CN106830042B - A kind of method that the ultra-fine carbonic acid fine particle calcium carbonate of rhombohedron shape is prepared using Weihe north Ordovician limestone - Google Patents
A kind of method that the ultra-fine carbonic acid fine particle calcium carbonate of rhombohedron shape is prepared using Weihe north Ordovician limestone Download PDFInfo
- Publication number
- CN106830042B CN106830042B CN201710119863.4A CN201710119863A CN106830042B CN 106830042 B CN106830042 B CN 106830042B CN 201710119863 A CN201710119863 A CN 201710119863A CN 106830042 B CN106830042 B CN 106830042B
- Authority
- CN
- China
- Prior art keywords
- calcium carbonate
- light calcium
- lime
- limestone
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/182—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
- C01F11/183—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种制备超细碳酸轻钙的方法,具体涉及一种利用渭北奥陶纪石灰岩制备菱面体状超细碳酸轻钙的方法,属于化工技术领域。The invention relates to a method for preparing ultrafine light calcium carbonate, in particular to a method for preparing rhombohedral ultrafine light calcium carbonate by using Weibei Ordovician limestone, and belongs to the technical field of chemical industry.
背景技术Background technique
超细碳酸轻钙指的是采用化学方法制备得到的粒径尺寸处于分子团簇体与宏观颗粒相混合的粉体颗粒。超细碳酸轻钙的粒径在0.02μm-0.1μm之间;无毒、无味、吸湿性小,通常储存于干燥的环境中;沉降体积为2.4mL/g-2.8mL/g、分子量为100、比表面积≥18m2/g、熔点为1339℃、相对密度为2.45-2.50;常温下(25℃),在水中的溶解度非常小,pH值为8.0-10.2之间;常压下,当温度≤550℃时化学性质稳定,当温度在800℃-900℃之间时易分解;与各强酸都能发生放热反应,并产生一定量的CO2。Ultrafine light calcium carbonate refers to the powder particles prepared by chemical methods with a particle size in which molecular clusters and macroscopic particles are mixed. The particle size of ultra-fine light calcium carbonate is between 0.02μm-0.1μm; non-toxic, odorless, low hygroscopicity, usually stored in a dry environment; sedimentation volume is 2.4mL/g-2.8mL/g, molecular weight is 100 , specific surface area ≥ 18m 2 /g, melting point of 1339°C, relative density of 2.45-2.50; at room temperature (25°C), the solubility in water is very small, and the pH value is between 8.0-10.2; under normal pressure, when the temperature The chemical properties are stable at ≤550°C, and it is easy to decompose when the temperature is between 800°C and 900°C; it can undergo exothermic reactions with various strong acids and produce a certain amount of CO 2 .
超细碳酸轻钙具备诸如宏观量子、小尺寸等特殊效应,超细碳酸轻钙的这些特性使得其在磁性、催化性、分散性、触变性和流平性、等方面均显示出明显的优势,因此,将超细碳酸轻钙用于橡胶制品、纸制品、密封胶材料、水泥、药材、食品等生产过程中,可起到显著增容、补强、降低成本等作用。Ultrafine light calcium carbonate has special effects such as macroscopic quantum and small size. These characteristics of ultrafine light calcium carbonate make it show obvious advantages in magnetic properties, catalytic properties, dispersibility, thixotropy and leveling, etc. , Therefore, the use of ultrafine light calcium carbonate in the production process of rubber products, paper products, sealant materials, cement, medicinal materials, food, etc., can significantly increase capacity, reinforce, and reduce costs.
当前,国内合成超细碳酸轻钙的方法有:碳化法、沉淀法、复分解法、乳液法、水解合成法、仿生法等。2013年斯里兰卡佩拉德尼亚大学Mantilaka等采用鼓泡碳化法,分别以白云石为原料、以蔗糖为钙离子提取剂、以聚丙烯酸溶液为稳定剂,成功合成了非晶碳酸钙。2012年日本大学Kojima采用超声雾化混合反应法(SARM),在超声辅助条件下将反应液进行雾化,制备了新型非晶碳酸钙。At present, domestic methods for synthesizing ultrafine light calcium carbonate include: carbonization method, precipitation method, double decomposition method, emulsion method, hydrolysis synthesis method, bionic method, etc. In 2013, Mantilaka, University of Peradeniya, Sri Lanka, etc. used the bubbling carbonization method to successfully synthesize amorphous calcium carbonate using dolomite as raw material, sucrose as calcium ion extractant, and polyacrylic acid solution as stabilizer. In 2012, Kojima of Japan University used the ultrasonic atomization mixed reaction method (SARM) to atomize the reaction solution under ultrasonic-assisted conditions to prepare a new type of amorphous calcium carbonate.
我国超细碳酸轻钙产量位居全球第二,但产品质量远远落后于发达国家,存在粒径大、粒度分布宽、白度低,工业批量生产困难、晶体形貌不规整、分散性差等缺陷,导致我国仍需从国外进口大量高档超细碳酸轻钙产品以满足行业需求。my country's ultra-fine light calcium carbonate production ranks second in the world, but the product quality lags far behind developed countries, such as large particle size, wide particle size distribution, low whiteness, difficulties in industrial mass production, irregular crystal morphology, poor dispersion, etc. Due to the defects, my country still needs to import a large number of high-grade ultra-fine light calcium carbonate products from abroad to meet the needs of the industry.
渭北地区奥陶纪石灰岩中,CaO含量高,有害成分(铁、锰等)的含量低,用其制备超细碳酸轻钙,具有天然优势,一方面,该地区石灰岩储量大,价格低廉,生产成本低,可以解决石灰岩资源的低值化利用问题,提高石灰岩的经济附加值,充分发挥了石灰岩资源优势,拓宽石灰岩的应用领域;另一方面,将石灰岩用于制备超细碳酸轻钙,能降低石灰岩在建筑领域中应用所带来的环境污染,加强了环境保护。In the Ordovician limestone in the Weibei area, the content of CaO is high and the content of harmful components (iron, manganese, etc.) is low. Using it to prepare ultrafine light calcium carbonate has natural advantages. On the one hand, the limestone reserves in this area are large and the price is low. Low production cost can solve the problem of low-value utilization of limestone resources, increase the economic added value of limestone, give full play to the advantages of limestone resources, and broaden the application field of limestone; on the other hand, limestone is used to prepare ultra-fine light calcium carbonate, It can reduce the environmental pollution caused by the application of limestone in the construction field, and strengthen the environmental protection.
