CN106793087B - Array antenna indoor positioning method based on AOA and PDOA - Google Patents
Array antenna indoor positioning method based on AOA and PDOA Download PDFInfo
- Publication number
- CN106793087B CN106793087B CN201710156453.7A CN201710156453A CN106793087B CN 106793087 B CN106793087 B CN 106793087B CN 201710156453 A CN201710156453 A CN 201710156453A CN 106793087 B CN106793087 B CN 106793087B
- Authority
- CN
- China
- Prior art keywords
- path
- pdoa
- signals
- aoa
- sight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 238000005562 fading Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
- H04W64/006—Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于室内定位算法技术领域,特别针对多径和非视距的室内定位环境。The invention belongs to the technical field of indoor positioning algorithms, and is particularly aimed at multipath and non-line-of-sight indoor positioning environments.
背景技术Background technique
定位技术的研究和应用十分广泛,渗透于军事、商业、生活等各个方面,全球定位系统(GPS)提供了良好的全球定位服务,但是它在室内环境下无法使用。无源超高频射频识别(UHF RFID)室内定位技术受到越来越多的人的关注,因为无源标签具有体积小、部署简单、无需供电、价格低廉、读取距离较远、较快的读写速度等优势,无源超高频RFID定位技术已逐步被应用到情景感知领域,如物流管理、智能交通、机器人、自动化办公等方面。The research and application of positioning technology is very extensive, permeating all aspects of military, business, life, etc. Global Positioning System (GPS) provides a good global positioning service, but it cannot be used in indoor environment. Passive ultra-high frequency radio frequency identification (UHF RFID) indoor positioning technology has attracted more and more people's attention, because passive tags have the advantages of small size, simple deployment, no power supply, low price, long reading distance, and fast speed. Due to the advantages of reading and writing speed, passive UHF RFID positioning technology has been gradually applied to the field of situational awareness, such as logistics management, intelligent transportation, robots, automated office and so on.
室内无线定位的方法包括基于到达时间(TOA)、到达时间差(TDOA)、到达角度(AOA)、到达信号强度(RSS)和到达相位差(PDOA)等。然而,在带宽很窄的UHF FRID系统中,TOA和TDOA的方法很难被实现;基于RSS的方法对多径的信号衰落很敏感,所以基于单纯的RSS方法的定位系统,定位精度不是很高;基于PDOA的方法也受到多径的影响,使得测距结果不准确;同时,基于AOA的方法受到非视距(NLOS)和多径的影响。The methods of indoor wireless positioning include time of arrival (TOA), time difference of arrival (TDOA), angle of arrival (AOA), signal strength of arrival (RSS) and phase difference of arrival (PDOA). However, in the UHF FRID system with very narrow bandwidth, the TOA and TDOA methods are difficult to implement; the RSS-based method is very sensitive to multipath signal fading, so the positioning accuracy of the positioning system based on the pure RSS method is not very high. ; PDOA-based methods are also affected by multipath, making the ranging results inaccurate; meanwhile, AOA-based methods are affected by non-line-of-sight (NLOS) and multipath.
常见的减弱多径和非视距对室内定位精度影响的方法分为统计学办法和几何学办法。这两类方法不论在前端的建模环节,还是在后端的定位算法环节都有着广泛的应用。对于建模环节抑制误差的方法,统计建模一般是针对非视距误差进行建模,用某种统计特征来描述非视距误差,或者是对造成多径问题的散射体进行建模;而几何建模,如射线跟踪(Ray-tracing),主要是利用无线信号传播特性与光的传播特性相近,分析信号在具体环境下传播的路径。对于定位算法环节抑制误差的方法,统计学的方法是通过测量接收信号误差分布来确定信号路径是视距还是非视距;而几何学的方法是通过几何关系来确定信号路径是视距还是非视距。Common methods to reduce the influence of multipath and non-line-of-sight on indoor positioning accuracy are divided into statistical methods and geometric methods. These two types of methods are widely used in both front-end modeling and back-end positioning algorithms. For the method of suppressing errors in the modeling process, statistical modeling is generally to model non-line-of-sight errors, describe non-line-of-sight errors with certain statistical features, or model scatterers that cause multipath problems; Geometric modeling, such as ray-tracing, mainly uses the propagation characteristics of wireless signals to be similar to those of light to analyze the path of signal propagation in specific environments. For the method of suppressing errors in the positioning algorithm, the statistical method is to determine whether the signal path is line-of-sight or non-line-of-sight by measuring the error distribution of the received signal; and the geometric method is to determine whether the signal path is line-of-sight or non-line-of-sight through the geometric relationship. sight distance.
