T and the depth L of the present invention;
图6是本发明自动调控钻进扭矩T与深度L关系曲线图。Fig. 6 is a graph showing the relationship between the automatic regulation of the drilling torque T and the depth L in the present invention.
具体实施方式detailed description
如图1~图3所示,本发明智能化安全高效钻进自动控制系统,包括钻机驱动参数检测模块1、回转钻进参数检测模块2、钻机控制模块3、钻机泵站4、钻机回转器5、钻具6,所述的钻机驱动参数检测模块1与钻机泵站4连接,用于检测钻进过程中的扭矩T、推力F1和提拔力F2;回转钻进参数检测模块2与钻机回转器5连接,用于检测钻进深度L、钻杆回转速度ω和钻进速度ν;钻机控制模块3根据钻机驱动参数检测模块2、回转钻进参数检测模块2检测的数据结果优化钻杆回转速度和钻进速度,并将优化结果传递给钻机泵站4驱动钻机回转器5实施钻进。As shown in Figures 1 to 3, the intelligent, safe and efficient drilling automatic control system of the present invention includes a drilling rig driving parameter detection module 1, a rotary drilling parameter detection module 2, a drilling rig control module 3, a drilling rig pumping station 4, and a drilling rig gyrator 5, drilling tool 6, described rig driving parameter detection module 1 is connected with rig pumping station 4, is used for detecting torque T, thrust F 1 and lifting force F 2 in the drilling process; rotary drilling parameter detection module 2 and The rotator 5 of the drilling rig is connected to detect the drilling depth L, the rotary speed ω and the drilling speed ν of the drilling rig; the drilling rig control module 3 optimizes the drilling according to the data results detected by the rig driving parameter detection module 2 and the rotary drilling parameter detection module 2. Rod rotation speed and drilling speed, and the optimization results are transmitted to the drilling rig pump station 4 to drive the drilling rig gyrator 5 to implement drilling.
智能化安全高效钻进自动控制系统,钻机驱动参数检测模块1包括扭矩检测模块11、推力检测模块12、提拔力检测模块13;扭矩检测模块11通过自动检测钻机泵站4驱动钻机回转器5运转的油压数据并传输到钻机控制模块3,钻机控制模块3将该数据自动转化为扭矩T;推力检测模块12通过自动检测钻机泵站4驱动钻机向前推进的油压数据并传输到钻机控制模块3,钻机控制模块3将该数据自动转化为推力F1;提拔力检测模块13通过自动检测钻机泵站4驱动钻机向外提拔钻杆的油压数据并传输到钻机控制模块3,钻机控制模块3将该数据自动转化为提拔力F2。An intelligent, safe and efficient drilling automatic control system, the drilling rig driving parameter detection module 1 includes a torque detection module 11, a thrust detection module 12, and a lifting force detection module 13; the torque detection module 11 drives the drilling rig gyrator 5 to run by automatically detecting the drilling rig pump station 4 The oil pressure data of the drilling rig is transmitted to the drilling rig control module 3, and the drilling rig control module 3 automatically converts the data into torque T; the thrust detection module 12 automatically detects the oil pressure data of the drilling rig pumping station 4 to drive the drilling rig forward and transmits it to the drilling rig control Module 3, the drilling rig control module 3 automatically converts the data into thrust F1 ; the lifting force detection module 13 automatically detects the oil pressure data of the drilling rig pump station 4 to drive the drilling rig to lift the drill pipe outward and transmits it to the drilling rig control module 3, the drilling rig control Module 3 automatically converts this data into a lifting force F 2 .