目前,我国生产的超细碳酸轻钙形貌包括:球状、针状、棒状、片状、链锁状、立方体状以及无定形等,而对其它特殊形貌的超细碳酸钙合成罕见报道,尤其是用渭北奥陶纪石灰岩制备菱面体状超细碳酸轻钙的方法未见报道。At present, the morphology of ultrafine light calcium carbonate produced in my country includes: spherical, needle-shaped, rod-shaped, flake-shaped, chain-shaped, cube-shaped, and amorphous, etc., but there are rare reports on the synthesis of ultra-fine calcium carbonate with other special shapes. In particular, there is no report on the preparation of rhombohedral superfine light calcium carbonate from Ordovician limestone in Weibei.
发明内容Contents of the invention
本发明的目的在于提供一种利用渭北奥陶纪石灰岩制备纯度高、白度好、粒度细、分散性好、呈菱面体状的超细碳酸轻钙的方法。The object of the present invention is to provide a method for preparing rhombohedral superfine light calcium carbonate with high purity, good whiteness, fine particle size, good dispersibility and rhombohedral shape by using Ordovician limestone in Weibei.
为了实现上述目标,本发明采用如下的技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种利用渭北奥陶纪石灰岩制备菱面体状超细碳酸轻钙的方法,其特征在于,具体包括以下步骤:A method for preparing rhombohedral superfine light calcium carbonate using Ordovician limestone in Weibei, characterized in that it specifically includes the following steps:
步骤一:将渭北奥陶纪石灰岩破碎,然后进行洗选除杂、干燥、筛分,得到粒径1.6mm-2.0mm的原料颗粒;Step 1: crushing the Ordovician limestone in Weibei, and then washing and removing impurities, drying, and sieving to obtain raw material particles with a particle size of 1.6mm-2.0mm;
步骤二:将上述原料颗粒置于箱式电阻炉内,在1000℃煅烧60min,得到高活性石灰;Step 2: Put the above-mentioned raw material particles in a box-type resistance furnace, and calcinate at 1000°C for 60 minutes to obtain high-activity lime;
步骤三:将上述高活性石灰与90℃的热水按1:10质量比混合,搅拌4h,过400目筛,精制成质量浓度为5.6%的石灰乳液,并将石灰乳液静置30h;Step 3: Mix the above-mentioned highly active lime with hot water at 90° C. in a mass ratio of 1:10, stir for 4 hours, pass through a 400-mesh sieve, refine into a lime emulsion with a mass concentration of 5.6%, and leave the lime emulsion for 30 hours;
步骤四:将上述调制好的石灰乳液置于容器内,并放入超声波震荡器中,向上述容器内加入晶形控制剂月桂酸钠,月桂酸钠的添加量为1.5g/L,然后通入CO2气体并将CO2流量控制在200mL/min,启动搅拌器并将搅拌速度控制在1000r/min,控制反应温度为20℃,用pH计和电导率仪跟踪并记录反应进程;Step 4: Place the above-mentioned prepared lime emulsion in a container and put it into an ultrasonic oscillator, add the crystal form control agent sodium laurate into the above-mentioned container, the addition amount of sodium laurate is 1.5g/L, and then pass into CO2 gas and control the CO2 flow rate at 200mL/min, start the stirrer and control the stirring speed at 1000r/min, control the reaction temperature at 20°C, track and record the reaction process with a pH meter and a conductivity meter;
步骤五:当pH降至7时,停止通入CO2气体并关闭超声波震荡器,继续搅拌反应20min;Step 5: When the pH drops to 7, stop feeding CO 2 gas and turn off the ultrasonic oscillator, and continue stirring for 20 minutes;
步骤六:过滤、洗涤,对所得溶质进行真空干燥、研磨,即得超细碳酸轻钙。Step 6: filter, wash, vacuum-dry and grind the obtained solute to obtain superfine light calcium carbonate.
前述的方法,其特征在于,在步骤一中,对渭北奥陶纪石灰岩进行破碎采用的是鄂式破粹机。The aforementioned method is characterized in that, in step 1, the Ordovician limestone in Weibei is crushed using a jaw crusher.
前述的方法,其特征在于,在步骤二中,将前述箱式电阻炉的升温速率设置为10℃/min。The aforementioned method is characterized in that, in step 2, the heating rate of the aforementioned box-type resistance furnace is set to 10° C./min.
前述的方法,其特征在于,在步骤四中,通入CO2气体时,使用气体分布器。The aforementioned method is characterized in that, in step 4, when introducing CO 2 gas, a gas distributor is used.
前述的方法,其特征在于,前述气体分布器的开孔直径为0.8mm。The aforementioned method is characterized in that the opening diameter of the aforementioned gas distributor is 0.8 mm.
本发明的有益之处在于:以渭北奥陶纪石灰岩为原料,加入晶形控制剂月桂酸钠,采用在碳化过程中增加气体分布器和超声技术的改进碳化工艺,制备得到了性能优良(纯度较高、白度较好、粒度较细)、附加值高、呈菱面体状的超细碳酸轻钙产品。The benefits of the present invention are: using Weibei Ordovician limestone as raw material, adding crystal form control agent sodium laurate, adopting the improved carbonization process of adding gas distributor and ultrasonic technology in the carbonization process, the preparation has excellent performance (higher purity) High, whiteness, fine particle size), high added value, rhombohedral superfine light calcium carbonate products.