统计学方法最大的缺点是需要已知信号在某种环境下的统计特性,这就需要通过大量的实际测量来获得这种统计特性。当环境改变时,统计特性会发生变化,需要重新大量的测量来修正参数。而几何学的方法不需要大量的测量,只需已知室内布局图即可。但是现有的方法都是利用直射路径或一次散射路径进行定位,对于多次散射问题,或者假设不存在,或者通过算法判断来滤除。The biggest disadvantage of the statistical method is that it needs to know the statistical characteristics of the signal in a certain environment, which requires a large number of actual measurements to obtain such statistical characteristics. When the environment changes, the statistical characteristics will change, and a large number of measurements will be required to correct the parameters. The geometric method does not require a large number of measurements, but only needs to know the indoor layout. However, the existing methods all use the direct path or the primary scattering path for positioning. For the multiple scattering problem, it is assumed that it does not exist, or it is filtered out by algorithmic judgment.
发明内容SUMMARY OF THE INVENTION
本发明提供一种可以很好地改善多径和非视距对室内定位的影响、有效地提高定位精度的室内定位算法,技术方案如下:The invention provides an indoor positioning algorithm that can well improve the influence of multipath and non-line-of-sight on indoor positioning, and effectively improve positioning accuracy. The technical scheme is as follows:
一种基于AOA和PDOA的阵列天线室内定位算法,包括如下步骤:An indoor positioning algorithm for array antennas based on AOA and PDOA, comprising the following steps:
1)利用阵列天线来区分多径信号;1) Using an array antenna to distinguish multipath signals;
2)根据接收到的信号的能量大小来选取出两条能量最强的信号路径,并且从天线中获取两条信号路径的相位信息;2) Select two signal paths with the strongest energy according to the energy of the received signal, and obtain the phase information of the two signal paths from the antenna;
3)利用AOA估计方法来计算两条信号的到达角度;3) Use the AOA estimation method to calculate the arrival angles of the two signals;
4)利用PDOA估计方法来计算两条信号的传播距离;4) Use the PDOA estimation method to calculate the propagation distance of the two signals;
5)根据定位场景总障碍物的位置,能够建立虚拟基站,将非视距NLOS路径转化为视距LOS路径;5) According to the position of the total obstacle in the positioning scene, a virtual base station can be established, and the non-line-of-sight NLOS path can be converted into a line-of-sight LOS path;
6)根据步骤3)中得到的角度信息、步骤4)中得到的距离信息,联合步骤5)中建立的虚拟基站,利用加权最小二乘WLS算法计算待定位物体的位置坐标(x′,y′):6) According to the angle information obtained in step 3) and the distance information obtained in step 4), in conjunction with the virtual base station established in step 5), the weighted least squares WLS algorithm is used to calculate the position coordinates (x', y of the object to be located) '):
Z1=[x′,y′,x′2+y′2]T=(GTWG)-1GTWHZ 1 =[x',y',x' 2 +y' 2 ] T =(G T WG) -1 G T WH
其中diag{·}表示对角矩阵, in diag{·} represents a diagonal matrix,
Z=[x,y,x2+y2]T,Xk=[xk,yk]T,k=1,2,...,N,是与第k条信号路径相对应的虚拟基站,dk是由PDOA估计出来的第k条信号路径的路径长度,并且dk≤dk+1,θk是第k条信号路径的到达角度;Z=[x,y,x 2 +y 2 ] T , X k =[x k ,y k ] T ,k=1,2,...,N, is the virtual corresponding to the kth signal path Base station, d k is the path length of the k-th signal path estimated by PDOA, and d k ≤d k+1 , θ k is the arrival angle of the k-th signal path;
7)利用残差加权LS算法对步骤6)得到的位置进行优化,得到更加准确的位置坐标(x,y)。7) Use the residual weighted LS algorithm to optimize the position obtained in step 6) to obtain more accurate position coordinates (x, y).
本发明利用天线阵列来区分多径信号,利用虚拟基站来将非视距路径转化为视距路径。选取两条能量最强的信号路径,利用AOA和PDOA估计算法,联合加权最小二乘和残差加权算法来计算待定位物体的位置。可以很好地改善多径和非视距对室内定位的影响、有效地提高定位精度。The invention uses the antenna array to distinguish multipath signals, and uses the virtual base station to convert the non-line-of-sight path into the line-of-sight path. The two signal paths with the strongest energy are selected, and the AOA and PDOA estimation algorithms are used to calculate the position of the object to be located. The influence of multipath and non-line-of-sight on indoor positioning can be well improved, and the positioning accuracy can be effectively improved.