智能化安全高效钻进自动控制系统,回转钻进参数检测模块2包括钻进深度检测模块22、回转速度检测模块23、钻进速度检测模块24;钻进深度检测模块22通过自动检测记录钻进钻进深度L并传输到钻机控制模块3;回转速度检测模块23通过自动检测记录钻杆回转速度ω并传输到钻机控制模块3;钻进速度检测模块24通过自动检测记录钻机回转器夹持钻具钻进速度ν并传输到钻机控制模块3。An intelligent, safe and efficient drilling automatic control system, the rotary drilling parameter detection module 2 includes a drilling depth detection module 22, a rotary speed detection module 23, and a drilling speed detection module 24; the drilling depth detection module 22 records the drilling depth through automatic detection The drilling depth L is transmitted to the drilling rig control module 3; the rotation speed detection module 23 records the rotation speed ω of the drill pipe through automatic detection and transmits it to the drilling rig control module 3; The drilling speed ν is transmitted to the drilling rig control module 3.
智能化安全高效钻进自动控制系统,所述的钻机控制模块3为可视化操作平台,内置安全钻进自动控制应用程序,操作人员进入该程序操作界面进行选择对象、设置参数,在该程序中设置煤层坚固性系数f、煤体瓦斯压力P、煤层埋深H、钻孔设计深度Ls、钻孔倾角α、钻孔直径D、钻杆直径d、钻杆类型,安全钻进自动控制应用程序自动生成该钻孔施工的初始参照曲线,其中包括:钻进扭矩T0与深度L关系曲线、钻进推力F10与深度L关系曲线、退钻提拨力F20与深度L关系曲线、钻杆回转速度ω0与钻进深度L关系曲线、钻进速度ν0与钻进深度L关系曲线。如图4、图5所示,为钻进扭矩T与深度L关系曲线,曲线T0为根据钻孔设计参数生成的初始参照曲线。An intelligent safe and efficient drilling automatic control system, the drilling rig control module 3 is a visual operation platform with a built-in safe drilling automatic control application program, the operator enters the program operation interface to select objects, set parameters, and set in the program Coal seam solidity factor f, coal gas pressure P, coal seam buried depth H, drilling design depth L s , drilling inclination α, drilling diameter D, drilling pipe diameter d, drilling pipe type, safe drilling automatic control application program Automatically generate the initial reference curves for the drilling construction, including: the relationship curve between drilling torque T 0 and depth L, the relationship curve between drilling thrust F 10 and depth L, the relationship curve between drilling force F 20 and depth L, the relationship curve between drilling force Rod rotation speed ω 0 and drilling depth L relationship curve, drilling speed ν 0 and drilling depth L relationship curve. As shown in Fig. 4 and Fig. 5, it is the relationship curve between the drilling torque T and the depth L, and the curve T0 is the initial reference curve generated according to the drilling design parameters.
智能化安全高效钻进自动控制系统,所述的钻机控制模块3自动接收钻进过程中的扭矩T、推力F1、退钻提拔力F2、钻进深度L、钻杆回转速度ω和钻进速度ν,内置安全钻进自动控制应用程序自动生成钻进过程中的工况曲线,其中包括:钻进扭矩T1与深度L关系曲线、钻进推力F11与深度L关系曲线、退钻提拨力F21与深度L关系曲线、钻杆回转速度ω1与钻进深度L关系曲线、钻进速度ν1与钻进深度L关系曲线。如图4、图5所示,为钻进扭矩T与深度L关系曲线,曲线T1为钻进过程中的工况曲线。An intelligent, safe and efficient drilling automatic control system, the drilling rig control module 3 automatically receives the torque T, thrust F 1 , drilling pull-out force F 2 , drilling depth L, drill pipe rotation speed ω and drilling The drilling speed ν, the built-in safe drilling automatic control application program automatically generates the working condition curve during the drilling process, including: the relationship curve between drilling torque T 1 and depth L, the relationship curve between drilling thrust F 11 and depth L, and the drilling back The relationship curve between lifting force F 21 and depth L, the relationship curve between drill pipe rotation speed ω 1 and drilling depth L, and the relationship curve between drilling speed ν 1 and drilling depth L. As shown in Fig. 4 and Fig . 5, it is the relationship curve between the drilling torque T and the depth L, and the curve T1 is the working condition curve during the drilling process.
智能化安全高效钻进自动控制系统的控制方法,采用如权利要求1所述的智能化安全高效钻进自动控制系统,包括以下步骤:The control method of the intelligent safe and efficient drilling automatic control system adopts the intelligent safe and efficient drilling automatic control system as claimed in claim 1, comprising the following steps:
(1)进入钻机控制模块可视化操作平台,基于权利要求4设置待施工钻孔的初始参数,系统自动生成该钻孔施工的初始参照曲线;(1) Enter the visual operation platform of the drilling rig control module, set the initial parameters of the drilling hole to be constructed based on claim 4, and the system automatically generates the initial reference curve for the drilling construction;
(2)将钻杆安装在钻机上,连接好排渣动力系统,启动钻机施工钻孔,待安装在钻机上的首根钻杆没入岩层中后,在钻杆尾部加长钻杆,该工序循环进行;(2) Install the drill pipe on the drilling rig, connect the slag discharge power system, start the drilling rig to drill holes, and after the first drill pipe installed on the drilling rig is submerged in the rock formation, lengthen the drill pipe at the end of the drill pipe, and the process cycle conduct;
(3)启动钻机开始施工钻孔后,基于权利要求5系统自动生成该钻孔施工的钻进过程中的工况曲线,工况曲线在钻机控制模块可视化操作平台界面实时动态显示,该钻孔施工的工况曲线与初始参照曲线在同一界面、同一坐标系中对比显示;(3) After starting the drilling rig and starting the drilling, the system automatically generates the working condition curve in the drilling process of the drilling construction based on claim 5, and the working condition curve is displayed dynamically in real time on the visual operation platform interface of the drilling rig control module. The working condition curve of the construction and the initial reference curve are compared and displayed in the same interface and the same coordinate system;
(4)施工过程中,与初始参照曲线相比较,同一钻孔深度位置,当工况曲线扭矩T、推力F1和提拔力F2大小发生超过10%以上的波动时,钻机控制模块3将自动优化钻杆回转速度ω和钻进速度ν,以保障安全钻进;(4) During the construction process, compared with the initial reference curve, at the same drilling depth position, when the operating condition curve torque T, thrust F 1 and lifting force F 2 fluctuate by more than 10%, the drilling rig control module 3 will Automatically optimize the drill pipe rotation speed ω and drilling speed ν to ensure safe drilling;
(5)待钻进到钻孔设计深度后停钻,退出钻杆;(5) Stop drilling after drilling to the design depth of the drilling hole, and exit the drill pipe;
(6)、调整钻机位置,对另一个钻孔进行钻进作业;(6) Adjust the position of the drilling rig and perform drilling operations on another hole;
(7)、重复步骤(1)、(2)、(3)、(4)、(5)、(6)。(7), repeat steps (1), (2), (3), (4), (5), (6).
智能化安全高效钻进自动控制系统的控制方法,步骤(4)钻机控制模块3自动优化钻杆回转速度ω和钻进速度ν的具体方式为:In the control method of an intelligent, safe and efficient drilling automatic control system, in step (4) the drilling rig control module 3 automatically optimizes the drill pipe rotation speed ω and the drilling speed ν in a specific manner as follows:
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现0~10%波动时,钻机控制模块3将自动保持钻杆回转速度ω不变,钻进速度ν不变。如图4所示,曲线T0为根据钻孔设计参数生成的初始参照曲线,曲线T1为钻进过程中的工况曲线,根据钻机控制模块3检测自动生成的曲线对比图,钻孔达到设计深度LS的整个钻进过程中,工况曲线扭矩T大小波动范围一直保持在10%以内,表明,钻进速度合理,钻进排渣顺畅,钻进过程中未出现严重的钻孔堵塞问题。When drilling, at the same drilling depth position, compared with the initial reference curve, when the operating condition curve torque T and thrust F 1 fluctuate by 0~10%, the drilling rig control module 3 will automatically keep the drill pipe rotation speed ω constant , the penetration speed ν remains unchanged. As shown in Figure 4, curve T 0 is the initial reference curve generated according to the drilling design parameters, and curve T 1 is the working condition curve in the drilling process. During the entire drilling process at the design depth L S , the fluctuation range of the working condition curve torque T has been kept within 10%, indicating that the drilling speed is reasonable, the drilling slag is smooth, and there is no serious borehole blockage during the drilling process question.
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现10%~20%波动时,钻机控制模块3将自动保持钻杆回转速度ω不变,钻进速度ν降低幅度为0~10%。如图5,当钻孔钻进到深度LD1时,钻进扭矩T大小波动达到10%并快速增长,如果此时钻杆回转速度ω和钻进速度ν未进行调整,当钻进深度为LD2时,钻进扭矩T大小波动迅速增长到30%并在较短的时间内突破50%,此时,钻进扭矩T如果超过了钻机的额定扭矩,会出现卡钻,甚至断钻现象,钻进将终止,钻孔未能达到设计深度;基于本发明智能化安全高效钻进自动控制系统的控制方法,如果钻机设置了智能化安全高效钻进自动控制系统,如图6所示,当钻孔钻进到深度LD1时,钻进扭矩T大小波动达到10%并有增长趋势时,表明钻孔收缩严重或出现了塌孔现象,此时,钻机控制模块3将自动保持钻杆回转速度ω不变,钻进速度ν降低,从而降低钻头破煤速度,减少了钻屑量,钻孔堵塞区有充足的时间进行疏通,当钻进深度为LD2时,发现钻进扭矩T大小波动降低到10%以下,此时,表明钻孔堵塞区已被疏通,钻孔施工将以被系统优化后的钻进速度继续施工,直到达到钻孔设计深度LS。When drilling, at the same drilling depth position, compared with the initial reference curve, when the working condition curve torque T and thrust F 1 fluctuate by 10%~20%, the drilling rig control module 3 will automatically keep the drill pipe rotation speed ω constant. The drilling speed ν decreases from 0% to 10%. As shown in Figure 5, when the borehole is drilled to the depth L D1 , the fluctuation of the drilling torque T reaches 10% and increases rapidly. If the rotation speed ω and the drilling speed ν of the drill pipe are not adjusted at this time, when the drilling depth is At L D2 , the fluctuation of the drilling torque T increases rapidly to 30% and breaks through 50% in a short period of time. At this time, if the drilling torque T exceeds the rated torque of the drilling rig, the drill will be stuck or even broken. , the drilling will be terminated, and the borehole will fail to reach the design depth; based on the control method of the intelligent safe and efficient drilling automatic control system of the present invention, if the drilling rig is provided with an intelligent safe and efficient drilling automatic control system, as shown in Figure 6, When the borehole is drilled to the depth L D1 , when the fluctuation of the drilling torque T reaches 10% and has an increasing trend, it indicates that the borehole shrinks seriously or collapses. At this time, the drilling rig control module 3 will automatically maintain the drill rod The rotary speed ω remains unchanged, and the drilling speed ν decreases, thereby reducing the coal-breaking speed of the drill bit, reducing the amount of cuttings, and there is enough time to unblock the blocked area of the drill hole. When the drilling depth is L D2 , it is found that the drilling torque T The size fluctuation is reduced to less than 10%. At this time, it indicates that the blocked area of the borehole has been dredged, and the borehole construction will continue at the system-optimized drilling speed until the borehole design depth L S is reached.
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现20%~40%波动时,钻机控制模块3将自动增加钻杆回转速度ω幅度为5%~20%,钻进速度ν降低幅度为5~20%。When drilling, at the same drilling depth position, compared with the initial reference curve, when the operating condition curve torque T and thrust F 1 fluctuate by 20%~40%, the drilling rig control module 3 will automatically increase the drill pipe rotation speed ω range is 5%~20%, and the reduction rate of drilling speed ν is 5~20%.
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现40%~60%波动时,钻机控制模块3将自动增加钻杆回转速度ω幅度为20%~40%,钻进速度ν降低幅度为15~40%。When drilling, at the same drilling depth position, compared with the initial reference curve, when the operating condition curve torque T and thrust F 1 fluctuate by 40%~60%, the drilling rig control module 3 will automatically increase the drill pipe rotation speed ω range 20%~40%, and the decrease of drilling speed ν is 15~40%.
钻进时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线扭矩T、推力F1大小出现大于60%波动时,钻机控制模块3将自动增加钻杆回转速度ω幅度大于40%,钻进速度ν降低幅度大于40%。When drilling, at the same drilling depth position, compared with the initial reference curve, when the torque T and thrust F 1 of the working condition curve fluctuate by more than 60%, the drilling rig control module 3 will automatically increase the drill pipe rotation speed ω and the amplitude is greater than 40 %, the rate of decrease in drilling speed ν is greater than 40%.
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现0~10%波动时,钻机控制模块3将自动保持钻杆回转速度ω不变。When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 0~10%, the drilling rig control module 3 will automatically keep the drill pipe rotation speed ω constant.
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现10%~20%波动时,钻机控制模块将3自动增加钻杆回转速度ω幅度为5%~15%。When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 10%~20%, the drilling rig control module will automatically increase the rotation speed of the drill pipe by 3 to 5 %~15%.
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现20%~40%波动时,钻机控制模块3将自动增加钻杆回转速度ω幅度为10%~30%。When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 20%~40%, the drilling rig control module 3 will automatically increase the rotation speed ω of the drill pipe by 10 %~30%.
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现40%~60%波动时,钻机控制模块3将自动增加钻杆回转速度ω幅度为20%~40%。When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by 40%~60%, the drilling rig control module 3 will automatically increase the rotation speed ω of the drill pipe by 20 %~40%.
退钻时,同一钻孔深度位置,与初始参照曲线相比较,当工况曲线提拔力F2大小出现大于60%波动时,钻机控制模块3将自动增加钻杆回转速度ω幅度大于40%。When drilling back, at the same drilling depth position, compared with the initial reference curve, when the lifting force F 2 of the working condition curve fluctuates by more than 60%, the drilling rig control module 3 will automatically increase the drill pipe rotation speed ω by more than 40%.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710056408.4A CN106837295B (en) | 2017-01-25 | 2017-01-25 | Intelligent safe and efficient automatic drilling control system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710056408.4A CN106837295B (en) | 2017-01-25 | 2017-01-25 | Intelligent safe and efficient automatic drilling control system and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106837295A true CN106837295A (en) | 2017-06-13 |
CN106837295B CN106837295B (en) | 2020-04-07 |
Family
ID=59121200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710056408.4A Active CN106837295B (en) | 2017-01-25 | 2017-01-25 | Intelligent safe and efficient automatic drilling control system and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106837295B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107558989A (en) * | 2017-10-19 | 2018-01-09 | 上海中联重科桩工机械有限公司 | Rotary drilling rig intelligent controlling device, rotary drilling rig intelligent control method and system |
CN109719323A (en) * | 2019-03-07 | 2019-05-07 | 大连大学 | A kind of High-efficiency mesh drilling new method |
CN110529096A (en) * | 2019-08-22 | 2019-12-03 | 中国地质大学(武汉) | A kind of underground drilling machine drilling parameter monitoring device and monitoring method |
CN111176113A (en) * | 2019-12-31 | 2020-05-19 | 长安大学 | An optimal control method of drilling tool force based on long and short-term memory neural network |
CN111350488A (en) * | 2020-05-09 | 2020-06-30 | 新疆雪峰科技(集团)股份有限公司 | Method and device for monitoring drilling depth and drilling speed of mine down-the-hole drilling machine |
CN111720107A (en) * | 2020-06-29 | 2020-09-29 | 中国铁建重工集团股份有限公司 | Drilling machine propulsion control system and method and drill rod |
CN111894489A (en) * | 2020-06-19 | 2020-11-06 | 德威土行孙工程机械(北京)有限公司 | Drill rod control method and system and drilling machine |
CN112855113A (en) * | 2021-01-28 | 2021-05-28 | 北京三一智造科技有限公司 | Automatic drilling method and controller of rotary drilling rig, storage medium and electronic equipment |
CN113032944A (en) * | 2019-12-24 | 2021-06-25 | 中联重科股份有限公司 | Stuck drill database construction method, stuck drill prevention matching method and system and rotary drilling rig |
CN113073968A (en) * | 2021-04-14 | 2021-07-06 | 中煤科工集团重庆研究院有限公司 | Self-adaptive adjustment method and system for drilling parameters |
CN113123777A (en) * | 2019-12-30 | 2021-07-16 | 中铁二局集团有限公司 | Large-diameter drilling machine drilling process control method for tunnel collapse rescue |
CN113646506A (en) * | 2019-03-29 | 2021-11-12 | 安百拓凿岩有限公司 | Method for controlling the drilling process of a percussion drill |
CN115875009A (en) * | 2023-02-06 | 2023-03-31 | 中建隧道装备制造有限公司 | Control method of advanced drilling machine for drilling hard rock |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1341803A (en) * | 2000-08-28 | 2002-03-27 | 霍利贝顿能源服务公司 | Method for predicting drilling system performance for given formation and its system |
US20060272861A1 (en) * | 2002-04-19 | 2006-12-07 | Hutchinson Mark W | Method for improving drilling depth measurements |
CN101492996A (en) * | 2008-01-25 | 2009-07-29 | 中国石油天然气集团公司 | Rotate speed method for controlling rotate speed and torquemoment of top driving device of oil rig |
CN101899969A (en) * | 2010-03-24 | 2010-12-01 | 苏州锐石能源开发技术有限公司 | Real-time on-site drilling full parameter optimization method |
CN102852511A (en) * | 2012-09-28 | 2013-01-02 | 中国科学院自动化研究所 | Intelligent drilling control system and method for petroleum drilling machine |
US20130066471A1 (en) * | 2011-09-07 | 2013-03-14 | Lei Wang | Drilling advisory systems and methods with decision trees for learning and application modes |
CN103291274A (en) * | 2012-03-01 | 2013-09-11 | 江阴中科矿业安全科技有限公司 | Intelligent display control system for coal mine deep hole drilling vehicle |
CN104246107A (en) * | 2011-10-27 | 2014-12-24 | Aps技术公司 | Methods for optimizing and monitoring underground drilling |
CN104695937A (en) * | 2015-02-16 | 2015-06-10 | 中国石油天然气集团公司 | Well drilling comprehensive speed accelerating optimization expert system |
US20150211352A1 (en) * | 2012-06-21 | 2015-07-30 | Schlumberger Technology Corporation | Drilling Speed and Depth Computation for Downhole Tools |
US20150252664A1 (en) * | 2012-10-03 | 2015-09-10 | Shell Oil Company | Optimizing performance of a drilling assembly |
US20150369031A1 (en) * | 2013-02-05 | 2015-12-24 | Schlumberger Technology Corporation | System and Method for Controlling Drilling Process |
CN105473812A (en) * | 2013-09-19 | 2016-04-06 | 萨思学会有限公司 | Control variable determination to maximize a drilling rate of penetration |
-
2017
- 2017-01-25 CN CN201710056408.4A patent/CN106837295B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1341803A (en) * | 2000-08-28 | 2002-03-27 | 霍利贝顿能源服务公司 | Method for predicting drilling system performance for given formation and its system |
US20060272861A1 (en) * | 2002-04-19 | 2006-12-07 | Hutchinson Mark W | Method for improving drilling depth measurements |
CN101492996A (en) * | 2008-01-25 | 2009-07-29 | 中国石油天然气集团公司 | Rotate speed method for controlling rotate speed and torquemoment of top driving device of oil rig |
CN101899969A (en) * | 2010-03-24 | 2010-12-01 | 苏州锐石能源开发技术有限公司 | Real-time on-site drilling full parameter optimization method |
US20130066471A1 (en) * | 2011-09-07 | 2013-03-14 | Lei Wang | Drilling advisory systems and methods with decision trees for learning and application modes |
CN104246107A (en) * | 2011-10-27 | 2014-12-24 | Aps技术公司 | Methods for optimizing and monitoring underground drilling |
CN103291274A (en) * | 2012-03-01 | 2013-09-11 | 江阴中科矿业安全科技有限公司 | Intelligent display control system for coal mine deep hole drilling vehicle |
US20150211352A1 (en) * | 2012-06-21 | 2015-07-30 | Schlumberger Technology Corporation | Drilling Speed and Depth Computation for Downhole Tools |
CN102852511A (en) * | 2012-09-28 | 2013-01-02 | 中国科学院自动化研究所 | Intelligent drilling control system and method for petroleum drilling machine |
US20150252664A1 (en) * | 2012-10-03 | 2015-09-10 | Shell Oil Company | Optimizing performance of a drilling assembly |
US20150369031A1 (en) * | 2013-02-05 | 2015-12-24 | Schlumberger Technology Corporation | System and Method for Controlling Drilling Process |
CN105473812A (en) * | 2013-09-19 | 2016-04-06 | 萨思学会有限公司 | Control variable determination to maximize a drilling rate of penetration |
CN104695937A (en) * | 2015-02-16 | 2015-06-10 | 中国石油天然气集团公司 | Well drilling comprehensive speed accelerating optimization expert system |
Non-Patent Citations (1)
Title |
---|
于景祥: "钻探工程钻进微机自动控制系统及软件的研究", 《探矿工程》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107558989A (en) * | 2017-10-19 | 2018-01-09 | 上海中联重科桩工机械有限公司 | Rotary drilling rig intelligent controlling device, rotary drilling rig intelligent control method and system |
CN107558989B (en) * | 2017-10-19 | 2020-12-22 | 上海中联重科桩工机械有限公司 | Intelligent control device of rotary drilling rig, intelligent control method and system of rotary drilling rig |
CN109719323A (en) * | 2019-03-07 | 2019-05-07 | 大连大学 | A kind of High-efficiency mesh drilling new method |
CN113646506B (en) * | 2019-03-29 | 2024-03-19 | 安百拓凿岩有限公司 | Method for controlling the drilling process of a percussion drill |
CN113646506A (en) * | 2019-03-29 | 2021-11-12 | 安百拓凿岩有限公司 | Method for controlling the drilling process of a percussion drill |
CN110529096A (en) * | 2019-08-22 | 2019-12-03 | 中国地质大学(武汉) | A kind of underground drilling machine drilling parameter monitoring device and monitoring method |
CN113032944B (en) * | 2019-12-24 | 2023-03-14 | 中联重科股份有限公司 | Stuck drill database construction method, stuck drill prevention matching method and system and rotary drilling rig |
CN113032944A (en) * | 2019-12-24 | 2021-06-25 | 中联重科股份有限公司 | Stuck drill database construction method, stuck drill prevention matching method and system and rotary drilling rig |
CN113123777A (en) * | 2019-12-30 | 2021-07-16 | 中铁二局集团有限公司 | Large-diameter drilling machine drilling process control method for tunnel collapse rescue |
CN111176113A (en) * | 2019-12-31 | 2020-05-19 | 长安大学 | An optimal control method of drilling tool force based on long and short-term memory neural network |
CN111350488A (en) * | 2020-05-09 | 2020-06-30 | 新疆雪峰科技(集团)股份有限公司 | Method and device for monitoring drilling depth and drilling speed of mine down-the-hole drilling machine |
CN111350488B (en) * | 2020-05-09 | 2022-12-30 | 新疆雪峰科技(集团)股份有限公司 | Method and device for monitoring drilling depth and drilling speed of mine down-the-hole drilling machine |
CN111894489A (en) * | 2020-06-19 | 2020-11-06 | 德威土行孙工程机械(北京)有限公司 | Drill rod control method and system and drilling machine |
CN111720107A (en) * | 2020-06-29 | 2020-09-29 | 中国铁建重工集团股份有限公司 | Drilling machine propulsion control system and method and drill rod |
CN112855113A (en) * | 2021-01-28 | 2021-05-28 | 北京三一智造科技有限公司 | Automatic drilling method and controller of rotary drilling rig, storage medium and electronic equipment |
CN113073968A (en) * | 2021-04-14 | 2021-07-06 | 中煤科工集团重庆研究院有限公司 | Self-adaptive adjustment method and system for drilling parameters |
CN115875009A (en) * | 2023-02-06 | 2023-03-31 | 中建隧道装备制造有限公司 | Control method of advanced drilling machine for drilling hard rock |
Also Published As
Publication number | Publication date |
---|---|
CN106837295B (en) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106837295A (en) | Intelligent safe and efficient automatic drilling control system and control method | |
CN103306643B (en) | A kind of water drainage gas production device and method | |
CN106968600B (en) | Comprehensive experimental device for drilling through casing and rock with particle jet and drill bit | |
CN104405283A (en) | Technique for extracting gas from L-shaped ground drilling well in mining area | |
CN102587981A (en) | Underground salt cavern gas storage and building method thereof | |
CN102425371A (en) | Open hole composite cave making method for coal bed gas well | |
CN102913166A (en) | Method for drilling and milling sliding sleeves and ball seats of horizontal well by continuous oil pipe | |
CN104912479B (en) | Method for drilling and completion of horizontal branched well for coal bed gas | |
CN104405281A (en) | Casing drilling technique for over-goaf | |
CN104847263A (en) | Coal bed methane far-end butt joint horizontal well drilling method | |
Xiumin et al. | Research and application of gas-lift reverse circulation drilling technology to geothermal well construction in Dalian Jiaoliu Island | |
CN111677448B (en) | Variable-diameter casing hole-protecting drilling process for unstable stratum | |
CN113482561A (en) | Oil and gas well sealing casing recovery device and recovery method thereof | |
CN109519163A (en) | A kind of system and method controlling coiled tubing drilling rate of penetration and bit pressure | |
CN112431579B (en) | Preset small-diameter pipe internal fracturing device and method for side drilling well and small-hole well | |
CN204326963U (en) | The anti-well boring device of a kind of vertical shaft | |
CN110984891B (en) | A downhole throttling process pipe string and method for horizontal wells | |
CN111270994A (en) | A kind of deep-sea riser-less follow-pipe drilling process and device for lowering casing | |
CN211666674U (en) | Downhole throttling process pipe column for horizontal well | |
CN205503007U (en) | Drilling system based on double -walled drilling rod | |
CN103939018A (en) | Barrier-avoiding sidetracking technology for workover rig | |
CN203570206U (en) | End pressure-bearing type rock bolt reamer | |
CN100497881C (en) | Injection system for eliminating sucking pressure as coming out of hole | |
CN205503037U (en) | Double -walled drilling rod drilling system's water conservancy diversion pressurizing piston | |
CN220929356U (en) | Coal-bed gas well structure of coal mine area with near-end butt joint of well-hole |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230920 Address after: 454000 No. 2001 Century Avenue, hi tech Zone, Henan, Jiaozuo Patentee after: HENAN POLYTECHNIC University Patentee after: Shandong Banghong Zhongchuang Intelligent Equipment Co.,Ltd. Address before: 454000 School of energy science and engineering, Henan University of technology, No. 2001, Shiji Road, high tech Zone, Jiaozuo City, Henan Province Patentee before: HENAN POLYTECHNIC University |
|
TR01 | Transfer of patent right |