附图说明Description of drawings
图1是传统碳化法制备得到的产品扫描电镜分析图;Figure 1 is a scanning electron microscope analysis diagram of a product prepared by a traditional carbonization method;
图2是实施例1制备得到的产品扫描电镜分析图;Fig. 2 is the scanning electron microscope analysis diagram of the product prepared in embodiment 1;
图3是实施例1制备得到的菱面体状超细碳酸轻钙产品的X射线衍射分析图;Fig. 3 is the X-ray diffraction analysis figure of the rhombohedral superfine light calcium carbonate product that embodiment 1 prepares;
图4是实施例1制备得到的菱面体状超细碳酸轻钙产品粒度分布图;Fig. 4 is the particle size distribution figure of the rhombohedral superfine light calcium carbonate product that embodiment 1 prepares;
图5是实施例1制备得到的菱面体状超细碳酸轻钙产品红外光谱分析图;Fig. 5 is the infrared spectrogram of rhombohedral superfine light calcium carbonate product prepared by embodiment 1;
图6是实施例2制备得到的产品扫描电镜分析图;Fig. 6 is the scanning electron microscope analysis diagram of the product prepared in embodiment 2;
图7是实施例2制备得到的菱面体状超细碳酸轻钙产品X射线衍射分析图;Fig. 7 is the rhombohedral shape superfine light calcium carbonate product X-ray diffraction analysis figure that embodiment 2 prepares;
图8是实施例2制备得到的菱面体状超细碳酸轻钙产粒度分布图;Fig. 8 is that the rhombohedral superfine light calcium carbonate that embodiment 2 prepares produces particle size distribution figure;
图9是实施例2制备得到的菱面体状超细碳酸轻钙产品红外光谱分析图;Fig. 9 is the infrared spectrum analysis figure of rhombohedral superfine light calcium carbonate product prepared in embodiment 2;
图10是实施例3制备得到的产品扫描电镜分析图;Fig. 10 is the scanning electron microscope analysis figure of the product prepared in embodiment 3;
图11是实施例3制备得到的菱面体状超细碳酸轻钙产品X射线衍射分析图;Fig. 11 is the X-ray diffraction analysis figure of rhombohedral superfine light calcium carbonate product prepared in embodiment 3;
图12是实施例3制备得到的菱面体状超细碳酸轻钙产品粒度分布图;Fig. 12 is the particle size distribution figure of rhombohedral superfine light calcium carbonate product prepared by embodiment 3;
图13是实施例3制备得到的菱面体状超细碳酸轻钙产品红外光谱分析图。Fig. 13 is the infrared spectrum analysis diagram of the rhombohedral ultrafine light calcium carbonate product prepared in Example 3.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明作具体的介绍。The present invention will be specifically introduced below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
在本实施例中,所用的石灰岩为铜川奥陶纪马家沟组1号石灰岩样品(厚层状、浅灰色、块状),依据国家标准GB/T3286-2012中的操作要求,对石灰岩中的CaO、MgO、SiO2、Al2O3以及Fe2O3的含量进行测定,通过分析测定,得出的石灰岩中主要化学成分含量如表1所示。In this example, the limestone used is the No. 1 limestone sample (thick layered, light gray, massive) of the Ordovician Majiagou Formation in Tongchuan. According to the operating requirements in the national standard GB/T3286-2012, the The contents of CaO, MgO, SiO 2 , Al 2 O 3 and Fe 2 O 3 were determined. Through analysis and determination, the main chemical components in limestone are shown in Table 1.
表1石灰岩中主要化学成分的含量Table 1 Contents of main chemical components in limestone
采用铜川奥陶纪马家沟组1号石灰岩样品制备超细碳酸轻钙的方法包括以下步骤:The method for preparing superfine light calcium carbonate by adopting No. 1 limestone sample of Ordovician Majiagou Formation in Tongchuan comprises the following steps:
步骤一:将铜川奥陶纪马家沟组1号石灰岩样品用鄂式破粹机破碎,然后进行清洗除杂、干燥、筛分,得到粒径为1.6mm-2.0mm的原料颗粒。Step 1: The No. 1 limestone sample of the Ordovician Majiagou Formation in Tongchuan was crushed with a jaw crusher, and then cleaned, dried, and sieved to obtain raw material particles with a particle size of 1.6mm-2.0mm.
步骤二:将上述原料颗粒置于箱式电阻炉内煅烧,升温速率设置为10℃/min,1000℃煅烧60min,得到活性石灰,测得活性石灰活性度为365mL。Step 2: put the above-mentioned raw material particles into a box-type resistance furnace for calcination, set the heating rate at 10°C/min, and calcine at 1000°C for 60min to obtain active lime, and the measured activity of the active lime is 365mL.
步骤三:将活性石灰与90℃的热水按1:10质量比混合,搅拌4h,过400目筛,精制成质量浓度为5.6%的石灰乳液,并将石灰乳液静置30h。Step 3: Mix active lime and hot water at 90°C in a mass ratio of 1:10, stir for 4 hours, pass through a 400-mesh sieve, refine the lime emulsion with a mass concentration of 5.6%, and let the lime emulsion stand for 30 hours.
步骤四:取200mL上述调和好的石灰乳液置于容量为500mL的四颈瓶中,将四颈瓶置于超声波震荡器中,将连有通气导管的气体分布器、电导率仪、pH计以及搅拌器分别插入四颈瓶中,并放入超声波震荡器中,向上述容器内加入晶形控制剂月桂酸钠,月桂酸钠的添加量为1.5g/L,然后通入CO2气体,使用开孔直径为0.8mm的气体分布器,将CO2流量控制在200mL/min,启动搅拌器,将搅拌速度控制在1000r/min,控制反应温度为20℃,用pH计和电导率仪跟踪并记录反应进程。Step 4: Take 200mL of the above-mentioned reconciled lime emulsion and place it in a four-necked bottle with a capacity of 500mL, place the four-necked bottle in an ultrasonic oscillator, and place the gas distributor connected with the ventilation catheter, the conductivity meter, the pH meter and Insert the stirrers into the four-necked bottles respectively, and put them into the ultrasonic oscillator, add the crystal form control agent sodium laurate into the above-mentioned container, the addition amount of sodium laurate is 1.5g/L, then pass in CO2 gas, use the open A gas distributor with a hole diameter of 0.8mm, control the flow rate of CO2 at 200mL/min, start the stirrer, control the stirring speed at 1000r/min, control the reaction temperature at 20°C, track and record with a pH meter and a conductivity meter reaction process.
步骤五:当pH降至7左右时,停止通入CO2气体并关闭超声波震荡器,继续搅拌反应约20min。Step 5: When the pH drops to about 7, stop feeding CO 2 gas and turn off the ultrasonic oscillator, and continue stirring for about 20 minutes.
步骤六:过滤、洗涤,对所得溶质进行真空干燥、研磨,即得超细碳酸轻钙。Step 6: filter, wash, vacuum-dry and grind the obtained solute to obtain superfine light calcium carbonate.
实施例1制备得到的产品性能与传统碳化法制备得到的产品性能的对比如表2所示。The comparison between the performance of the product prepared in Example 1 and the performance of the product prepared by the traditional carbonization method is shown in Table 2.
表2两种碳化法所得产品的性能对比The performance comparison of the products obtained by two kinds of carbonization methods in table 2
由表2可知,实施例1制备得到的产品粒径显著减小、pH值降低,而产品的白度与传统碳化法制备得到的产品的白度相比没有发生变化。It can be seen from Table 2 that the particle size of the product prepared in Example 1 is significantly reduced, and the pH value is reduced, while the whiteness of the product does not change compared with that of the product prepared by the traditional carbonization method.
传统碳化法制备得到的产品的形貌与实施例1制备得到的产品的形貌分别如图1和图2所示。The morphology of the product prepared by the traditional carbonization method and the morphology of the product prepared in Example 1 are shown in Figure 1 and Figure 2 respectively.
由图1和图2可知,传统碳化法制备得到的产品形貌多样且不规则、粒度不均匀、粒径较大,约为0.5μm,而采用本发明改进的碳化法后,制备得到的产品形貌呈菱面体状且均匀,粒度均匀、粒径较小,约为0.06μm。As can be seen from Figures 1 and 2, the products prepared by the traditional carbonization method have various and irregular shapes, uneven particle size, and a large particle size of about 0.5 μm. After the improved carbonization method of the present invention is adopted, the prepared products The shape is rhombohedral and uniform, and the particle size is uniform and small, about 0.06 μm.
可见,本发明改进的碳化法能促进碳化反应的进行,有利于提高晶体成核速率,使制备得到的产品性能优良。It can be seen that the improved carbonization method of the present invention can promote the carbonization reaction, is beneficial to increase the crystal nucleation rate, and makes the prepared product have excellent performance.
实施例1制备得到的菱面体状超细碳酸轻钙产品的X射线衍射分析结果如图3所示。The X-ray diffraction analysis results of the rhombohedral ultrafine light calcium carbonate product prepared in Example 1 are shown in Figure 3.
由图3可知,所有主要特征衍射峰在2θ处的值分别为:23.06°、29.4°、36.0°、39.42°、43.14°、47.56°、48.54°、57.36°、60.72°、64.62°、77.58°,主要特征衍射峰在2θ处所对应的晶面均能与标准方解石(JCPDS:05-0586)的晶面一一对应,分别为(012)、(104)、(110)、(113)、(202)、(018)、(116)、(122)、(124)、(300)、(134)等。It can be seen from Figure 3 that the values of all main characteristic diffraction peaks at 2θ are: 23.06°, 29.4°, 36.0°, 39.42°, 43.14°, 47.56°, 48.54°, 57.36°, 60.72°, 64.62°, 77.58° , the crystal planes corresponding to the main characteristic diffraction peaks at 2θ can correspond to the crystal planes of standard calcite (JCPDS: 05-0586), which are (012), (104), (110), (113), ( 202), (018), (116), (122), (124), (300), (134), etc.
由此可知,实施例1制备得到的超细碳酸轻钙产品的主要矿物为方解石。It can be seen that the main mineral of the ultrafine light calcium carbonate product prepared in Example 1 is calcite.
实施例1制备得到的菱面体状超细碳酸轻钙产品的粒度分布如图4所示。The particle size distribution of the rhombohedral superfine light calcium carbonate product prepared in Example 1 is shown in Figure 4.
由图4可知,制备得到的超细碳酸轻钙中90%的颗粒粒径集中在0.03μm-0.1μm的范围内,其中d10=0.03μm,d50=0.06μm,d90=0.09μm,产品平均粒径为0.06μm,达到了工业超细碳酸轻钙一等品的粒度要求。It can be seen from Figure 4 that 90% of the particle size of the prepared ultrafine light calcium carbonate is concentrated in the range of 0.03 μm-0.1 μm, where d 10 =0.03 μm, d 50 =0.06 μm, d 90 =0.09 μm, The average particle size of the product is 0.06μm, which meets the particle size requirements of the first-class industrial superfine light calcium carbonate.
实施例1制备得到的菱面体状超细碳酸轻钙产品的红外光谱分析如图5所示。The infrared spectrum analysis of the rhombohedral ultrafine light calcium carbonate product prepared in Example 1 is shown in Figure 5.
由图5可知,红外光谱分析图中的主要吸收峰在3451.75cm-1、1440.40cm-1、1792.24cm-1、875.93cm-1以及713.69cm-1与方解石晶型碳酸钙的特征吸收峰均相对应。As can be seen from Figure 5, the main absorption peaks in the infrared spectrum analysis diagram are at 3451.75cm -1 , 1440.40cm -1 , 1792.24cm -1 , 875.93cm -1 and 713.69cm -1 and the characteristic absorption peaks of calcite crystal calcium carbonate Corresponding.
由此可知,实施例1制备得到的超细碳酸轻钙产品的主要矿物组成为方解石,与XRD检测结果相吻合。其中,在3451.75cm-1处的宽吸收峰是超细碳酸轻钙中吸附水的存在所致;在1440.40cm-1处的强吸收峰是超细碳酸轻钙中C-O键的不对称伸缩振动峰;在1796.24cm-1处的吸收峰是超细碳酸轻钙中CO3 2-的C=O振动峰;在875.93cm-1和713.69cm-1处的吸收峰是超细碳酸轻钙中C-O键的弯曲振动峰。It can be seen that the main mineral composition of the ultrafine light calcium carbonate product prepared in Example 1 is calcite, which is consistent with the XRD detection results. Among them, the broad absorption peak at 3451.75cm -1 is caused by the existence of adsorbed water in the ultrafine light calcium carbonate; the strong absorption peak at 1440.40cm -1 is the asymmetry of the C-O bond in the ultrafine light calcium carbonate stretching vibration peak; the absorption peak at 1796.24cm -1 is the C=O vibration peak of CO 3 2- in ultrafine light calcium carbonate; the absorption peaks at 875.93cm -1 and 713.69cm -1 are ultrafine light calcium carbonate The bending vibration peak of the C-O bond in calcium.
将实施例1制备得到的菱面体状超细碳酸轻钙产品与工业超细碳酸轻钙标准中规定的指标进行了对比。The rhombohedral ultrafine light calcium carbonate product prepared in Example 1 was compared with the index specified in the industrial ultrafine light calcium carbonate standard.
表3实施例1制备得到的菱面体状超细碳酸轻钙质量指标对比Table 3 Example 1 prepares rhombohedral superfine light calcium carbonate quality index contrast
由表3可知,实施例1制备得到的超细碳酸轻钙产品白度为95%,pH值为9.0、铁含量为0.06%、密度为2.57g/cm3,平均粒径为0.06μm,完全符合工业超细碳酸轻钙指标中一等品的规定。It can be seen from Table 3 that the whiteness of the ultrafine light calcium carbonate product prepared in Example 1 is 95%, the pH value is 9.0, the iron content is 0.06%, the density is 2.57g/cm 3 , and the average particle diameter is 0.06 μm, completely It complies with the regulations of the first-class product in the index of industrial ultra-fine light calcium carbonate.
实施例2Example 2
在本实施例中,所用的石灰岩为铜川奥陶纪马家沟组2号石灰岩样品(厚层状、浅灰色、块状),依据国家标准GB/T3286-2012中的操作要求,对石灰岩中的CaO、MgO、SiO2、Al2O3以及Fe2O3的含量进行测定,通过分析测定,得出的石灰岩中主要化学成分的含量如表4所示。In this example, the limestone used is the No. 2 limestone sample (thick layered, light gray, massive) of the Ordovician Majiagou Formation in Tongchuan. According to the operating requirements in the national standard GB/T3286-2012, the The contents of CaO, MgO, SiO 2 , Al 2 O 3 and Fe 2 O 3 were determined. Through analysis and determination, the contents of main chemical components in limestone are shown in Table 4.
表4石灰岩中主要化学成分的含量Table 4 Contents of main chemical components in limestone
采用铜川奥陶纪马家沟组2号石灰岩样品制备超细碳酸轻钙的方法包括以下步骤:The method for preparing superfine light calcium carbonate by adopting the No. 2 limestone sample of the Ordovician Majiagou Formation in Tongchuan comprises the following steps:
步骤一:将铜川奥陶纪马家沟组2号石灰岩样品用鄂式破粹机破碎,然后进行清洗除杂、干燥、筛分,得到粒径为1.6mm-2.0mm的原料颗粒。Step 1: The No. 2 limestone sample of the Ordovician Majiagou Formation in Tongchuan is crushed with a jaw crusher, and then cleaned, dried, and sieved to obtain raw material particles with a particle size of 1.6mm-2.0mm.
步骤二:将上述原料颗粒置于箱式电阻炉内煅烧,升温速率设置为10℃/min,1000℃煅烧60min,得到活性石灰,测得活性石灰活性度为368mL。Step 2: Put the above-mentioned raw material particles into a box-type resistance furnace for calcination, set the heating rate at 10°C/min, and calcine at 1000°C for 60min to obtain active lime, and the measured activity of the active lime is 368mL.
步骤三:将高活性石灰与90℃的热水按1:10质量比混合,搅拌4h,过400目筛,精制成质量浓度为5.6%的石灰乳液,并将石灰乳液静置30h。Step 3: Mix highly active lime with hot water at 90°C in a mass ratio of 1:10, stir for 4 hours, pass through a 400-mesh sieve, refine it into a lime emulsion with a mass concentration of 5.6%, and let the lime emulsion stand for 30 hours.
步骤四:取200mL上述调和好的石灰乳液置于容量为500mL的四颈瓶中,将四颈瓶置于超声波震荡器中,将连有通气导管的气体分布器、电导率仪、pH计以及搅拌器分别插入四颈瓶中,并放入超声波震荡器中,向上述容器内加入晶形控制剂月桂酸钠,月桂酸钠的添加量为1.5g/L,然后通入CO2气体,使用开孔直径为0.8mm的气体分布器,将CO2流量控制在200mL/min,启动搅拌器,将搅拌速度控制在1000r/min,控制反应温度为20℃,用pH计和电导率仪跟踪并记录反应进程。Step 4: Take 200mL of the above-mentioned reconciled lime emulsion and place it in a four-necked bottle with a capacity of 500mL, place the four-necked bottle in an ultrasonic oscillator, and place the gas distributor connected with the ventilation catheter, the conductivity meter, the pH meter and Insert the stirrers into the four-necked bottles respectively, and put them into the ultrasonic oscillator, add the crystal form control agent sodium laurate into the above-mentioned container, the addition amount of sodium laurate is 1.5g/L, then pass in CO2 gas, use the open A gas distributor with a hole diameter of 0.8mm, control the flow rate of CO2 at 200mL/min, start the stirrer, control the stirring speed at 1000r/min, control the reaction temperature at 20°C, track and record with a pH meter and a conductivity meter reaction process.
步骤五:当pH降至7左右时,停止通入CO2气体并关闭超声波震荡器,继续搅拌反应约20min。Step 5: When the pH drops to about 7, stop feeding CO 2 gas and turn off the ultrasonic oscillator, and continue stirring for about 20 minutes.
步骤六:过滤、洗涤,对所得溶质进行真空干燥、研磨,即得超细碳酸轻钙。Step 6: filter, wash, vacuum-dry and grind the obtained solute to obtain superfine light calcium carbonate.
实施例2制备得到的产品的形貌如图6所示。The morphology of the product prepared in Example 2 is shown in Figure 6.
由图6可知,采用本发明改进的碳化法后,制备得到的产品形貌呈菱面体状且均匀,粒度均匀、粒径较小,约为0.05μm。It can be seen from Fig. 6 that after adopting the improved carbonization method of the present invention, the prepared product has rhombohedral and uniform morphology, uniform particle size and small particle size, about 0.05 μm.
可见,本发明改进的碳化法能促进碳化反应的进行,提高晶体成核速率,使制备得到的产品性能优良。It can be seen that the improved carbonization method of the present invention can promote the carbonization reaction, increase the crystal nucleation rate, and make the prepared product have excellent performance.
实施例2制备得到的菱面体状超细碳酸轻钙产品的X射线衍射分析结果如图7所示。The X-ray diffraction analysis results of the rhombohedral ultrafine light calcium carbonate product prepared in Example 2 are shown in Figure 7.
由图7可知,样品的主要特征衍射峰在2θ处的值分别为23.06°、29.4°、36.0°、39.42°、43.14°、44.04°、47.56°、48.54°、57.36°、60.72°、64.62°、77.58°,主要特征衍射峰在2θ处所对应的衍射晶面均能与标准方解石(JCPDS:05-0586)的晶面一一对应,分别为(012)、(104)、(110)、(113)、(202)、(024)、(018)、(116)、(122)、(124)、(300)、(134)。It can be seen from Figure 7 that the values of the main characteristic diffraction peaks of the sample at 2θ are 23.06°, 29.4°, 36.0°, 39.42°, 43.14°, 44.04°, 47.56°, 48.54°, 57.36°, 60.72°, 64.62° , 77.58°, and the diffraction crystal planes corresponding to the main characteristic diffraction peaks at 2θ can all correspond to the crystal planes of standard calcite (JCPDS: 05-0586), which are (012), (104), (110), ( 113), (202), (024), (018), (116), (122), (124), (300), (134).
由此可知,实施例2制备得到的超细碳酸轻钙产品的主要矿物为方解石。It can be seen that the main mineral of the superfine light calcium carbonate product prepared in embodiment 2 is calcite.
实施例2制备得到的菱面体状超细碳酸轻钙产品的粒度分布如图8所示。The particle size distribution of the rhombohedral ultrafine light calcium carbonate product prepared in Example 2 is shown in Figure 8.
由图8可知,制备得到的菱面体状超细碳酸轻钙,90%的产品粒径集中在0.04μm-0.09μm的范围内,其中d10=0.04μm,d50=0.05μm,d90=0.08μm,所得产品粒径较均匀,粒径较小,平均粒径约为0.05μm。It can be seen from Figure 8 that 90% of the prepared rhombohedral ultrafine light calcium carbonate has a product particle size concentrated in the range of 0.04 μm-0.09 μm, where d 10 =0.04 μm, d 50 =0.05 μm, d 90 = 0.08μm, the particle size of the obtained product is relatively uniform, the particle size is small, and the average particle size is about 0.05μm.
实施例2制备得到的菱面体状超细碳酸轻钙产品的红外光谱分析如图9所示。The infrared spectrum analysis of the rhombohedral ultrafine light calcium carbonate product prepared in Example 2 is shown in Figure 9.
由图9可知,实施例2制备得到的菱面体状超细碳酸轻钙产品在1440.40cm-1、1792.14cm-1、875.93cm-1以及713.69cm-1处出现较强的特征吸收峰,与标准方解石谱图(Sadtler)中的特征峰相对应。It can be seen from Figure 9 that the rhombohedral ultrafine light calcium carbonate product prepared in Example 2 has strong characteristic absorption peaks at 1440.40cm -1 , 1792.14cm -1 , 875.93cm -1 and 713.69cm -1 , and Corresponds to the characteristic peaks in the standard calcite spectrum (Sadtler).
以上叙述表明,实施例2制备得到的样品主要矿物组成均为方解石,与X射线衍射分析结果相吻合。The above description shows that the main mineral composition of the sample prepared in Example 2 is calcite, which is consistent with the X-ray diffraction analysis results.
将实施例2制备得到的菱面体状超细碳酸轻钙产品与工业超细碳酸轻钙标准中规定的指标进行了对比。The rhombohedral ultrafine light calcium carbonate product prepared in Example 2 was compared with the index specified in the industrial ultrafine light calcium carbonate standard.
表5实施例2制备得到的菱面体状超细碳酸轻钙质量指标对比The rhombohedral shape superfine light calcium carbonate quality index comparison that table 5 embodiment 2 prepares
由表5可知,实施例2制备得到的超细碳酸轻钙产品的粒径、比表面积、白度、pH值等都符合工业超细碳酸轻钙一等品的基本要求。As can be seen from Table 5, the particle size, specific surface area, whiteness, pH value, etc. of the ultrafine light calcium carbonate product prepared in Example 2 all meet the basic requirements of the first-class product of industrial ultrafine light calcium carbonate.
实施例3Example 3
在本实施例中,所用的石灰岩为铜川奥陶纪马家沟组3号石灰岩样品(厚层状、浅灰色、块状),依据国标GB/T3286-2012中的操作要求,对石灰岩中的CaO、MgO、SiO2、Al2O3以及Fe2O3的含量进行测定,通过分析测定,得出的石灰岩中主要化学成分的含量如表6所示。In this embodiment, the limestone used is the No. 3 limestone sample (thick layer, light gray, massive) of the Ordovician Majiagou Formation in Tongchuan. According to the operation requirements in the national standard GB/T3286-2012, the The contents of CaO, MgO, SiO 2 , Al 2 O 3 and Fe 2 O 3 were measured, and the contents of main chemical components in limestone were obtained through analysis and determination, as shown in Table 6.
表6石灰岩中主要化学成分的含量Table 6 Contents of main chemical components in limestone
采用铜川奥陶纪马家沟组3号石灰岩样品制备超细碳酸轻钙的方法包括以下步骤:The method for preparing superfine light calcium carbonate by adopting the No. 3 limestone sample of the Ordovician Majiagou Formation in Tongchuan comprises the following steps:
步骤一:将铜川奥陶纪马家沟组3号石灰岩样品用鄂式破粹机破碎,然后进行清洗除杂、干燥、筛分,得到粒径为1.6mm-2.0mm的原料颗粒。Step 1: The No. 3 limestone sample of the Ordovician Majiagou Formation in Tongchuan was crushed with a jaw crusher, and then cleaned, dried, and sieved to obtain raw material particles with a particle size of 1.6mm-2.0mm.
步骤二:将上述原料颗粒置于箱式电阻炉内煅烧,升温速率设置为10℃/min,在1000℃的环境下煅烧60min,得到活性石灰,测得活性石灰活性度为365mL。Step 2: Put the above-mentioned raw material particles in a box-type resistance furnace for calcination, set the heating rate at 10°C/min, and calcine at 1000°C for 60 minutes to obtain active lime, and the measured activity of the active lime is 365mL.
步骤三:将活性石灰与90℃的热水按1:10质量比混合,搅拌4h,过400目筛,精制成质量浓度为5.6%的石灰乳液,并将石灰乳液静置30h。Step 3: Mix active lime and hot water at 90°C in a mass ratio of 1:10, stir for 4 hours, pass through a 400-mesh sieve, refine the lime emulsion with a mass concentration of 5.6%, and let the lime emulsion stand for 30 hours.
步骤四:取200mL上述调和好的石灰乳液置于容量为500mL的四颈瓶中,将四颈瓶置于超声波震荡器中,将连有通气导管的气体分布器、电导率仪、pH计以及搅拌器分别插入四颈瓶中,并放入超声波震荡器中,向上述容器内加入晶形控制剂月桂酸钠,月桂酸钠的添加量为1.5g/L,然后通入CO2气体,使用开孔直径为0.8mm的气体分布器,将CO2流量控制在200mL/min,启动搅拌器,将搅拌速度控制在1000r/min,控制反应温度为20℃,用pH计和电导率仪跟踪并记录反应进程。Step 4: Take 200mL of the above-mentioned reconciled lime emulsion and place it in a four-necked bottle with a capacity of 500mL, place the four-necked bottle in an ultrasonic oscillator, and place the gas distributor connected with the ventilation catheter, the conductivity meter, the pH meter and Insert the stirrers into the four-necked bottles respectively, and put them into the ultrasonic oscillator, add the crystal form control agent sodium laurate into the above-mentioned container, the addition amount of sodium laurate is 1.5g/L, then pass in CO2 gas, use the open A gas distributor with a hole diameter of 0.8mm, control the flow rate of CO2 at 200mL/min, start the stirrer, control the stirring speed at 1000r/min, control the reaction temperature at 20°C, track and record with a pH meter and a conductivity meter reaction process.
步骤五:当pH降至7左右时,停止通入CO2气体并关闭超声波震荡器,继续搅拌反应约20min。Step 5: When the pH drops to about 7, stop feeding CO 2 gas and turn off the ultrasonic oscillator, and continue stirring for about 20 minutes.
步骤六:过滤、洗涤,对所得溶质进行真空干燥、研磨,即得超细碳酸轻钙。Step 6: filter, wash, vacuum-dry and grind the obtained solute to obtain superfine light calcium carbonate.
实施例3制备得到的产品的形貌如图10所示。The morphology of the product prepared in Example 3 is shown in Figure 10.
由图10可知,采用本发明改进的碳化法后,制备得到的产品形貌呈菱面体状,粒度均匀、粒径较小,约为0.05μm。It can be seen from Figure 10 that after adopting the improved carbonization method of the present invention, the prepared product has a rhombohedral shape, uniform particle size, and a small particle size of about 0.05 μm.
实施例3制备得到的菱面体状超细碳酸轻钙产品的X射线衍射谱图如图11所示。The X-ray diffraction spectrum of the rhombohedral ultrafine light calcium carbonate product prepared in Example 3 is shown in Figure 11.
由图11可知,样品的主要特征衍射峰在2θ处的值分别为:23.06°、29.4°、36.0°、39.42°、43.14°、44.04°、47.56°、48.54°、57.36°、60.72°、64.62°、77.58°,主要特征衍射峰在2θ处所对应的衍射晶面均能与标准方解石(JCPDS:05-0586)的晶面一一对应,分别为(012)、(104)、(110)、(113)、(202)、(024)、(018)、(116)、(122)、(124)、(300)、(134)。It can be seen from Figure 11 that the values of the main characteristic diffraction peaks of the sample at 2θ are: 23.06°, 29.4°, 36.0°, 39.42°, 43.14°, 44.04°, 47.56°, 48.54°, 57.36°, 60.72°, 64.62° °, 77.58°, the diffraction crystal planes corresponding to the main characteristic diffraction peaks at 2θ can correspond to the crystal planes of standard calcite (JCPDS: 05-0586), respectively (012), (104), (110), (113), (202), (024), (018), (116), (122), (124), (300), (134).
由此可知,实施例3制备得到的超细碳酸轻钙产品的主要矿物组成为方解石。It can be seen that the main mineral composition of the superfine light calcium carbonate product prepared in Example 3 is calcite.
实施例3制备得到的菱面体状超细碳酸轻钙产品的粒度分布如图12所示。The particle size distribution of the rhombohedral ultrafine light calcium carbonate product prepared in Example 3 is shown in Figure 12.
由图12可知,实施例3制备得到的菱面体状超细碳酸轻钙产品,90%的颗粒粒径集中在0.04μm-0.09μm的范围内,其中d10=0.04μm,d50=0.05μm,d90=0.08μm,产品粒径较均匀,粒径较小,平均粒径为0.05μm,达到了工业超细碳酸轻钙一等品的粒度要求。It can be seen from Figure 12 that in the rhombohedral ultrafine light calcium carbonate product prepared in Example 3, 90% of the particle size is concentrated in the range of 0.04 μm-0.09 μm, where d 10 =0.04 μm, d 50 =0.05 μm , d 90 =0.08μm, the particle size of the product is relatively uniform, the particle size is small, and the average particle size is 0.05μm, which meets the particle size requirements of the first-class industrial superfine light calcium carbonate.
实施例3制备得到的菱面体状超细碳酸轻钙产品的红外光谱分析图如图13所示。The infrared spectrum analysis diagram of the rhombohedral ultrafine light calcium carbonate product prepared in Example 3 is shown in Figure 13.
由图13可知,实施例3制备得到的菱面体状超细碳酸轻钙产品在1440.40cm-1、1792.14cm-1、875.93cm-1以及713.69cm-1处出现较强的特征吸收峰,与标准方解石谱图(Sadtler)中的特征峰相对应。It can be seen from Figure 13 that the rhombohedral ultrafine light calcium carbonate product prepared in Example 3 has strong characteristic absorption peaks at 1440.40cm -1 , 1792.14cm -1 , 875.93cm -1 and 713.69cm -1 . Corresponds to the characteristic peaks in the standard calcite spectrum (Sadtler).
以上叙述表明,实施例3制备得到的菱面体状超细碳酸轻钙产品的主要矿物组成均为方解石,与X射线衍射分析结果相吻合。The above description shows that the main mineral composition of the rhombohedral ultrafine light calcium carbonate product prepared in Example 3 is calcite, which is consistent with the X-ray diffraction analysis results.
将实施例3制备得到的菱面体状超细碳酸轻钙产品与工业超细碳酸轻钙标准中规定的指标进行了对比。The rhombohedral ultrafine light calcium carbonate product prepared in Example 3 was compared with the index specified in the industrial ultrafine light calcium carbonate standard.
表7实施例3制备得到的菱面体状超细碳酸轻钙质量指标对比Table 7 Example 3 prepares rhombohedral superfine light calcium carbonate quality index contrast
由表7可知,实施例3制备得到的超细碳酸轻钙产品的粒径、比表面积、白度、pH值等都符合工业超细碳酸轻钙一等品的基本要求。As can be seen from Table 7, the particle size, specific surface area, whiteness, pH value, etc. of the ultrafine light calcium carbonate product prepared in Example 3 all meet the basic requirements of the first-class product of industrial ultrafine light calcium carbonate.
综上所述,本发明采用碳化法制备超细碳酸轻钙,并且在碳化反应前添加了晶形控制剂月桂酸钠(添加量为1.5g/L),在碳化反应过程中增加了超声技术(提高了超细碳酸轻钙颗粒分散性、降低颗粒粒径)以及气体分布器(加快了反应过程的传质、传热,缩短了碳化时间),制备得到的超细碳酸轻钙产品性能优良(纯度较高、白度较好、颗粒分散性较高、粒度较细)、呈菱面体状,完全符合工业超细碳酸轻钙指标中一等品的规定,发展潜力巨大。In summary, the present invention adopts carbonization method to prepare superfine light calcium carbonate, and has added crystal form control agent sodium laurate (addition is 1.5g/L) before carbonization reaction, has increased ultrasonic technology ( Improve the dispersibility of ultrafine light calcium carbonate particles, reduce the particle size) and gas distributor (accelerate the mass transfer and heat transfer of the reaction process, shorten the carbonization time), and the prepared ultrafine light calcium carbonate product has excellent performance ( Higher purity, better whiteness, higher particle dispersibility, finer particle size), rhombohedral shape, completely in line with the regulations of the first-class product in the index of industrial ultra-fine light calcium carbonate, and has great development potential.
需要说明的是,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。It should be noted that the above-mentioned embodiments do not limit the present invention in any form, and all technical solutions obtained by means of equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710119863.4A CN106830042B (en) | 2017-03-01 | 2017-03-01 | A kind of method that the ultra-fine carbonic acid fine particle calcium carbonate of rhombohedron shape is prepared using Weihe north Ordovician limestone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710119863.4A CN106830042B (en) | 2017-03-01 | 2017-03-01 | A kind of method that the ultra-fine carbonic acid fine particle calcium carbonate of rhombohedron shape is prepared using Weihe north Ordovician limestone |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106830042A CN106830042A (en) | 2017-06-13 |
CN106830042B true CN106830042B (en) | 2018-05-11 |
Family
ID=59137726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710119863.4A Expired - Fee Related CN106830042B (en) | 2017-03-01 | 2017-03-01 | A kind of method that the ultra-fine carbonic acid fine particle calcium carbonate of rhombohedron shape is prepared using Weihe north Ordovician limestone |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106830042B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110589865B (en) * | 2019-10-24 | 2022-03-25 | 长江师范学院 | Method for preparing loose porous calcite by using steel slag |
CN110589866B (en) * | 2019-10-24 | 2022-03-25 | 长江师范学院 | A kind of method that utilizes steel slag to prepare ultrafine powder vaterite |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1074099A (en) * | 1963-12-07 | 1967-06-28 | Licencia Talalmanyokat | Improvements in or relating to the production of calcium and magnesium carbonates |
CN1392101A (en) * | 2002-07-29 | 2003-01-22 | 上海天福机电化工技术研究所 | Process for producing nano calcium carbonate by ultrasonic cavitation technology |
-
2017
- 2017-03-01 CN CN201710119863.4A patent/CN106830042B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1074099A (en) * | 1963-12-07 | 1967-06-28 | Licencia Talalmanyokat | Improvements in or relating to the production of calcium and magnesium carbonates |
CN1392101A (en) * | 2002-07-29 | 2003-01-22 | 上海天福机电化工技术研究所 | Process for producing nano calcium carbonate by ultrasonic cavitation technology |
Non-Patent Citations (1)
Title |
---|
"不同形貌纳米碳酸钙的制备、改性及应用研究";李强等;《中国优秀硕士学位论文全文数据库(电子期刊)工程科技I辑》;20150615(第06期);第12页第1-2段、第15页表3.1 * |
Also Published As
Publication number | Publication date |
---|---|
CN106830042A (en) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100450932C (en) | Nm-class calcium carbonate carbonization process | |
CN102701255A (en) | Method for high-concentration carbonization production of spherical nano calcium carbonate | |
CN103194098B (en) | Preparation method of composite titanium dioxide | |
CN104556185A (en) | Method for preparing cubic nano calcium carbonate | |
CN108083314A (en) | A kind of preparation method of rice-shaped precipitated calcium carbonate | |
CN109809457B (en) | Regular spherical calcium carbonate and its preparation process | |
CN102757075B (en) | Method for preparing calcium carbonate powders of different structures and shapes | |
CN101993104A (en) | Novel method for producing superfine calcium carbonate by using carbide slag as raw material | |
JPS636494B2 (en) | ||
CN108083312B (en) | A kind of carbonization reactor and preparation small particle, polymolecularity, low oil factor nanometer calcium carbonate method | |
CN105060330A (en) | Preparation method of spherical calcium carbonate crystal | |
CN101570344A (en) | Preparation method of aragonite crystal form calcium carbonate | |
CN109650430A (en) | A kind of method of high content of magnesium lime stone preparation nanometer calcium carbonate | |
CN103073042A (en) | Preparation method of submicron-grade barium sulfate | |
CN101302359A (en) | A kind of composite titanium dioxide and preparation method thereof | |
CN109867986A (en) | A kind of macromolecule modified nanometer calcium carbonate new product family | |
CN101074116B (en) | Production of superfine mono-dispered nano-zirconium dioxide | |
CN106830042B (en) | A kind of method that the ultra-fine carbonic acid fine particle calcium carbonate of rhombohedron shape is prepared using Weihe north Ordovician limestone | |
CN105858696A (en) | Preparation method and application for micron vaterite type food-grade calcium carbonate | |
JP3910503B2 (en) | Method for producing basic magnesium carbonate | |
CN102424409A (en) | Method for preparing light magnesium carbonate | |
CN109809458A (en) | Rugby-shaped calcium carbonate and its preparation process | |
CN102198956B (en) | New process for producing aluminum and silicon chemical products by low-grade bauxite or kaolin raw material based on alkaline method | |
JP4249115B2 (en) | Method for producing strontium carbonate fine particles | |
CN110040987A (en) | Method for preparing light-burned magnesite from magnesite flotation tailings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180511 |