附图说明Description of drawings
图1是本发明的整体流程框图。FIG. 1 is a block diagram of the overall flow of the present invention.
图2是本发明的定位场景示意图。FIG. 2 is a schematic diagram of a positioning scene of the present invention.
图3利用虚拟基站将非视距路径转化为视距路径的示意图。FIG. 3 is a schematic diagram of converting a non-line-of-sight path into a line-of-sight path using a virtual base station.
图4是利用本发明中的算法的定位精度的仿真图,仿真的环境是一个10m*10m的屋子,在高斯白噪声的环境下,利用本发明的算法,定位精度以80%的概率小于0.5m。Fig. 4 is a simulation diagram of the positioning accuracy using the algorithm of the present invention. The simulated environment is a 10m*10m room. Under the Gaussian white noise environment, using the algorithm of the present invention, the positioning accuracy is less than 0.5 with a probability of 80%. m.
具体实施方式Detailed ways
下面利用均匀线性阵列,对本发明所述的算法进行详细的描述。The algorithm of the present invention is described in detail below using a uniform linear array.
1)利用阵列天线来区分多径信号。1) Using an array antenna to distinguish multipath signals.
2)根据接收到的信号的能量大小来选取出两条能量最强的信号路径,并且从天线中获取两条信号路径的相位信息。2) According to the energy of the received signal, two signal paths with the strongest energy are selected, and the phase information of the two signal paths is obtained from the antenna.
3)利用AOA估计方法来计算两条信号的到达角度,根据步骤2)中得到的相位信息,利用AOA估计方法中经典的基于空间平滑的MUSIC算法就能计算信号的到达角度。3) Using the AOA estimation method to calculate the angle of arrival of the two signals, and according to the phase information obtained in step 2), the classical MUSIC algorithm based on spatial smoothing in the AOA estimation method can be used to calculate the angle of arrival of the signals.
4)利用PDOA估计方法来计算两条信号的传播距离,PDOA方法测距的公式如下所示:4) Use the PDOA estimation method to calculate the propagation distance of the two signals. The formula of the PDOA method is as follows:
其中,c是光在空气中的传播速度,Δφ表示信号从阵列天线传播到待定位物体产生的相位差,π=3.14,Δf是两个不同频率的信号之间的频率差,d是计算得到的信号的传播距离。Among them, c is the propagation speed of light in the air, Δφ represents the phase difference generated by the signal propagating from the array antenna to the object to be positioned, π=3.14, Δf is the frequency difference between two signals of different frequencies, d is the calculated the propagation distance of the signal.
5)根据定位场景总障碍物的位置,能够建立虚拟基站,将非视距(NLOS)路径转化为视距(LOS)路径。如图3所示,Xb是阵列天线的位置,Xt是待定位物体的位置,Xv是根据障碍物l建立的位置建立的虚拟基站。从虚拟基站向待定位的物体看去,我们就会得到一条视距路径。5) According to the position of the total obstacle in the positioning scene, a virtual base station can be established to convert a non-line-of-sight (NLOS) path into a line-of-sight (LOS) path. As shown in FIG. 3 , X b is the position of the array antenna, X t is the position of the object to be positioned, and X v is the virtual base station established according to the position established by the obstacle l. Looking from the virtual base station to the object to be located, we get a line-of-sight path.
6)根据步骤3)中得到的角度信息、步骤4)中得到的距离信息,联合步骤5)中建立的虚拟基站,利用加权最小二乘(WLS)算法计算待定位物体的位置:6) According to the angle information obtained in step 3), the distance information obtained in step 4), in conjunction with the virtual base station established in step 5), the weighted least squares (WLS) algorithm is used to calculate the position of the object to be located:
设有N条信号路径的距离d和角度θ被实体基站估计出来,Xk=[xk,yk]T,k=1,2,...,N是与第k条信号路径相对应的虚拟基站,dk是由PDOA估计出来的第k条信号路径的路径长度,并且dk≤dk+1,θk是第k条信号路径的到达角度。用X=[x,y]T代表待定位物体的位置,则:The distance d and angle θ of N signal paths are estimated by the entity base station, X k =[x k ,y k ] T ,k=1,2,...,N is corresponding to the kth signal path , d k is the path length of the k-th signal path estimated by PDOA, and d k ≤d k+1 , θ k is the arrival angle of the k-th signal path. Use X=[x,y] T to represent the position of the object to be positioned, then:
x sin(θi)-y cos(θi)=xi sin(θi)+yi cos(θi)x sin(θ i )-y cos(θ i )=x i sin(θ i )+y i cos(θ i )
将上面的两个公式写成矩阵形式,可以得到GZ=H,其中:Write the above two formulas in matrix form, you can get GZ=H, where:
Z=[x,y,x2+y2]T。Z=[x, y, x 2 +y 2 ] T .
利用加权最小二乘算法计算待定位物体的位置,得到待定位物体的初始位置坐标(x′,y′):Use the weighted least squares algorithm to calculate the position of the object to be positioned, and obtain the initial position coordinates (x', y') of the object to be positioned:
Z1=[x′,y′,x′2+y′2]T=(GTWG)-1GTWH,Z 1 = [x', y', x '2 +y' 2 ] T = (G T WG) -1 G T WH,
其中diag{·}表示对角矩阵, in diag{·} represents a diagonal matrix,
7)设k=1,2,...,N,利用残差加权(LS)算法对步骤6)得到的位置进行优化,得到更为准确的待定位物体的位置X=[x,y]T,其中:7) set k=1,2,...,N, use the residual weighting (LS) algorithm to optimize the position obtained in step 6) to obtain a more accurate position of the object to be positioned X=[x,y] T , where :
X′i=[x′i,y′i]T i=1,2,...,N是从第i条信号路径中推导出来的待定位物体的位置。X′ i =[x′ i ,y′ i ] T i =1,2,...,N is the position of the object to be located derived from the i-th signal path.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710156453.7A CN106793087B (en) | 2017-03-16 | 2017-03-16 | Array antenna indoor positioning method based on AOA and PDOA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710156453.7A CN106793087B (en) | 2017-03-16 | 2017-03-16 | Array antenna indoor positioning method based on AOA and PDOA |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106793087A CN106793087A (en) | 2017-05-31 |
CN106793087B true CN106793087B (en) | 2020-01-21 |
Family
ID=58966896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710156453.7A Active CN106793087B (en) | 2017-03-16 | 2017-03-16 | Array antenna indoor positioning method based on AOA and PDOA |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106793087B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2563834A (en) * | 2017-06-23 | 2019-01-02 | Decawave Ltd | Wideband antenna array |
CN107831517B (en) * | 2017-10-18 | 2021-02-09 | 国家新闻出版广电总局广播科学研究院 | Combined positioning method for multipoint collaborative direction finding of unknown broadcast television intrusion signals |
CN109698999B (en) * | 2017-10-23 | 2021-04-16 | 深圳市优必选科技有限公司 | Positioning method and terminal equipment |
CN107883959B (en) * | 2017-10-31 | 2020-05-22 | 西安交通大学 | WiFi indoor multi-person positioning method based on phased array principle |
CN108811082B (en) * | 2018-06-26 | 2020-07-21 | 中国人民解放军陆军工程大学 | Wireless positioning method, system and positioning terminal |
US11681010B2 (en) * | 2018-08-01 | 2023-06-20 | Apple Inc. | Measurements and reporting for user equipment (UE) positioning in wireless networks |
US12146975B2 (en) | 2018-10-09 | 2024-11-19 | Nokia Technologies Oy | Positioning system and method |
CN109669176A (en) * | 2019-01-17 | 2019-04-23 | 普联技术有限公司 | Method, apparatus and storage medium based on wireless multi-path measurement house type |
CN109991572A (en) * | 2019-04-25 | 2019-07-09 | 哈尔滨工业大学 | A dual-machine passive positioning method based on azimuth and pitch information |
CN111615050A (en) * | 2020-04-24 | 2020-09-01 | 郑州联睿电子科技有限公司 | Emergency positioning searching device, method and system |
CN112505624B (en) * | 2020-12-09 | 2023-01-24 | 电子科技大学 | A Positioning System Based on Environmental Backscatter |
CN116106823A (en) * | 2023-02-18 | 2023-05-12 | 中国人民解放军海军工程大学 | A TDOA-PDOA Joint Positioning Method Based on Particle Swarm Optimization |
CN117939630B (en) * | 2024-01-23 | 2024-12-17 | 电子科技大学 | Indoor complex environment passive positioning system and method based on ultrahigh frequency RFID technology |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104812063A (en) * | 2015-04-08 | 2015-07-29 | 天津大学 | TOA (time of arrival) positioning method based on virtual sensors in indoor environment |
CN105572635A (en) * | 2016-01-25 | 2016-05-11 | 西安电子科技大学 | Single-station passive quick positioning method based on least square method |
CN105960013A (en) * | 2016-05-06 | 2016-09-21 | 华东交通大学 | AOA-based cooperative localization method under non line-of-sight environment |
KR101658465B1 (en) * | 2015-03-05 | 2016-09-22 | 국방과학연구소 | Location estimation method based on direction finding using tdoa of signal and direction finder thereof |
CN106291540A (en) * | 2016-09-14 | 2017-01-04 | 河北省电力勘测设计研究院 | A kind of multiple-input and multiple-output GPR backwards projection target imaging method estimated based on DOA |
-
2017
- 2017-03-16 CN CN201710156453.7A patent/CN106793087B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101658465B1 (en) * | 2015-03-05 | 2016-09-22 | 국방과학연구소 | Location estimation method based on direction finding using tdoa of signal and direction finder thereof |
CN104812063A (en) * | 2015-04-08 | 2015-07-29 | 天津大学 | TOA (time of arrival) positioning method based on virtual sensors in indoor environment |
CN105572635A (en) * | 2016-01-25 | 2016-05-11 | 西安电子科技大学 | Single-station passive quick positioning method based on least square method |
CN105960013A (en) * | 2016-05-06 | 2016-09-21 | 华东交通大学 | AOA-based cooperative localization method under non line-of-sight environment |
CN106291540A (en) * | 2016-09-14 | 2017-01-04 | 河北省电力勘测设计研究院 | A kind of multiple-input and multiple-output GPR backwards projection target imaging method estimated based on DOA |
Non-Patent Citations (2)
Title |
---|
Sameh Sorour;Yves Lostanlen;Shahrokh Valaee;Khaqan Majeed.Joint Indoor Localization and Radio Map Construction with Limited Deployment Load.《IEEE》.2014, * |
Yishuang Geng;Kaveh Pahlavan.Design, Implementation, and Fundamental Limits of Image and RF Based Wireless Capsule Endoscopy Hybrid Localization.《IEEE》.2016, * |
Also Published As
Publication number | Publication date |
---|---|
CN106793087A (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106793087B (en) | Array antenna indoor positioning method based on AOA and PDOA | |
CN106842123B (en) | An indoor positioning method and an indoor positioning system | |
Jang et al. | Geomagnetic field based indoor localization using recurrent neural networks | |
CN103501538B (en) | Based on the indoor orientation method of multipath energy fingerprint | |
Wang et al. | TOA-based NLOS error mitigation algorithm for 3D indoor localization | |
CN103338516B (en) | A two-step localization method for wireless sensor networks based on total least squares | |
CN105704652B (en) | Fingerprint base acquisition and optimization method in a kind of positioning of WLAN/ bluetooth | |
CN102209382A (en) | Wireless sensor network node positioning method based on received signal strength indicator (RSSI) | |
CN111722180B (en) | A method, device and system for indoor pedestrian location based on Kalman filter | |
CN102928813A (en) | RSSI (Received Signal Strength Indicator) weighted centroid algorithm-based passive RFID (Radio Frequency Identification Device) label locating method | |
CN105792349B (en) | signal intensity distribution establishing method and wireless positioning system | |
CN104330771A (en) | Indoor RFID precise positioning method and device | |
CN104066172B (en) | Method for positioning AP in wireless local area network | |
CN106767815B (en) | Weighted Least Squares Indoor Positioning Method Based on Phase Difference Euclidean Distance Ranging | |
Suroso et al. | Distance-based indoor localization using empirical path loss model and RSSI in wireless sensor networks | |
CN107241797A (en) | Mono-station location method based on scattering object information under NLOS environment | |
CN104581945B (en) | The WLAN indoor orientation methods of semi-supervised APC clustering algorithms based on distance restraint | |
CN104640204A (en) | Wireless sensor network node positioning method in indirect wave environment | |
CN110888108B (en) | A positioning method based on RFID and phase calibration | |
Wang et al. | High-accuracy localization using single-anchor ultra-wide bandwidth systems | |
CN114051209B (en) | Fingerprint positioning method based on intelligent reflecting surface and scene geometric model | |
CN114205741B (en) | TOA and position fingerprint combined indoor positioning method based on UWB | |
CN109254264A (en) | Improved UHF-RFID positioning method | |
CN110736962A (en) | Target tracking method under passive RFID (radio frequency identification) scenes | |
CN105872977A (en) | Improved LANDMARAC locating algorithm for wireless sensor network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |