[go: up one dir, main page]

CN106784658A - A kind of Morphological control method of lithium ion battery metal oxide/carbon negative pole material - Google Patents

A kind of Morphological control method of lithium ion battery metal oxide/carbon negative pole material Download PDF

Info

Publication number
CN106784658A
CN106784658A CN201611089912.6A CN201611089912A CN106784658A CN 106784658 A CN106784658 A CN 106784658A CN 201611089912 A CN201611089912 A CN 201611089912A CN 106784658 A CN106784658 A CN 106784658A
Authority
CN
China
Prior art keywords
morphology
metal oxide
lithium ion
negative electrode
carbon negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611089912.6A
Other languages
Chinese (zh)
Other versions
CN106784658B (en
Inventor
王海燕
孙旦
唐有根
张睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201611089912.6A priority Critical patent/CN106784658B/en
Publication of CN106784658A publication Critical patent/CN106784658A/en
Application granted granted Critical
Publication of CN106784658B publication Critical patent/CN106784658B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种锂离子电池负极用金属氧化物/碳(MOx/C)复合材料的形貌调控方法。将金属离子和不同比例的单齿配体加入到溶剂中,搅拌一段时间后加入多齿配体,置于反应釜中加热一段时间后得到不同形貌的金属有机框架(MOF)前驱体材料。将前驱体在惰性气体气氛下煅烧一段时间后得到不同形貌的MOx/C复合材料。该复合材料具有较高的比表面积和丰富的孔隙结构,作为锂离子电池负极材料具有优异的倍率性能和循环稳定性能。该形貌调控方法操作简单,易于实现规模化应用,同时可拓展至其它注重材料形貌控制的领域。The invention discloses a method for controlling the morphology of a metal oxide/carbon ( MOx /C) composite material for a negative electrode of a lithium ion battery. Add metal ions and monodentate ligands in different proportions to the solvent, stir for a period of time, add multidentate ligands, place in a reaction kettle and heat for a period of time to obtain metal-organic framework (MOF) precursor materials with different morphologies. MO x /C composites with different morphologies were obtained after the precursor was calcined under an inert gas atmosphere for a period of time. The composite material has a high specific surface area and a rich pore structure, and has excellent rate performance and cycle stability as an anode material for lithium-ion batteries. The morphology control method is simple to operate, easy to realize large-scale application, and can be extended to other fields that focus on material morphology control.

Description

一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法A method for controlling the morphology of metal oxide/carbon anode materials for lithium-ion batteries

技术领域technical field

本发明属于高能电池材料技术领域,具体涉及锂离子电池用MOx/C复合负极材料形貌的一种调控方法。The invention belongs to the technical field of high-energy battery materials, and in particular relates to a method for regulating the morphology of MOx /C composite negative electrode materials for lithium ion batteries.

背景技术Background technique

锂离子电池由于具有高的能量密度和长的循环寿命已广泛应用于便携式电子器件中,在储能和动力电池领域有着良好的应用前景。然而,想要进一步提高锂离子电池的能量密度,我们需要开发新型的高容量负极材料来替代现有的商业化石墨负极(其理论容量仅372mAh·g-1)。基于转化机制的金属氧化物负极材料具有比容量高和价格便宜等优点有望满足下一代锂离子电池负极材料的要求。Lithium-ion batteries have been widely used in portable electronic devices due to their high energy density and long cycle life, and have good application prospects in the fields of energy storage and power batteries. However, in order to further increase the energy density of lithium-ion batteries, we need to develop new high-capacity anode materials to replace the existing commercial graphite anode (its theoretical capacity is only 372mAh·g -1 ). Metal oxide anode materials based on conversion mechanism have the advantages of high specific capacity and low price, which are expected to meet the requirements of next-generation lithium-ion battery anode materials.

目前金属氧化物作为锂离子电池负极材料主要存在动力学过程缓慢、充放电过程中晶体体积变化大及循环性能差等问题。为改善金属氧化物的电化学性能,研究者们提出许多有益的手段,如材料纳米化、碳包覆、石墨烯/碳纳米管负载及材料介孔化等(参见(a)Jiang,H.;Hu,Y.;Guo,S.;Yan,C.;Lee,P.S.;Li,C.ACS Nano 2014,8(6),6038-6046.(b)Sun,B.;Chen,Z.;Kim,H.-S.;Ahn,H.;Wang,G.Journal of Power Sources 2011,196(6),3346-3349.(c)Xia,Y.;Xiao,Z.;Dou,X.;Huang,H.;Lu,X.;Yan,R.;Gan,Y.;Zhu,W.;Tu,J.;Zhang,W.;Tao,X.ACS Nano2013,7(8),7083-7092.(d)Zhao,G.;Huang,X.;Wang,X.;Connor,P.;Li,J.;Zhang,S.;Irvine,J.T.S.Journal of Materials Chemistry A 2015,3(1),297-303.)。众所周知,材料的形貌和结构对其电化学性能有着重要的影响。如何有效设计形貌可控的高性能电极材料仍是研究者们的研究重点。At present, metal oxides as anode materials for lithium-ion batteries mainly have problems such as slow kinetic process, large crystal volume change during charge and discharge, and poor cycle performance. In order to improve the electrochemical performance of metal oxides, researchers have proposed many beneficial means, such as nanomaterials, carbon coating, graphene/carbon nanotube loading, and material mesoporization, etc. (see (a) Jiang, H. ; Hu, Y.; Guo, S.; Yan, C.; Lee, P.S.; Li, C. Kim, H.-S.; Ahn, H.; Wang, G. Journal of Power Sources 2011, 196(6), 3346-3349.(c) Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X.; Yan, R.; Gan, Y.; Zhu, W.; .(d) Zhao, G.; Huang, X.; Wang, X.; Connor, P.; Li, J.; Zhang, S.; Irvine, J.T.S. Journal of Materials Chemistry A 2015,3(1),297 -303.). It is well known that the morphology and structure of materials have an important impact on their electrochemical performance. How to effectively design high-performance electrode materials with controllable morphology is still the research focus of researchers.

金属有机框架化合物(MOF)由于具有比表面大、孔隙丰富、易于合成等优点,在气体储存、分离、催化、化学传感和药物转移等领域具有良好的应用前景(参见(a)James,S.L.Chemical Society Reviews 2003,32(5),276-288;(b)Chaemchuen,S.;Kabir,N.A.;Zhou,K.;Verpoort,F.Chemical Society Reviews2013,42(24),9304-9332;(c)Li,J.-R.;Kuppler,R.J.;Zhou,H.-C.Chemical Society Reviews 2009,38(5),1477-1504;(d)Liu,J.;Chen,L.;Cui,H.;Zhang,J.;Zhang,L.;Su,C.-Y.Chemical Society Reviews 2014,43(16),6011-6061.)。最近,越来越多的文献报道了采用MOF材料作为前驱体来合成各种不同的金属氧化物负极材料,如面条状的α-Fe2O3,多孔的ZnO/ZnFe2O4/C八面体,锐钛矿型多孔TiO2,介孔Co3O4纳米颗粒等(参见(a)Xu,X.;Cao,R.;Jeong,S.;Cho,J.Nano letters 2012,12(9),4988-4991.(b).Feng,Z.;Xianluo,H.;Zhen,L.;Long,Q.;Chenchen,H.;Rui,Z.;Yan,J.;Yunhui,H.Advanced Materials 2014,26(38),6622–6628.(c)Wang,Z.;Li,X.;Xu,H.;Yang,Y.;Cui,Y.;Pan,H.;Wang,Z.;Chen,B.;Qian,G.Journal of MaterialsChemistry A 2014,2(31),12571-12575.(d)Li,C.;Chen,T.;Xu,W.;Lou,X.;Pan,L.;Chen,Q.;Hu,B.Journal of Materials Chemistry A 2015,3(10),5585-5591.(e)Zheng,F.;Xia,G.;Yang,Y.;Chen,Q.Nanoscale 2015,7(21),9637-9645.)。然而,这些文献的报道仅局限于对已知的MOF前驱体材料进行一个简单的煅烧处理。据我们所知,目前还没有通过控制MOF组装过程来调控MOF前驱体的形貌,继而得到不同形貌的金属氧化物与碳材料的报道。Metal-organic frameworks (MOFs) have good application prospects in the fields of gas storage, separation, catalysis, chemical sensing, and drug transfer due to their large specific surface area, abundant pores, and easy synthesis (see (a) James, SLChemical Society Reviews 2003,32(5),276-288;(b)Chaemchuen,S.;Kabir,NA;Zhou,K.;Verpoort,F.Chemical Society Reviews2013,42(24),9304-9332;(c) Li, J.-R.; Kuppler, RJ; Zhou, H.-C. Chemical Society Reviews 2009, 38(5), 1477-1504; (d) Liu, J.; Chen, L.; Cui, H. ; Zhang, J.; Zhang, L.; Su, C.-Y. Chemical Society Reviews 2014, 43(16), 6011-6061.). Recently, more and more literatures have reported the use of MOF materials as precursors to synthesize various metal oxide anode materials, such as noodle-like α-Fe 2 O 3 , porous ZnO/ZnFe 2 O 4 /C 8 hehedral, anatase porous TiO 2 , mesoporous Co 3 O 4 nanoparticles, etc. (see (a) Xu, X.; Cao, R.; Jeong, S.; Cho, J. Nano letters 2012,12(9 ), 4988-4991.(b). Feng, Z.; Xianluo, H.; Zhen, L.; Long, Q.; Chenchen, H.; Rui, Z.; Yan, J.; Yunhui, H. Advanced Materials 2014, 26(38), 6622–6628.(c) Wang, Z.; Li, X.; Xu, H.; Yang, Y.; Cui, Y.; Pan, H.; Wang, Z.; Chen, B.; Qian, G. Journal of Materials Chemistry A 2014, 2(31), 12571-12575. (d) Li, C.; Chen, T.; Xu, W.; Lou, X.; Pan, L .; Chen, Q.; Hu, B. Journal of Materials Chemistry A 2015, 3(10), 5585-5591. (e) Zheng, F.; Xia, G.; Yang, Y.; Chen, Q. Nanoscale 2015, 7(21), 9637-9645.). However, the reports in these literatures are limited to a simple calcination process for known MOF precursor materials. As far as we know, there is no report on controlling the morphology of MOF precursors by controlling the MOF assembly process, and then obtaining metal oxides and carbon materials with different morphologies.

本发明设计了一种空间限域组装法,通过限制MOF材料在某个或某几个方向的组装,成功实现了对MOF形貌的有效调控,经热处理后得到了形貌可控的金属氧化物/碳复合材料。The present invention designs a space-confined assembly method. By restricting the assembly of MOF materials in one or several directions, the effective regulation of MOF morphology is successfully realized, and the metal oxidation with controllable morphology is obtained after heat treatment. material/carbon composites.

发明内容Contents of the invention

本发明的目的在于提供一种通过调控MOF前驱体形貌来控制MOx/C负极材料形貌的方法,该法流程简单、操作方便、生产成本低、适合规模化生产。用该方法制备的MOx/C材料作为锂离子电池负极材料具有优异的电化学性能。The object of the present invention is to provide a method for controlling the morphology of the MO x /C negative electrode material by adjusting the morphology of the MOF precursor. The method has simple process, convenient operation, low production cost and is suitable for large-scale production. The MO x /C material prepared by this method has excellent electrochemical performance as the negative electrode material of lithium ion battery.

一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法,通过控制加料顺序先将金属离子源和一定比例单齿配体溶于溶剂中,搅拌充分后再加入多齿配体,在一定温度下反应一段时间后得到MOF前驱体;还通过调整单齿配体和金属离子两者的比例来调控产物形貌,将前驱体在惰性或还原性气氛下烧结处理,即得MOx/C复合材料。A method for controlling the morphology of metal oxide/carbon negative electrode materials for lithium-ion batteries. By controlling the feeding sequence, the metal ion source and a certain proportion of monodentate ligands are first dissolved in a solvent, and then the multidentate ligands are added after sufficient stirring. After reacting at a certain temperature for a period of time, the MOF precursor is obtained; the morphology of the product is also adjusted by adjusting the ratio of the monodentate ligand and the metal ion, and the precursor is sintered in an inert or reducing atmosphere to obtain MO x /C Composite.

所述的金属离子源为:锰,铁,钴,镍,铜,锌的乙酸盐;锰,铁,钴,镍,铜,锌的盐酸盐;锰,铁,钴,镍,铜,锌的硝酸盐;锰,铁,钴,镍,铜,锌 的硫酸盐中的一种或几种。The metal ion source is: manganese, iron, cobalt, nickel, copper, zinc acetate; manganese, iron, cobalt, nickel, copper, zinc hydrochloride; manganese, iron, cobalt, nickel, copper, Nitrate of zinc; one or more of sulfates of manganese, iron, cobalt, nickel, copper, and zinc.

所述的单齿配体为:苯甲酸根,苯乙酸根,醋酸根,F-,NH3,CN-中的一种或几种。所述的双齿配体为:对苯二甲酸根,邻苯二甲酸根,均苯三甲酸根,乙二酸,乙二胺,草酸根,联吡啶,乙二胺四乙酸根,水杨醛中的一种或几种。The monodentate ligand is: one or more of benzoate, phenylacetate, acetate, F - , NH 3 , CN - . The bidentate ligands are: terephthalate, phthalate, trimesate, oxalic acid, ethylenediamine, oxalate, bipyridine, ethylenediaminetetraacetate, salicylaldehyde one or more of.

单齿配体与金属离子的摩尔比≤金属中心离子对该配体的最大配位数-2。The molar ratio of the monodentate ligand to the metal ion ≤ the maximum coordination number of the metal center ion to the ligand -2.

所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,以锰为金属离子源,苯甲酸为单齿配体,对苯二甲酸为多齿配体,控制Mn:苯甲酸的摩尔比为1:(1~4)来调控形貌。The method for controlling the morphology of metal oxide/carbon negative electrode materials for lithium ion batteries uses manganese as a metal ion source, benzoic acid as a monodentate ligand, and terephthalic acid as a multidentate ligand, and controls Mn: benzoic acid The molar ratio is 1:(1~4) to control the morphology.

所述的溶剂为:二甲基甲酰胺,水,乙二醇,乙醇,丙醇,己二醇,氯仿中的一种或几种。Described solvent is: one or more in dimethylformamide, water, ethylene glycol, ethanol, propanol, hexanediol, chloroform.

所述的一定反应温度为:50~200℃,反应时间为:3-48h。The certain reaction temperature is: 50-200°C, and the reaction time is: 3-48h.

所述的惰性气体为:纯Ar气、N2气或者H2与Ar的混合气体,所述的还原性气体为CO与CO2的混合气体;H2与Ar的混合气体中H2体积分数为3~20%;CO与CO2的混合气体中CO的体积分数为5~20%。 Described inert gas is: pure Ar gas, N Gas or the mixed gas of H and Ar, described reducing gas is the mixed gas of CO and CO ; H in the mixed gas of Ar and Ar Volume fraction The volume fraction of CO in the mixed gas of CO and CO2 is 5-20%.

所述的烧结温度:500~1000℃,烧结时间:1~10h;升温速率为:1~15℃/min。The sintering temperature: 500-1000°C, sintering time: 1-10h; heating rate: 1-15°C/min.

一种锂离子电池用金属氧化物/碳负极材料,是由上述的方法制备得到的。A metal oxide/carbon negative electrode material for a lithium ion battery is prepared by the above method.

形貌和结构对材料电化学性能有着重要的影响,形貌可控合成仍是研究者们的研究重点。本发明设计了一种空间限域组装法对MOF前驱体的形貌进行调控,然后经过在惰性气体中煅烧,最终得到相应形貌的MOx/C复合材料。本发明以苯甲酸为单齿配体,对苯二甲酸为多齿配体为例的反应原理见图1。金属离子Mn2+为具有八面体场的六配位中心离子,当Mn2+与对苯二甲酸生成MOF时,对苯二甲酸可从Mn2+八面体场的六个顶点方向与Mn2+进行配位生长。如果我们提前加入单齿的苯甲酸时,苯甲酸的羧基可与Mn2+发生配位。当Mn:苯甲酸摩尔比=1:1时,苯甲酸占据Mn2+八面体场的一个顶点(如x),对苯二甲酸则可从(-x,y,-y,z和-z)方向与Mn2+配位生长。当Mn:苯甲酸摩尔比=1:2时,由于位阻效应,苯甲酸占据Mn2+八面体场的对顶点(如x和-x),对苯二甲酸仅可以从(y,-y,z和-z)方向与Mn2+进行配位生长。当Mn:苯甲酸摩尔比=1:4时,苯甲酸优先占据xy平面,对苯二甲酸只可从Z轴与Mn2+配位生长。也就是说,通过苯甲酸作为调节剂可影响Mn-MOF的生长,并达到控制Mn-MOF形貌的目的。经过对不同形貌的Mn-MOF煅烧,我们可以得到不同形貌的MnO/C复合材料。采用MOF作为前驱体合成的材料具有比表面积大、孔隙丰富和孔径比例合适等优点,可以增加锂离子的嵌入位点,提高可逆容量,同时其多孔的结构可抑制金属氧化物材料在充放电过程中的体积膨胀,从而利于电极循环稳定性能的提高。本发明原理不只适用于Mn-MOF,也适用于其他金属的MOF材料,形貌也不局限于本发明后文提到的几种类型。Morphology and structure have an important impact on the electrochemical performance of materials, and the morphology-controlled synthesis is still the research focus of researchers. The present invention designs a space-confined assembly method to regulate the morphology of the MOF precursor, and then calcines in an inert gas to finally obtain a MO x /C composite material with a corresponding morphology. The present invention takes benzoic acid as a monodentate ligand and terephthalic acid as a multidentate ligand as an example for the reaction principle shown in FIG. 1 . The metal ion Mn 2+ is a six-coordination center ion with an octahedral field. When Mn 2+ and terephthalic acid form MOF, terephthalic acid can interact with Mn 2 from the six vertices of the Mn 2+ octahedral field. + undergoes coordination growth. If we add monodentate benzoic acid in advance, the carboxyl group of benzoic acid can coordinate with Mn 2+ . When the molar ratio of Mn:benzoic acid = 1:1, benzoic acid occupies a vertex (such as x) of the Mn 2+ octahedral field, and terephthalic acid can be obtained from (-x, y, -y, z and -z ) direction to coordinate growth with Mn 2+ . When the molar ratio of Mn:benzoic acid=1:2, due to the steric effect, benzoic acid occupies the opposite vertices (such as x and -x) of the Mn 2+ octahedral field, and terephthalic acid can only be obtained from (y, -y , z and -z) directions to coordinate growth with Mn 2+ . When the molar ratio of Mn:benzoic acid is 1:4, benzoic acid preferentially occupies the xy plane, and terephthalic acid can only coordinate with Mn 2+ to grow from the Z axis. That is to say, the growth of Mn-MOF can be affected by benzoic acid as a regulator, and the purpose of controlling the morphology of Mn-MOF can be achieved. After calcination of Mn-MOF with different morphologies, we can obtain MnO/C composites with different morphologies. Materials synthesized using MOF as a precursor have the advantages of large specific surface area, abundant pores, and appropriate pore size ratio, which can increase the intercalation sites of lithium ions and increase the reversible capacity. At the same time, its porous structure can inhibit the charging and discharging process of metal oxide materials. The volume expansion in the electrode is conducive to the improvement of the cycle stability of the electrode. The principle of the present invention is not only applicable to Mn-MOF, but also applicable to MOF materials of other metals, and the morphology is not limited to the types mentioned later in the present invention.

总之,本发明通过控制加料顺序,以及单齿配体和金属离子两者的比例来调控产物形貌。因为单齿配体首先占据金属离子上的配位位点,而且根据需要控制添加比例决定占据多少个位点,然后加入多齿配体占据剩下的配位位点。在了解该作用原理的基础上,可以将本发明方法应用扩展到其他金属离子,单齿配体和多齿配体的反应中。In a word, the present invention regulates the morphology of the product by controlling the order of addition and the ratio of monodentate ligands and metal ions. Because the monodentate ligand first occupies the coordination site on the metal ion, and the addition ratio is controlled according to the need to determine how many sites are occupied, and then the multidentate ligand is added to occupy the remaining coordination sites. On the basis of understanding the principle of action, the method of the present invention can be applied to the reactions of other metal ions, monodentate ligands and multidentate ligands.

本发明的优点和积极效果Advantages and positive effects of the present invention

本发明具有如下显著特点:The present invention has following salient features:

1):本发明提出了一种空间限域组装法,通过对MOF前驱体形貌的控制,达到控制MOx/C形貌的目的,为研究者们提供新的控制材料形貌的思路。1): The present invention proposes a space-confined assembly method, through controlling the morphology of MOF precursors, to achieve the purpose of controlling the morphology of MO x /C, and to provide researchers with new ideas for controlling the morphology of materials.

2):本发明提出的形貌控制方法具有流程简单、操作方便、适合规模化生产。同时,该方法能大量制备具有高比表面积的多孔MOx/C复合材料。2): The morphology control method proposed by the present invention has simple flow, convenient operation and is suitable for large-scale production. At the same time, this method can prepare a large number of porous MO x /C composites with high specific surface area.

3):由于在MOF中,金属离子均匀分散在有机配体中,因此在高温煅烧后,金属氧化物可均匀地包埋在碳的导电网络中,从而有利于提高材料的电子导电性能。同时,材料丰富的孔隙可较好地抑制材料在脱嵌锂过程中的体积膨胀。因此,由该法制备的MOx/C复合材料能获得优异的电化学性能。3): Since metal ions are uniformly dispersed in organic ligands in MOF, metal oxides can be uniformly embedded in the conductive network of carbon after high-temperature calcination, which is beneficial to improve the electronic conductivity of the material. At the same time, the abundant pores of the material can better inhibit the volume expansion of the material during the process of lithium intercalation and deintercalation. Therefore, MO x /C composites prepared by this method can obtain excellent electrochemical performance.

本发明的积极效果:Positive effect of the present invention:

本发明提出的空间限域组装法可为研究者设计和控制材料的形貌和结构提供新思路。同时,对于研究形貌和结构对材料电化学性能的影响提供了借鉴,该法也可拓展到一些比较注重材料形貌的领域。考虑到MOF和金属氧化物种类很多,因此该空间限域组装法具有良好的应用前景。The space-confined assembly method proposed by the invention can provide researchers with new ideas for designing and controlling the shape and structure of materials. At the same time, it provides a reference for studying the influence of morphology and structure on the electrochemical performance of materials, and this method can also be extended to some fields that pay more attention to the morphology of materials. Considering that there are many types of MOFs and metal oxides, this space-confined assembly method has good application prospects.

附图说明Description of drawings

图1为本发明以苯甲酸为单齿配体,对苯二甲酸为多齿配体为例对Mn-MOF前驱体的形貌进行调控的原理示意图;Figure 1 is a schematic diagram of the principle of regulating the morphology of the Mn-MOF precursor by taking benzoic acid as a monodentate ligand and terephthalic acid as a multidentate ligand as an example in the present invention;

图2(a),(b),(c)和(d)分别是实施例1,例2,例3和例4制备得到的Mn-MOF前驱体的SEM图;Figure 2(a), (b), (c) and (d) are the SEM images of the Mn-MOF precursors prepared in Example 1, Example 2, Example 3 and Example 4, respectively;

图3是实施例1,例2,例3和例4制备得到MnO/C材料的XRD图;Fig. 3 is the XRD pattern that embodiment 1, example 2, example 3 and example 4 prepare MnO/C material;

图4是实施例4制备MnO/C材料的TEM图。Figure 4 is a TEM image of the MnO/C material prepared in Example 4.

具体实施方式detailed description

以下通过实施例对本发明作进一步说明,而非限制本发明。The present invention will be further described below by way of examples, rather than limiting the present invention.

实施例1:称取1.354g乙酸锰和2.75g对苯二甲酸,溶于50ml二甲基甲酰胺(DMF中),移入100ml水热反应釜,在180℃下加热搅拌10h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次后,放在烘箱中干燥后,研磨制得白色的MOF前驱体,记为MOF-Mn(PTA)B0。将上述白色前驱体置于充满Ar气流的管式炉中,600℃下煅烧2h,然后自然冷却至室温,得到MnO-B0/C材料。图1a记录了前驱体MOF-Mn(PTA)B0的SEM图,可以看到MOF-Mn(PTA)B0为平行四面体形貌,尺寸约为5μm。图2记录了MnO-B0/C的XRD图,由图可知该材料物相主要为MnO,并含有少量的Mn3O4杂相。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积高达216m2·g-1,孔径尺寸为10-20nm。Example 1: Weigh 1.354g of manganese acetate and 2.75g of terephthalic acid, dissolve them in 50ml of dimethylformamide (in DMF), transfer them into a 100ml hydrothermal reactor, and heat and stir at 180°C for 10h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried in an oven, and ground to obtain a white MOF precursor, which was designated as MOF-Mn(PTA)B 0 . The above white precursor was placed in a tube furnace filled with Ar gas flow, calcined at 600°C for 2h, and then naturally cooled to room temperature to obtain MnO-B 0 /C material. Figure 1a records the SEM image of the precursor MOF-Mn(PTA)B 0. It can be seen that MOF-Mn(PTA)B 0 has a parallelepiped shape with a size of about 5 μm. Figure 2 records the XRD pattern of MnO-B 0 /C. It can be seen from the figure that the material phase is mainly MnO, and contains a small amount of Mn 3 O 4 impurity phase. Table 1 records the BET specific surface area test results. It can be seen that the specific surface area of this material is as high as 216m 2 ·g -1 , and the pore size is 10-20nm.

将该活性材料与乙炔黑和聚偏氟乙烯(PVDF)按质量比8:1:1称取,混合均匀后滴入数滴N-甲基吡咯烷酮(NMP)研磨至浆状,将其涂在铜箔上,置于真空干燥箱100℃中干燥12h后用冲片机切成圆片状电极片。以电极极片为正极,锂片为对电极,l mol/L的LiPF6的混合溶剂(EC:DEC=1:1体积比)为电解液,聚丙烯微孔膜为隔膜,在充满Ar气气氛的手套箱中组装成CR2016型扣式电池。表2记录了该电池在0.3Ag-1电流密度下可逆容量为310mAh·g-1,50次循环后容量为532mAh·g-1The active material, acetylene black and polyvinylidene fluoride (PVDF) were weighed in a mass ratio of 8:1:1, mixed evenly, and then dropped into a few drops of N-methylpyrrolidone (NMP) to grind it into a slurry, and coated on Put it on the copper foil, dry it in a vacuum drying oven at 100°C for 12 hours, and then cut it into disc-shaped electrode pieces with a punching machine. The electrode pole piece is used as the positive electrode, the lithium sheet is used as the counter electrode, the mixed solvent of 1 mol/L LiPF 6 (EC:DEC=1:1 volume ratio) is used as the electrolyte, and the polypropylene microporous membrane is used as the separator. A CR2016 button cell was assembled in an atmosphere glove box. Table 2 records that the battery has a reversible capacity of 310mAh·g -1 at a current density of 0.3Ag -1 and a capacity of 532mAh·g -1 after 50 cycles.

实施例2Example 2

称取1.354g乙酸锰和0.674g苯甲酸溶于50ml DMF中,搅拌过夜后加入2.018g对苯二甲酸,移入100ml水热反应釜,在180℃下加热搅拌10h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次,置于烘箱中干燥后,研磨制得白色的MOF前驱体,记为MOF-Mn(PTA)B1。将上述白色前驱体置于管式炉中,600℃下氩气气氛下煅烧2h,然后自然冷却至室温,得到MnO-B1/C。前驱体MOF-Mn(PTA)B1的SEM如图1b所示,可以看到MOF-Mn(PTA)B1为微米片形貌,长为3μm,宽为0.8μm。图2记录了MnO-B1/C的XRD图,由图可知该材料物相主要为MnO,并含有少量的Mn3O4杂相。电池组装及电化学性能测试见实施例1。表1记录了MnO-B1/C材料的BET比表面积测试结果,可以看到该材料的比表面积高达220m2·g-1,孔径尺寸为10-20nm。按实施例1制备极片和组装电池后进行测试。表2记录该电池在0.3Ag-1电流密度下的首次可逆容量为740mAh·g-1,50次循环后容量为631mAh·g-1Weigh 1.354g of manganese acetate and 0.674g of benzoic acid and dissolve them in 50ml of DMF. After stirring overnight, add 2.018g of terephthalic acid, transfer to a 100ml hydrothermal reactor, and heat and stir at 180°C for 10h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried in an oven, and ground to obtain a white MOF precursor, which was designated as MOF-Mn(PTA)B 1 . The above white precursor was placed in a tube furnace, calcined at 600° C. for 2 h in an argon atmosphere, and then cooled naturally to room temperature to obtain MnO—B 1 /C. The SEM of the precursor MOF-Mn(PTA)B 1 is shown in Figure 1b. It can be seen that MOF-Mn(PTA)B 1 is in the shape of a micron sheet with a length of 3 μm and a width of 0.8 μm. Figure 2 records the XRD pattern of MnO-B 1 /C. It can be seen from the figure that the material phase is mainly MnO, and contains a small amount of Mn 3 O 4 impurity phase. See Example 1 for battery assembly and electrochemical performance testing. Table 1 records the BET specific surface area test results of the MnO-B 1 /C material. It can be seen that the specific surface area of the material is as high as 220m 2 ·g -1 , and the pore size is 10-20nm. After preparing the pole piece and assembling the battery according to Example 1, the test was carried out. Table 2 records that the first reversible capacity of the battery is 740mAh·g -1 at a current density of 0.3Ag -1 , and the capacity after 50 cycles is 631mAh·g -1 .

实施例3Example 3

称取1.354g乙酸锰和1.348g苯甲酸溶于50ml DMF中,搅拌过夜后加入1.834g对苯二甲酸,移入100ml水热反应釜,在180℃下加热搅拌10h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF前驱体,记为MOF-Mn(PTA)B2。将得到的白色前驱体置于充满Ar气的管式炉中,600℃系煅烧2h,然后自然冷却至室温,得到MnO/C材料记为MnO-B2/C。图1c记录了前驱体MOF-Mn(PTA)B2的SEM图,可以看到MOF-Mn(PTA)B2为微米片形貌,长约为3μm,宽约为0.9μm,但厚度要明显小于MOF-Mn(PTA)B1。图2记录了MnO-B2/C的XRD图,可以看到该材料物相主要为MnO,并含有少量的Mn3O4杂相。电池组装及电化学性能测试见实施例1。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积高达219m2·g-1,孔径尺寸为10-20nm。按实施例1制备极片和组装电池后进行测试。表2记录该电池在0.3Ag-1电流密度的首次可逆容量为775mAh·g-1,50次循环后容量为869mAh·g-1Weigh 1.354g of manganese acetate and 1.348g of benzoic acid and dissolve in 50ml of DMF. After stirring overnight, add 1.834g of terephthalic acid, transfer to a 100ml hydrothermal reactor, and heat and stir at 180°C for 10h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor, which was designated as MOF-Mn(PTA)B 2 . The obtained white precursor was placed in a tube furnace filled with Ar gas, calcined at 600°C for 2h, and then naturally cooled to room temperature to obtain a MnO/C material which was designated as MnO-B 2 /C. Figure 1c records the SEM image of the precursor MOF-Mn(PTA)B 2. It can be seen that MOF-Mn(PTA)B 2 is in the shape of a micron sheet, with a length of about 3 μm and a width of about 0.9 μm, but the thickness should be obvious smaller than MOF-Mn(PTA)B 1 . Figure 2 records the XRD pattern of MnO-B 2 /C, it can be seen that the material phase is mainly MnO, and contains a small amount of Mn 3 O 4 heterophase. See Example 1 for battery assembly and electrochemical performance testing. Table 1 records the BET specific surface area test results. It can be seen that the specific surface area of this material is as high as 219m 2 ·g -1 , and the pore size is 10-20nm. After preparing the pole piece and assembling the battery according to Example 1, the test was carried out. Table 2 records that the first reversible capacity of the battery at a current density of 0.3Ag -1 is 775mAh·g -1 , and the capacity after 50 cycles is 869mAh·g -1 .

实施例4Example 4

称取1.354g乙酸锰和2.696g苯甲酸溶于50ml DMF中,搅拌过夜后加入0.917g对苯二甲酸,移入100ml水热反应釜,在180℃下加热搅拌10h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF前驱体,记为MOF-Mn(PTA)B4。将上述得到的白色前驱体置于充满Ar气的管式炉中,600℃下煅烧2h,然后自然冷却至室温,得到MnO/C记为MnO-B4/C。图1c记录了前驱体MOF-Mn(PTA)B4的SEM图,可以看到MOF-Mn(PTA)B4为微米棒形貌,长为4μm,宽为0.3μm。图2记录了MnO-B4/C的XRD图,可以看到该材料物相主要为MnO,并含有少量的Mn3O4杂相。图2为其TEM图,可以看到煅烧后的MnO-B4/C保持了MOF-Mn(PTA)B4前驱体形貌,仍为长3~4μm,宽0.2~0.3μm的微米棒。电池组装及电化学性能测试见实施例1。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积高达309m2·g-1,孔径尺寸为10-20nm。按实施例1制备极片和组装电池后进行测试。表2记录该电池在0.3Ag-1电流密度下的首次可逆容量为1165mAh·g-1,50次循环后容量为1120mAh·g-1Weigh 1.354g of manganese acetate and 2.696g of benzoic acid and dissolve in 50ml of DMF. After stirring overnight, add 0.917g of terephthalic acid, transfer to a 100ml hydrothermal reactor, and heat and stir at 180°C for 10h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor, which was designated as MOF-Mn(PTA)B 4 . The white precursor obtained above was placed in a tube furnace filled with Ar gas, calcined at 600°C for 2h, and then cooled naturally to room temperature to obtain MnO/C, which was denoted as MnO-B 4 /C. Figure 1c records the SEM image of the precursor MOF-Mn(PTA)B 4. It can be seen that MOF-Mn(PTA)B 4 is in the shape of microrods with a length of 4 μm and a width of 0.3 μm. Figure 2 records the XRD pattern of MnO-B 4 /C, it can be seen that the material phase is mainly MnO, and contains a small amount of Mn 3 O 4 heterophase. Figure 2 shows its TEM image. It can be seen that the calcined MnO-B 4 /C maintains the morphology of the MOF-Mn(PTA)B 4 precursor, and is still a microrod with a length of 3-4 μm and a width of 0.2-0.3 μm. See Example 1 for battery assembly and electrochemical performance testing. Table 1 records the BET specific surface area test results. It can be seen that the specific surface area of this material is as high as 309m 2 ·g -1 , and the pore size is 10-20nm. After preparing the pole piece and assembling the battery according to Example 1, the test was carried out. Table 2 records that the first reversible capacity of the battery is 1165mAh·g -1 at a current density of 0.3Ag -1 , and the capacity after 50 cycles is 1120mAh·g -1 .

实施例5Example 5

称取1.354g乙酸锰和0.93gNaF溶于50ml DMF中,搅拌过夜后加入0.917g对苯二甲酸,移入100ml水热反应釜,在190℃下加热搅拌10h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF前驱体。将上述得到的白色前驱体置于管式炉中,700℃下Ar气气氛下煅烧5h,然后自然冷却至室温,得到MnO/C记为MnO-F/C。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积高达280m2·g-1,孔径尺寸为10-20nm。电池组装及电化学性能测试见实施例1。表2记录了该电池在0.3Ag-1电流密度的首次可逆容量为1052mAh·g-1,50次循环后容量为1021mAh·g-1Weigh 1.354g of manganese acetate and 0.93g of NaF and dissolve it in 50ml of DMF. After stirring overnight, add 0.917g of terephthalic acid, transfer to a 100ml hydrothermal reactor, and heat and stir at 190°C for 10h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor. The white precursor obtained above was placed in a tube furnace, calcined at 700 °C for 5 h in an Ar gas atmosphere, and then naturally cooled to room temperature to obtain MnO/C, which was denoted as MnO-F/C. Table 1 records the BET specific surface area test results. It can be seen that the specific surface area of this material is as high as 280m 2 ·g -1 , and the pore size is 10-20nm. See Example 1 for battery assembly and electrochemical performance testing. Table 2 records that the first reversible capacity of the battery at a current density of 0.3Ag -1 is 1052mAh·g -1 , and the capacity after 50 cycles is 1021mAh·g -1 .

实施例6Example 6

称取2.28g硝酸钴和2.696g苯甲酸溶于50ml DMF中,搅拌过夜后加入0.917g对苯二甲酸,移入100ml水热反应釜,在180℃下加热搅拌10h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF 前驱体。将上述得到的白色前驱体置于管式炉中,800℃下N2气气氛下煅烧2h,然后自然冷却至室温,得到CoOx/C材料。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积高达260m2·g-1,孔径尺寸为10-20nm。电池组装及电化学性能测试见实施例1。表2记录该电池在0.3Ag-1电流密度下的首次可逆容量1010mAh·g-1,50次循环后容量为921mAh·g-1Weigh 2.28g of cobalt nitrate and 2.696g of benzoic acid and dissolve it in 50ml of DMF. After stirring overnight, add 0.917g of terephthalic acid, transfer to a 100ml hydrothermal reaction kettle, and heat and stir at 180°C for 10h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor. The white precursor obtained above was placed in a tube furnace, calcined at 800° C. for 2 h under N 2 gas atmosphere, and then naturally cooled to room temperature to obtain a CoO x /C material. Table 1 records the BET specific surface area test results. It can be seen that the specific surface area of this material is as high as 260m 2 ·g -1 , and the pore size is 10-20nm. See Example 1 for battery assembly and electrochemical performance testing. Table 2 records that the first reversible capacity of the battery is 1010mAh·g -1 at a current density of 0.3Ag -1 , and the capacity after 50 cycles is 921mAh·g -1 .

实施例7Example 7

称取1.354g乙酸锰和2.696g苯甲酸溶于50ml DMF中,搅拌过夜后加入0.917g对苯二甲酸,移入100ml水热反应釜,在160℃下加热搅拌24h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF前驱体。将上述得到的白色前驱体置于管式炉中,650℃下Ar/H2混合气氛下(H2体积分数8%)煅烧3h,然后自然冷却至室温,得到MnO/C材料。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积高达301m2·g-1,孔径尺寸为10-20nm。电池组装及电化学性能测试见实施例1。表2记录该电池在0.3Ag-1电流密度下的首次可逆容量为1105mAh·g-1,50次循环后容量为1012mAh·g-1Weigh 1.354g of manganese acetate and 2.696g of benzoic acid and dissolve them in 50ml of DMF. After stirring overnight, add 0.917g of terephthalic acid, transfer to a 100ml hydrothermal reactor, and heat and stir at 160°C for 24h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor. The white precursor obtained above was placed in a tube furnace, calcined at 650 °C in an Ar/H 2 mixed atmosphere (H 2 volume fraction 8%) for 3 h, and then naturally cooled to room temperature to obtain a MnO/C material. Table 1 records the BET specific surface area test results. It can be seen that the specific surface area of this material is as high as 301m 2 ·g -1 , and the pore size is 10-20nm. See Example 1 for battery assembly and electrochemical performance testing. Table 2 records that the first reversible capacity of the battery is 1105mAh·g -1 at a current density of 0.3Ag -1 , and the capacity after 50 cycles is 1012mAh·g -1 .

实施例8Example 8

称取1.354g乙酸锰和2.696g苯甲酸溶于50ml乙醇中,搅拌过夜后加入0.917g对苯二甲酸,移入100ml水热反应釜,在150℃下加热搅拌18h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF前驱体。将上述得到的白色前驱体置于管式炉中,800℃下Ar/H2混合气氛下(H2体积分数5%)煅烧2h,然后自然冷却至室温,得到MnO/C材料。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积高达202m2·g-1,孔径尺寸为10-20nm。电池组装及电化学性能测试见实施例1。表2记录该电池在0.3Ag-1电流密度下的首次可逆容量为1042mAh·g-1,50次循环后容量为958mAh·g-1Weigh 1.354g of manganese acetate and 2.696g of benzoic acid and dissolve them in 50ml of ethanol. After stirring overnight, add 0.917g of terephthalic acid, transfer to a 100ml hydrothermal reactor, and heat and stir at 150°C for 18h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor. The white precursor obtained above was placed in a tube furnace, calcined at 800 °C in an Ar/H 2 mixed atmosphere (H 2 volume fraction 5%) for 2 h, and then naturally cooled to room temperature to obtain a MnO/C material. Table 1 records the BET specific surface area test results. It can be seen that the specific surface area of this material is as high as 202m 2 ·g -1 , and the pore size is 10-20nm. See Example 1 for battery assembly and electrochemical performance testing. Table 2 records that the first reversible capacity of the battery is 1042mAh·g -1 at a current density of 0.3Ag -1 , and the capacity after 50 cycles is 958mAh·g -1 .

实施例9Example 9

称取1.4g乙酸亚铁和0.391g NaCN溶于50ml乙二醇中,搅拌过夜后加入1.50g乙二胺,移入100ml水热反应釜,在180℃下加热搅拌18h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF前驱体。将上述得到的白色前驱体置于管式炉中,600℃下Ar/H2混合气氛下(H2体积分数5%)煅烧2h,然后自然冷却至室温,得到FeO/C材料。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积为达198m2·g-1,孔径尺寸为10-20nm。电池组装及电化学性能测试见实施例1。表2记录该电池在0.3Ag-1电流密度下的首次可逆容量为623mAh·g-1,50次循环后容量为651mAh·g-1Weigh 1.4g of ferrous acetate and 0.391g of NaCN and dissolve in 50ml of ethylene glycol, stir overnight, add 1.50g of ethylenediamine, transfer to a 100ml hydrothermal reaction kettle, heat and stir at 180°C for 18h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor. The white precursor obtained above was placed in a tube furnace, calcined at 600 °C in an Ar/H 2 mixed atmosphere (H 2 volume fraction 5%) for 2 h, and then naturally cooled to room temperature to obtain a FeO/C material. Table 1 records its BET specific surface area test results, it can be seen that the specific surface area of this material is up to 198m 2 ·g -1 , and the pore size is 10-20nm. See Example 1 for battery assembly and electrochemical performance testing. Table 2 records that the first reversible capacity of the battery is 623mAh·g -1 at a current density of 0.3Ag -1 , and the capacity after 50 cycles is 651mAh·g -1 .

实施例10Example 10

称取1.83g乙酸锌和1.60g苯甲酸溶于50ml DMF中,搅拌过夜后加入3.12g乙二胺,移入100ml水热反应釜,在180℃下加热搅拌18h。将反应后的产物离心,分别用无水乙醇和去离子水洗涤2次并干燥后研磨制得白色的MOF前驱体。将上述得到的白色前驱体置于管式炉中,600℃下Ar/H2混合气氛下(H2体积分数5%)煅烧2h,然后自然冷却至室温,得到ZnO/C材料。表1记录了其BET比表面积测试结果,可以看到该材料的比表面积为达212m2·g-1,孔径尺寸为10-20nm。电池组装及电化学性能测试见实施例1。表2记录该电池在0.3Ag-1电流密度下的首次可逆容量为517mAh·g-1,50次循环后容量为501mAh·g-1Weigh 1.83g of zinc acetate and 1.60g of benzoic acid and dissolve in 50ml of DMF, stir overnight, add 3.12g of ethylenediamine, transfer to a 100ml hydrothermal reactor, heat and stir at 180°C for 18h. The reacted product was centrifuged, washed twice with absolute ethanol and deionized water, dried and ground to obtain a white MOF precursor. The white precursor obtained above was placed in a tube furnace, calcined at 600°C in an Ar/H 2 mixed atmosphere (H 2 volume fraction 5%) for 2 h, and then naturally cooled to room temperature to obtain a ZnO/C material. Table 1 records its BET specific surface area test results, it can be seen that the specific surface area of the material is up to 212m 2 ·g -1 , and the pore size is 10-20nm. See Example 1 for battery assembly and electrochemical performance testing. Table 2 records that the initial reversible capacity of the battery is 517mAh·g -1 at a current density of 0.3Ag -1 , and the capacity after 50 cycles is 501mAh·g -1 .

表1分别记录了实施例1,例2,例3,例4,例5,例6,例7,例8,例9和例10制备得到的MOx/C材料的BET比表面积和孔径分布数据。Table 1 records the BET specific surface area and pore size distribution of MO x /C materials prepared in Example 1, Example 2, Example 3, Example 4, Example 5, Example 6, Example 7, Example 8, Example 9 and Example 10 respectively data.

表2分别记录了实施例1,例2,例3,例4,例5,例6,例7,例8,例9和例10制备得到的MOx/C材料的首次可逆容量及50次循环后的可逆容量。Table 2 respectively records the first reversible capacity and 50 times of MO x /C materials prepared in Example 1, Example 2, Example 3, Example 4, Example 5, Example 6, Example 7, Example 8, Example 9 and Example 10 Reversible capacity after cycling.

表1Table 1

表2Table 2

Claims (10)

1.一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,1. A method for controlling the morphology of metal oxide/carbon negative electrode materials for lithium ion batteries, characterized in that, 通过控制加料顺序先将金属离子源和一定比例单齿配体溶于溶剂中,搅拌充分后再加入多齿配体,在一定温度下反应一段时间后得到MOF前驱体;还通过调整单齿配体和金属离子两者的比例来调控产物形貌,将前驱体在惰性或还原性气氛下烧结处理,即得MOx/C复合材料。Dissolve the metal ion source and a certain proportion of monodentate ligands in the solvent by controlling the feeding sequence, and then add the multidentate ligands after stirring sufficiently, and obtain the MOF precursor after reacting at a certain temperature for a period of time; also by adjusting the monodentate ligands The ratio of the precursor and the metal ion is used to control the morphology of the product, and the precursor is sintered in an inert or reducing atmosphere to obtain the MO x /C composite material. 2.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,所述的金属离子源为:锰,铁,钴,镍,铜,锌的乙酸盐;锰,铁,钴,镍,铜,锌的盐酸盐;锰,铁,钴,镍,铜,锌的硝酸盐;锰,铁,钴,镍,铜,锌的硫酸盐中的一种或几种。2. The method for controlling the morphology of metal oxide/carbon negative electrode materials for lithium ion batteries according to claim 1, wherein the metal ion source is: manganese, iron, cobalt, nickel, copper, zinc Acetates; hydrochlorides of manganese, iron, cobalt, nickel, copper, zinc; nitrates of manganese, iron, cobalt, nickel, copper, zinc; sulfates of manganese, iron, cobalt, nickel, copper, zinc one or more of. 3.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,所述的单齿配体为:苯甲酸根,苯乙酸根,醋酸根,F-,NH3,CN-中的一种或几种;所述的双齿配体为:对苯二甲酸根,邻苯二甲酸根,均苯三甲酸根,乙二酸,乙二胺,草酸根,联吡啶,乙二胺四乙酸根,水杨醛中的一种或几种。3. The method for regulating the morphology of metal oxide/carbon negative electrode materials for lithium ion batteries according to claim 1, wherein the monodentate ligands are: benzoate, phenylacetate, acetate, One or more of F - , NH 3 , CN - ; the bidentate ligands are: terephthalate, phthalate, trimesate, oxalic acid, ethylenediamine , one or more of oxalate, bipyridine, ethylenediaminetetraacetate, salicylaldehyde. 4.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,单齿配体和金属离子的摩尔比≤金属中心离子对该配体的最大配位数-2。4. The method for regulating the morphology of the metal oxide/carbon negative electrode material for lithium ion batteries according to claim 1, wherein the molar ratio of the monodentate ligand to the metal ion ≤ the maximum value of the metal center ion to the ligand Coordination number -2. 5.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,以锰为金属离子源,苯甲酸为单齿配体,对苯二甲酸为多齿配体,控制Mn:苯甲酸的摩尔比为1:(1~4)来调控形貌。5. the morphology control method of metal oxide/carbon negative electrode material for lithium ion battery according to claim 1, is characterized in that, with manganese as metal ion source, benzoic acid is monodentate ligand, and terephthalic acid is Multi-dentate ligands, control the molar ratio of Mn:benzoic acid to 1:(1~4) to control the morphology. 6.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,所述的溶剂为:二甲基甲酰胺,水,乙二醇,乙醇,丙醇,己二醇,氯仿中的一种或几种。6. the morphology control method of metal oxide/carbon negative electrode material for lithium ion battery according to claim 1, is characterized in that, described solvent is: dimethyl formamide, water, ethylene glycol, ethanol, One or more of propanol, hexanediol, and chloroform. 7.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,所述的一定反应温度为:50~200℃,反应时间为:3-48h。7. The morphology control method of metal oxide/carbon negative electrode material for lithium ion battery according to claim 1, characterized in that, the certain reaction temperature is: 50~200°C, and the reaction time is: 3-48h . 8.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,所述的惰性气体为:纯Ar气、N2气或者H2与Ar的混合气体,所述的还原性气体为CO与CO2的混合气体;H2与Ar的混合气体中H2体积分数为3~20%;CO与CO2的混合气体中CO的体积分数为5~20%。8. the morphology regulation and control method of metal oxide/carbon negative electrode material for lithium ion battery according to claim 1 , is characterized in that, described inert gas is: pure Ar gas, N Gas or H The mixture of Ar and Ar Mixed gas, the reducing gas is a mixed gas of CO and CO2 ; the volume fraction of H2 in the mixed gas of H2 and Ar is 3-20%; the volume fraction of CO in the mixed gas of CO and CO2 is 5% ~20%. 9.根据权利要求1所述的锂离子电池用金属氧化物/碳负极材料的形貌调控方法,其特征在于,所述的烧结温度:500~1000℃,烧结时间:1~10h;升温速率为:1~15℃/min。9. The method for regulating the morphology of metal oxide/carbon negative electrode materials for lithium ion batteries according to claim 1, characterized in that, the sintering temperature: 500~1000°C, the sintering time: 1~10h; heating rate For: 1 ~ 15 ℃ / min. 10.一种锂离子电池用金属氧化物/碳负极材料,其特征在于,是由权利要求1-9任一项所述的方法制备得到的。10. A metal oxide/carbon negative electrode material for lithium ion batteries, characterized in that it is prepared by the method according to any one of claims 1-9.
CN201611089912.6A 2016-12-01 2016-12-01 Morphology regulation and control method of metal oxide/carbon negative electrode material for lithium ion battery Active CN106784658B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611089912.6A CN106784658B (en) 2016-12-01 2016-12-01 Morphology regulation and control method of metal oxide/carbon negative electrode material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611089912.6A CN106784658B (en) 2016-12-01 2016-12-01 Morphology regulation and control method of metal oxide/carbon negative electrode material for lithium ion battery

Publications (2)

Publication Number Publication Date
CN106784658A true CN106784658A (en) 2017-05-31
CN106784658B CN106784658B (en) 2020-04-10

Family

ID=58914250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611089912.6A Active CN106784658B (en) 2016-12-01 2016-12-01 Morphology regulation and control method of metal oxide/carbon negative electrode material for lithium ion battery

Country Status (1)

Country Link
CN (1) CN106784658B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492638A (en) * 2017-07-19 2017-12-19 华南师范大学 A kind of lithium ion battery negative material and preparation method thereof
CN108110256A (en) * 2017-12-07 2018-06-01 成都新柯力化工科技有限公司 A kind of metal-nitrilotriacetic acid the composite negative pole material and preparation method of electricity lithium battery
CN108281626A (en) * 2018-01-03 2018-07-13 桂林理工大学 A kind of preparation method of lithium ion battery high-performance zinc oxide/di-iron trioxide/zinc ferrite tri compound negative material
CN108390022A (en) * 2017-12-29 2018-08-10 桑德集团有限公司 Lithium battery tertiary cathode material, preparation method and the lithium battery of carbon-metal oxide compound coating
CN108400318A (en) * 2018-01-16 2018-08-14 合肥国轩高科动力能源有限公司 Preparation method of cobaltosic oxide-ferric oxide composite oxide
CN108428878A (en) * 2018-03-28 2018-08-21 江西理工大学 A kind of preparation method of ZnO/NiO/C composite negative pole materials for lithium ion battery
CN108538618A (en) * 2018-05-22 2018-09-14 武汉工程大学 A kind of porous ZnO-C composite and its preparation method and application
CN108598445A (en) * 2018-06-15 2018-09-28 陕西科技大学 Carbon wraps up nickel zinc bimetallic oxide material and the preparation method and application thereof
CN108987701A (en) * 2018-07-13 2018-12-11 曹立军 A kind of lithium ion battery of high stability
CN108993419A (en) * 2018-08-29 2018-12-14 合肥学院 Method for preparing Ni-MOF adsorption material by ultrasonic-assisted solvothermal method and application
CN109103445A (en) * 2017-06-21 2018-12-28 清华大学深圳研究生院 Zinc cobalt/cobalt oxide material and preparation method thereof and lithium ion battery negative material
CN109192526A (en) * 2018-08-28 2019-01-11 武汉理工大学 A kind of porous carbon/metal oxide sandwich and its preparation method and application
CN110364693A (en) * 2018-04-10 2019-10-22 中国科学院上海硅酸盐研究所 Nano three-dimensional conductive framework/MnO 2 Preparation method of composite structure material and application of composite structure material in zinc battery anode
CN112002886A (en) * 2020-08-12 2020-11-27 中南大学 Anode material metal alloy for potassium ion battery and preparation method thereof
CN111996543A (en) * 2020-09-02 2020-11-27 陕西科技大学 Vanadium-doped nickel selenide heterojunction self-supporting electrode and preparation method and application thereof
CN112242511A (en) * 2020-10-16 2021-01-19 江苏师范大学 Three-dimensional composite material based on manganese-based cluster derivative and preparation method and application thereof
CN113173574A (en) * 2021-04-25 2021-07-27 哈尔滨工业大学(威海) Two-dimensional carbon material loaded with transition metal oxide or sulfide, and method and application thereof
CN113206228A (en) * 2021-04-21 2021-08-03 华南师范大学 Zn-Mn bimetal lithium ion battery cathode material and preparation method thereof
CN113244925A (en) * 2021-06-03 2021-08-13 广州大学 Preparation method and application of recoverable zinc ferrite-ferric oxide composite photocatalyst
CN113571674A (en) * 2021-09-22 2021-10-29 河南师范大学 Preparation method and application of an in-situ carbon-coated binary transition metal oxide heterojunction bowl-shaped nanocomposite
CN114517305A (en) * 2022-03-02 2022-05-20 江西省科学院能源研究所 Manganous-manganic oxide-carbon/iron oxyhydroxide composite material and preparation method and application thereof
CN115347198A (en) * 2021-05-12 2022-11-15 昆明理工大学 Method for preparing N-rGO-loaded MnO nanocatalyst by using complexing agent
CN115579477A (en) * 2022-12-07 2023-01-06 山东理工大学 A kind of capsule-shaped manganese oxide/carbon negative electrode material wrapped in graphene and its preparation method and application
CN116023675A (en) * 2023-02-24 2023-04-28 福建警察学院 A control method for synthesizing copper coordination polymers with different dimensions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355330A (en) * 2014-09-19 2015-02-18 中国科学院宁波材料技术与工程研究所 Preparation method of metal oxide and application of metal oxide in lithium ion battery
CN104788309A (en) * 2014-01-20 2015-07-22 任燕萍 Metal organic framework, preparation method and use thereof, and carbon dioxide conversion method
CN105344327A (en) * 2015-11-26 2016-02-24 中国科学院生态环境研究中心 Preparation method of MOFs graphene composite material
US20160159713A1 (en) * 2014-12-03 2016-06-09 The Regents Of The University Of California Metal-organic frameworks for aromatic hydrocarbon separations
CN105771907A (en) * 2016-04-11 2016-07-20 华南理工大学 MOPs bi-ligand adsorbing material Fe-btc(dobdc) and preparation method thereof
US20160318773A1 (en) * 2015-04-11 2016-11-03 Northwestern University Metal-Organic Frameworks for Adsorption of Liquid Phase Compounds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104788309A (en) * 2014-01-20 2015-07-22 任燕萍 Metal organic framework, preparation method and use thereof, and carbon dioxide conversion method
CN104355330A (en) * 2014-09-19 2015-02-18 中国科学院宁波材料技术与工程研究所 Preparation method of metal oxide and application of metal oxide in lithium ion battery
US20160159713A1 (en) * 2014-12-03 2016-06-09 The Regents Of The University Of California Metal-organic frameworks for aromatic hydrocarbon separations
US20160318773A1 (en) * 2015-04-11 2016-11-03 Northwestern University Metal-Organic Frameworks for Adsorption of Liquid Phase Compounds
CN105344327A (en) * 2015-11-26 2016-02-24 中国科学院生态环境研究中心 Preparation method of MOFs graphene composite material
CN105771907A (en) * 2016-04-11 2016-07-20 华南理工大学 MOPs bi-ligand adsorbing material Fe-btc(dobdc) and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAAKI TSURUOKA ET AL.: ""Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth"", 《ANGEWANDTE CHEMIE》 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103445B (en) * 2017-06-21 2020-11-10 清华大学深圳研究生院 Zinc-cobalt oxide material, preparation method thereof and lithium ion battery cathode material
CN109103445A (en) * 2017-06-21 2018-12-28 清华大学深圳研究生院 Zinc cobalt/cobalt oxide material and preparation method thereof and lithium ion battery negative material
CN107492638A (en) * 2017-07-19 2017-12-19 华南师范大学 A kind of lithium ion battery negative material and preparation method thereof
CN107492638B (en) * 2017-07-19 2020-01-21 华南师范大学 Lithium ion battery cathode material and preparation method thereof
CN108110256A (en) * 2017-12-07 2018-06-01 成都新柯力化工科技有限公司 A kind of metal-nitrilotriacetic acid the composite negative pole material and preparation method of electricity lithium battery
CN108110256B (en) * 2017-12-07 2020-07-03 成都新柯力化工科技有限公司 Metal-nitrilotriacetic acid composite negative electrode material of lithium battery and preparation method
CN108390022A (en) * 2017-12-29 2018-08-10 桑德集团有限公司 Lithium battery tertiary cathode material, preparation method and the lithium battery of carbon-metal oxide compound coating
CN108390022B (en) * 2017-12-29 2020-12-25 桑德新能源技术开发有限公司 Carbon-metal oxide composite coated lithium battery ternary positive electrode material, preparation method thereof and lithium battery
CN108281626B (en) * 2018-01-03 2020-06-05 桂林理工大学 A kind of preparation method of high performance zinc oxide/ferric oxide/zinc ferrite ternary composite negative electrode material for lithium ion battery
CN108281626A (en) * 2018-01-03 2018-07-13 桂林理工大学 A kind of preparation method of lithium ion battery high-performance zinc oxide/di-iron trioxide/zinc ferrite tri compound negative material
CN108400318A (en) * 2018-01-16 2018-08-14 合肥国轩高科动力能源有限公司 Preparation method of cobaltosic oxide-ferric oxide composite oxide
CN108428878A (en) * 2018-03-28 2018-08-21 江西理工大学 A kind of preparation method of ZnO/NiO/C composite negative pole materials for lithium ion battery
CN108428878B (en) * 2018-03-28 2020-07-24 江西理工大学 Preparation method of ZnO/NiO/C composite negative electrode material for lithium ion battery
CN110364693A (en) * 2018-04-10 2019-10-22 中国科学院上海硅酸盐研究所 Nano three-dimensional conductive framework/MnO 2 Preparation method of composite structure material and application of composite structure material in zinc battery anode
CN110364693B (en) * 2018-04-10 2020-11-20 浙江浙能中科储能科技有限公司 A kind of preparation method of nanometer three-dimensional conductive framework/MnO2 composite structure material and its application in the positive electrode of zinc battery
CN108538618B (en) * 2018-05-22 2019-12-06 武汉工程大学 A kind of porous ZnO-C composite material and its preparation method and application
CN108538618A (en) * 2018-05-22 2018-09-14 武汉工程大学 A kind of porous ZnO-C composite and its preparation method and application
CN108598445A (en) * 2018-06-15 2018-09-28 陕西科技大学 Carbon wraps up nickel zinc bimetallic oxide material and the preparation method and application thereof
CN108987701A (en) * 2018-07-13 2018-12-11 曹立军 A kind of lithium ion battery of high stability
CN108987701B (en) * 2018-07-13 2021-10-19 广州明美新能源股份有限公司 High-stability lithium ion battery
CN109192526A (en) * 2018-08-28 2019-01-11 武汉理工大学 A kind of porous carbon/metal oxide sandwich and its preparation method and application
CN108993419A (en) * 2018-08-29 2018-12-14 合肥学院 Method for preparing Ni-MOF adsorption material by ultrasonic-assisted solvothermal method and application
CN108993419B (en) * 2018-08-29 2020-12-22 合肥学院 A method and application of ultrasonic-assisted solvothermal preparation of Ni-MOF adsorption material
CN112002886A (en) * 2020-08-12 2020-11-27 中南大学 Anode material metal alloy for potassium ion battery and preparation method thereof
CN111996543A (en) * 2020-09-02 2020-11-27 陕西科技大学 Vanadium-doped nickel selenide heterojunction self-supporting electrode and preparation method and application thereof
CN112242511A (en) * 2020-10-16 2021-01-19 江苏师范大学 Three-dimensional composite material based on manganese-based cluster derivative and preparation method and application thereof
CN112242511B (en) * 2020-10-16 2024-03-19 江苏师范大学 Three-dimensional composite material based on manganese group cluster derivative and preparation method and application thereof
CN113206228A (en) * 2021-04-21 2021-08-03 华南师范大学 Zn-Mn bimetal lithium ion battery cathode material and preparation method thereof
CN113173574A (en) * 2021-04-25 2021-07-27 哈尔滨工业大学(威海) Two-dimensional carbon material loaded with transition metal oxide or sulfide, and method and application thereof
CN115347198A (en) * 2021-05-12 2022-11-15 昆明理工大学 Method for preparing N-rGO-loaded MnO nanocatalyst by using complexing agent
CN115347198B (en) * 2021-05-12 2024-05-17 昆明理工大学 Method for preparing N-rGO loaded MnO nanocatalyst using a ligand
CN113244925A (en) * 2021-06-03 2021-08-13 广州大学 Preparation method and application of recoverable zinc ferrite-ferric oxide composite photocatalyst
CN113571674A (en) * 2021-09-22 2021-10-29 河南师范大学 Preparation method and application of an in-situ carbon-coated binary transition metal oxide heterojunction bowl-shaped nanocomposite
CN114517305A (en) * 2022-03-02 2022-05-20 江西省科学院能源研究所 Manganous-manganic oxide-carbon/iron oxyhydroxide composite material and preparation method and application thereof
CN115579477A (en) * 2022-12-07 2023-01-06 山东理工大学 A kind of capsule-shaped manganese oxide/carbon negative electrode material wrapped in graphene and its preparation method and application
CN116023675A (en) * 2023-02-24 2023-04-28 福建警察学院 A control method for synthesizing copper coordination polymers with different dimensions

Also Published As

Publication number Publication date
CN106784658B (en) 2020-04-10

Similar Documents

Publication Publication Date Title
CN106784658A (en) A kind of Morphological control method of lithium ion battery metal oxide/carbon negative pole material
CN114204004B (en) Positive electrode material, preparation method thereof, positive electrode plate and sodium ion battery
Jin et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries
CN104045116B (en) The preparation method of nano porous metal oxide/carbon lithium ion battery negative material
CN103794806B (en) A kind of lithium air battery positive electrode Nano-iron nitride-carbon composite catalytic agent and preparation method thereof
CN103268929B (en) Carbon/copper/metal oxide composite porous material and preparation method and application thereof
CN102368547B (en) A kind of lithium ion battery and positive electrode active materials thereof
CN108630921A (en) The preparation method of ferriferous oxide/carbon fiber composite lithium ion battery cathode material
CN108321358A (en) A kind of lithium ion battery negative material and preparation method thereof
CN102244236A (en) Method for preparing lithium-enriched cathodic material of lithium ion battery
CN110943213A (en) MOF-derived porous carbon box loaded with Co3V2O8Composite negative electrode material and preparation method and application thereof
CN108598431A (en) Grapheme foam-nickel oxide combination electrode material and preparation method thereof
Ishihara et al. Mesoporous MnCo2O4 spinel oxide for a highly active and stable air electrode for Zn-air rechargeable battery
CN104157858B (en) Classifying porous ferroso-ferric oxide/graphene nano line and its preparation method and application
CN105870439B (en) A kind of preparation method and applications of porous cobaltosic oxide
CN105977479B (en) A kind of preparation method of octahedron porous silica molybdenum and its application in lithium ion battery
Gou et al. Co-based metal–organic framework and its derivatives as high-performance anode materials for lithium-ion batteries
CN105118987A (en) Preparation method of high-capacity lithium-rich anode material
CN107611425B (en) A fusiform zinc ferrite/carbon lithium ion battery nanocomposite negative electrode material and its preparation method and application
CN102163711A (en) Method for preparing lithium ion battery negative material by utilizing mesoporous carbon supported nano particles
CN111193038A (en) A kind of nickel cobalt iron hydroxide coated nickel cobalt oxide flexible electrode material and preparation and application
CN102969493B (en) For the preparation method of the negative material of non-aqueous secondary batteries, non-aqueous secondary batteries negative pole and non-aqueous secondary batteries
CN115377607A (en) A BC-loaded MOFs derived CNF/Co-CoxSy-NC composite material and its preparation and application method
CN110289407A (en) A carbon-coated cobalt-doped zinc oxide nanomaterial for lithium-ion batteries
CN108511750B (en) A kind of multi-component metal sulfide catalyst for lithium-air battery and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant