CN106784548A - Lithium ion battery green, Efficient lignocellulose matrix barrier film and preparation method thereof - Google Patents
Lithium ion battery green, Efficient lignocellulose matrix barrier film and preparation method thereof Download PDFInfo
- Publication number
- CN106784548A CN106784548A CN201611173761.2A CN201611173761A CN106784548A CN 106784548 A CN106784548 A CN 106784548A CN 201611173761 A CN201611173761 A CN 201611173761A CN 106784548 A CN106784548 A CN 106784548A
- Authority
- CN
- China
- Prior art keywords
- lignocellulose
- preparation
- natural
- electrospinning
- diaphragm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 36
- 239000011159 matrix material Substances 0.000 title claims abstract description 16
- 230000004888 barrier function Effects 0.000 title 1
- 238000001523 electrospinning Methods 0.000 claims abstract description 30
- 229920005615 natural polymer Polymers 0.000 claims abstract description 29
- 239000002861 polymer material Substances 0.000 claims abstract description 24
- 229920001059 synthetic polymer Polymers 0.000 claims abstract description 24
- 239000011218 binary composite Substances 0.000 claims abstract description 16
- 239000002131 composite material Substances 0.000 claims abstract description 15
- 239000011206 ternary composite Substances 0.000 claims abstract description 14
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 8
- 229920002521 macromolecule Polymers 0.000 claims abstract description 5
- 239000012528 membrane Substances 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 23
- 239000002904 solvent Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- -1 polyacetate Polymers 0.000 claims description 9
- 239000000725 suspension Substances 0.000 claims description 9
- 229920002472 Starch Polymers 0.000 claims description 7
- 239000008107 starch Substances 0.000 claims description 7
- 235000019698 starch Nutrition 0.000 claims description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- 239000001913 cellulose Substances 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 4
- 229920001817 Agar Polymers 0.000 claims description 3
- 229920001661 Chitosan Polymers 0.000 claims description 3
- 108010010803 Gelatin Proteins 0.000 claims description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 3
- 239000008272 agar Substances 0.000 claims description 3
- 235000010419 agar Nutrition 0.000 claims description 3
- 229920000159 gelatin Polymers 0.000 claims description 3
- 239000008273 gelatin Substances 0.000 claims description 3
- 235000019322 gelatine Nutrition 0.000 claims description 3
- 235000011852 gelatine desserts Nutrition 0.000 claims description 3
- 239000001814 pectin Substances 0.000 claims description 3
- 229920001277 pectin Polymers 0.000 claims description 3
- 235000010987 pectin Nutrition 0.000 claims description 3
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 claims description 2
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 claims description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- 239000002033 PVDF binder Substances 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 claims 2
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 claims 1
- 239000004696 Poly ether ether ketone Substances 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 229920002530 polyetherether ketone Polymers 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 9
- 239000011244 liquid electrolyte Substances 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002523 polyethylene Glycol 1000 Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010786 composite waste Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
- H01M50/4295—Natural cotton, cellulose or wood
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及锂离子电池用绿色、高效木质纤维素基体隔膜及其制备方法,其特征在于:开发出五种基于木质纤维素基体或者基于木质纤维素为主体与其他天然或合成高分子两元或三元共混复合物为基体的隔膜及其制备方法:纯木质纤维素隔膜的涂覆和静电纺丝制备、木质纤维素为主体与其它天然或合成高分子材料两元或三元复合物隔膜的浇筑、涂覆和静电纺丝制备首。本发明的有益效果是,选用全世界年产量近万亿吨的天然高分子材料聚集体木质纤维素为基体或者选用以木质纤维素为主体与其他天然或合成高分子复合物为基体,制备能够用于锂离子电池中的隔膜,彻底解决锂离子电池″白色污染″问题并赋予电池高性能。发明内容还开拓了木质纤维素全新的应用领域。The invention relates to a green, high-efficiency lignocellulose-based separator for lithium-ion batteries and a preparation method thereof. Ternary blend composite-based diaphragm and its preparation method: coating and electrospinning preparation of pure lignocellulose diaphragm, lignocellulose as the main body and other natural or synthetic polymer material binary or ternary composite diaphragm The pouring, coating and electrospinning preparation of the first. The beneficial effect of the present invention is that the natural macromolecule material aggregate lignocellulose with an annual output of nearly one trillion tons in the world is selected as the matrix, or the lignocellulose is selected as the main body and other natural or synthetic macromolecule composites are used as the matrix to prepare a The diaphragm used in lithium-ion batteries completely solves the problem of "white pollution" of lithium-ion batteries and endows the batteries with high performance. The content of the invention also opens up a new application field of lignocellulose.
Description
技术领域technical field
本发明涉及锂离子电池用绿色、高效木质纤维素基体隔膜及其制备方法,属于锂离子电池技术领域。The invention relates to a green, high-efficiency lignocellulose matrix diaphragm for lithium ion batteries and a preparation method thereof, belonging to the technical field of lithium ion batteries.
背景技术Background technique
锂离子电池相对于传统铅酸电池被称为绿色电源。当前锂离子电池产品普遍使用液体电解质,这是因为该种电解质具有良好的导离子性和与电极的相容性,且成本低廉。在这种液体电解质锂离子电池中,正极和负极被对电子绝缘的聚丙烯膜或聚乙烯膜或二者复合膜隔开,但是这些隔膜上分布着均匀的孔洞,能够允许液体电解质以及锂盐的穿透。在这种锂离子电池中,正极、负极、液体电解质和隔膜是电池得以工作的四大组成部件。按照质量来算,液体电解质锂离子电池中的隔膜质量通常占电池总质量的30wt.%左右。显然,电池寿命结束被处理时,就会产生大量的聚丙烯或聚乙烯或二者复合物废物,这些高分子聚合物材料在自然环境中非常难以降解,以致对环境产生通常所说的″白色污染″。在这一层面上,这种锂离子电池还算不上真正的绿色电源。为了解决这一问题,以天然高分子聚合物为基体制备的隔膜代替传统聚丙烯隔膜或聚乙烯隔膜或二者复合隔膜是一种非常有效的手段。从文献报道来看,能够用来作为隔膜基体的天然高分子有纤维素(cellulose)、淀粉(starch)、壳聚糖(chitosan)、琼脂(agar)、果胶(pectin)和明胶(gelatin)。从研究结论来看,纤维素隔膜只能在某些性能上匹配传统聚合物隔膜,其余的天然高分子隔膜所展现出来的性能就不令人满意了。因此,近两年这方面的研究报道非常少,这是因为这些天然高分子隔膜性能难以让人信服外,且成本比传统隔膜高。因此,本发明基于对液体电解质锂离子电池及其隔膜问题的分析,选用这种全世界年产量最多(近万亿吨)的天然高分子材料聚集体——木质纤维素(lignocellulose),以纯木质纤维素或者以其为主体与其他天然或合成高分子共混复合物为基体,制备能够用于锂离子电池中的隔膜,解决锂离子电池″白色污染″问题且赋予电池高性能。这一发明内容不但解决了锂离子电池存在一些问题,而且开拓了木质纤维素全新的应用领域。相关研究还未出现在国内外报道中。Compared with traditional lead-acid batteries, lithium-ion batteries are called green power sources. Currently, liquid electrolytes are widely used in lithium-ion battery products because they have good ion conductivity, compatibility with electrodes, and low cost. In this liquid electrolyte lithium-ion battery, the positive and negative electrodes are separated by an electronically insulating polypropylene film or polyethylene film or a composite film of the two, but these separators are uniformly distributed with holes that allow the liquid electrolyte and lithium salt penetration. In this lithium-ion battery, the positive electrode, negative electrode, liquid electrolyte and separator are the four major components for the battery to work. In terms of mass, the mass of the separator in the liquid electrolyte lithium-ion battery usually accounts for about 30wt.% of the total mass of the battery. Obviously, when the battery is disposed of at the end of its life, a large amount of polypropylene or polyethylene or both composite wastes will be produced. pollute". At this level, this lithium-ion battery is not really a green power source. In order to solve this problem, it is a very effective means to replace the traditional polypropylene diaphragm or polyethylene diaphragm or the composite diaphragm prepared by using natural high molecular polymer as the matrix. According to literature reports, natural polymers that can be used as a membrane matrix include cellulose, starch, chitosan, agar, pectin, and gelatin. . From the research conclusion, the cellulose separator can only match the traditional polymer separator in some properties, and the performance of the rest of the natural polymer separators is not satisfactory. Therefore, there are very few research reports in this area in the past two years, because the performance of these natural polymer separators is unconvincing, and the cost is higher than traditional separators. Therefore, the present invention is based on the analysis of the liquid electrolyte lithium-ion battery and its diaphragm problem, and selects the natural polymer material aggregate—lignocellulose (lignocellulose), which has the largest annual output (nearly trillion tons) in the world, and uses pure wood Cellulose or its main body and other natural or synthetic polymer blend compounds are used as a matrix to prepare separators that can be used in lithium-ion batteries, solving the problem of "white pollution" in lithium-ion batteries and endowing batteries with high performance. This invention not only solves some problems of lithium-ion batteries, but also opens up a new application field of lignocellulose. Relevant studies have not yet appeared in domestic and foreign reports.
发明内容Contents of the invention
要解决的技术问题technical problem to be solved
为了制备出无″白色污染″且高性能的锂离子电池,本发明提出以全世界年产量最多的纯天然高分子材料聚集体木质纤维素或者以木质纤维素为主体与其他天然或合成高分子两元或三元共混复合物为基体,制备能够用于锂离子电池中的隔膜,赋予电池绿色、高性能的特性。In order to prepare a lithium-ion battery with no "white pollution" and high performance, the present invention proposes to use the pure natural polymer material aggregate lignocellulose with the largest annual output in the world or take lignocellulose as the main body and other natural or synthetic polymers The binary or ternary blend compound is used as a matrix to prepare a separator that can be used in a lithium-ion battery, endowing the battery with green and high-performance characteristics.
技术方案Technical solutions
锂离子电池用绿色、高效木质纤维素基体隔膜及其制备方法,其特征在于:开发出五种基于木质纤维素基体或者基于木质纤维素为主体与其他天然或合成高分子两元或三元共混复合物为基体的隔膜及其制备方法,具体工艺如下:The green, high-efficiency lignocellulose-based separator for lithium-ion batteries and its preparation method are characterized in that: five kinds of lignocellulose-based or lignocellulose-based and other natural or synthetic polymer binary or ternary co-polymers have been developed. A diaphragm with a mixed compound as a matrix and a preparation method thereof, the specific process is as follows:
(1)纯木质纤维素隔膜的涂覆制备:称取900-1000mg木质纤维素、量取35-40ml的去离子水,均置于烧杯中;于室温(25±1℃)下,搅拌2-3h,得到均匀的悬浮液;将悬浮液倾入平底玻璃盘中,于常压和60±2℃条件下,直到水分挥发完,得到均匀的纯木质纤维素隔膜。(1) Coating preparation of pure lignocellulose membrane: weigh 900-1000mg of lignocellulose and 35-40ml of deionized water, put them in a beaker; stir at room temperature (25±1°C) for 2 -3h, to obtain a uniform suspension; pour the suspension into a flat-bottomed glass dish, under normal pressure and 60±2°C, until the water evaporates completely, and a uniform pure lignocellulose membrane is obtained.
(2)纯木质纤维素隔膜的静电纺丝制备:将木质纤维素研磨、过筛,收集100-200目之间的粉末;将收集粉末置于烧杯中,加入溶剂,室温下搅拌5-8h,得到浓度范围在5wt.%-10wt.%范围内的均匀电纺溶液;将电纺液装入注射器中,设置正高压为10-12kV,负高压为-1--2kV,推注速度为2.5-3ml/h,滚筒转速为20-25rpm,固定正负极之间的距离为10-12cm,电纺时间为2-3h,静电纺丝,得到均匀平整湿膜、室温下干燥,得到纯木质纤维素隔膜。(2) Preparation of pure lignocellulose membrane by electrospinning: grind and sieve lignocellulose, and collect powder between 100-200 mesh; put the collected powder in a beaker, add solvent, and stir at room temperature for 5-8h , to obtain a uniform electrospinning solution with a concentration range of 5wt.%-10wt.%; put the electrospinning solution into the syringe, set the positive high voltage to 10-12kV, the negative high voltage to -1--2kV, and the injection speed to be 2.5-3ml/h, the drum speed is 20-25rpm, the distance between the fixed positive and negative electrodes is 10-12cm, the electrospinning time is 2-3h, electrospinning, obtain a uniform and flat wet film, dry at room temperature, and obtain pure Lignocellulose membrane.
(3)以木质纤维素为主体与其它天然或合成高分子材料两元或三元复合物隔膜的浇筑制备:以木质纤维素质量分数在65wt.%-95wt.%区间范围、其它天然或合成高分子材料一元或两元复合物质量分数在35wt.%-5wt.%区间范围分别称取相应质量的物质;将称取的纯木质纤维素按照上述工艺制备出厚度均匀的隔膜;将称取的天然或合成高分子材料一元或两元复合物置于烧杯中,加入在常温下刚好能够溶解复合物的良溶剂,搅拌,直到得到均匀的溶液;将得到的均匀溶液缓慢浇筑在纯木质纤维素隔膜上,保证溶液完全浸入木质纤维素隔膜的孔中,再于常压和25-60℃条件下,直到溶剂挥发完,得到均匀的木质纤维素主体两元或三元复合物隔膜。(3) Pouring preparation of binary or ternary composite diaphragms with lignocellulose as the main body and other natural or synthetic polymer materials: with lignocellulose mass fraction in the range of 65wt.%-95wt.%, other natural or synthetic The mass fraction of the one-element or two-element composite of the polymer material is in the range of 35wt.%-5wt.%, and the corresponding mass is weighed respectively; the weighed pure lignocellulose is prepared according to the above-mentioned process to prepare a diaphragm with uniform thickness; the weighed The natural or synthetic polymer material one-component or two-component compound is placed in a beaker, and a good solvent that can just dissolve the compound at room temperature is added, and stirred until a uniform solution is obtained; the obtained uniform solution is slowly poured on pure lignocellulose On the diaphragm, ensure that the solution is completely immersed in the pores of the lignocellulose diaphragm, and then under the conditions of normal pressure and 25-60 ° C until the solvent evaporates to obtain a uniform lignocellulose main body binary or ternary composite diaphragm.
(4)以木质纤维素为主体与其它天然或合成高分子材料两元或三元复合物隔膜的涂覆制备:以木质纤维素质量分数在65wt.%-95wt.%区间范围、其它天然或合成高分子材料一元或两元复合物质量分数在35wt.%-5wt.%区间范围分别称取相应质量的物质;将木质纤维素和其它天然或合成高分子材料一元或两元复合物均置入烧杯中;以置入烧杯中混合物总质量与溶剂体积比在1g∶15ml-1g∶40ml区间内,加入良溶剂,于25-80℃下搅拌,直到得到均匀的悬浮液;将得到的均匀悬浮液涂覆在玻璃板上,再于常压和25-60℃条件下,直到溶剂挥发完,得到均匀的木质纤维素主体两元或三元复合物隔膜。(4) Coating preparation of lignocellulose as the main body and other natural or synthetic polymer material binary or ternary composite membranes: with lignocellulose mass fraction in the range of 65wt.%-95wt.%, other natural or synthetic polymer materials The mass fraction of synthetic macromolecule material one-element or two-element compound is in the interval range of 35wt.%-5wt.%, weigh the substances of corresponding mass respectively; Put it into a beaker; put the total mass of the mixture in the beaker to the volume ratio of the solvent in the range of 1g: 15ml-1g: 40ml, add a good solvent, and stir at 25-80°C until a uniform suspension is obtained; the obtained uniform The suspension is coated on a glass plate, and then kept under the condition of normal pressure and 25-60° C. until the solvent evaporates completely to obtain a homogeneous lignocellulose main body binary or ternary composite membrane.
(5)以木质纤维素为主体与其它天然或合成高分子材料两元或三元复合物隔膜的静电纺丝制备:将木质纤维素研磨、过筛,收集100-200目之间的粉末;按木质纤维素粉末质量范围在65wt.%-95wt.%区间,称取粉末和其它天然或合成高分子材料一元或两元复合物,均置于烧杯中;再加入加入溶剂,室温下搅拌5-15h,得到溶液浓度范围在1wt.%-10wt.%区间的均匀电纺溶液;将电纺液装入注射器中,设置正高压为10-20kV,负高压为-1--5kV,推注速度为0.5-5ml/h,滚筒转速为20-100rpm,固定正负极之间的距离为10-20cm,电纺时间为2-10h,静电纺丝,得到均匀平整湿膜、室温下干燥,得到均匀的木质纤维素主体两元或三元复合物隔膜。(5) Electrospinning preparation of lignocellulose as the main body and other natural or synthetic polymer material binary or ternary composite membranes: grind and sieve lignocellulose, and collect powder between 100-200 mesh; According to the quality range of lignocellulose powder in the range of 65wt.%-95wt.%, weigh the powder and other natural or synthetic macromolecular material one-component or two-component composites, and place them in a beaker; then add solvent and stir at room temperature for 5 -15h, to obtain a uniform electrospinning solution with a solution concentration range of 1wt.%-10wt.%; put the electrospinning solution into the syringe, set the positive high voltage to 10-20kV, and the negative high voltage to -1--5kV, and inject The speed is 0.5-5ml/h, the rotation speed of the drum is 20-100rpm, the distance between the fixed positive and negative electrodes is 10-20cm, the electrospinning time is 2-10h, electrospinning to obtain a uniform and flat wet film, and drying at room temperature. A homogeneous lignocellulosic host binary or ternary composite membrane is obtained.
所述的锂离子电池用绿色、高效木质纤维素基体隔膜及其制备方法,其特征在于:在纯木质纤维素隔膜的静电纺丝制备中,所述的溶剂为去离子水、碳酸丙烯酯、N,N-二甲基甲酰胺、四氢呋喃、二甲基亚砜和六氟异丙醇中的一种或几种的混合。The green, high-efficiency lignocellulose-based diaphragm for lithium-ion batteries and its preparation method are characterized in that: in the electrospinning preparation of pure lignocellulose diaphragm, the solvent is deionized water, propylene carbonate, One or more of N, N-dimethylformamide, tetrahydrofuran, dimethyl sulfoxide and hexafluoroisopropanol.
所述的锂离子电池用绿色、高效木质纤维素基体隔膜及其制备方法,其特征在于:在以木质纤维素为主体与其它天然或合成高分子材料两元或三元复合物隔膜的浇筑、涂覆和静电纺丝制备中,所述的天然或合成高分子材料是纤维素、淀粉、壳聚糖、琼脂、果胶和明胶这些天然高分子材料或聚丙烯酸酯、聚丙烯腈、聚醚醚酮、聚氧化乙烯、聚醋酸酯、聚偏氟乙烯这些合成高分子中的一种或几种的混合。The green, high-efficiency lignocellulose-based separator for lithium-ion batteries and its preparation method are characterized in that: the pouring, In coating and electrospinning preparation, the natural or synthetic polymer materials are natural polymer materials such as cellulose, starch, chitosan, agar, pectin and gelatin or polyacrylate, polyacrylonitrile, polyether One or a mixture of synthetic polymers such as ether ketone, polyethylene oxide, polyacetate, and polyvinylidene fluoride.
所述的锂离子电池用绿色、高效木质纤维素基体隔膜及其制备方法,其特征在于:在以木质纤维素为主体与其它天然或合成高分子材料两元或三元复合物隔膜的浇筑和涂覆制备中,所述的溶解天然或合成高分子材料一元或两元复合物良溶剂是去离子水、甲醇、乙醇、丙酮、丁酮、四氢呋喃、N,N二甲基甲酰胺、N,N二甲基乙酰胺、二甲亚砜、四甲基脲、磷酸三甲酯和N-甲基吡咯烷酮中的一种或几种的混合。The green, high-efficiency lignocellulose-based diaphragm for lithium-ion batteries and its preparation method are characterized in that: the pouring and tertiary composite diaphragm with lignocellulose as the main body and other natural or synthetic polymer materials In the preparation of coating, the good solvent for dissolving natural or synthetic macromolecular materials one-element or two-element complexes is deionized water, methanol, ethanol, acetone, methyl ethyl ketone, tetrahydrofuran, N,N dimethylformamide, N, One or more of N-dimethylacetamide, dimethyl sulfoxide, tetramethyl urea, trimethyl phosphate and N-methylpyrrolidone.
所述的锂离子电池用绿色、高效木质纤维素基体隔膜及其制备方法,其特征在于:在以木质纤维素为主体与其它天然或合成高分子材料两元或三元复合物隔膜的静电纺丝制备中,所述的配置电纺液时加入的溶剂是去离子水、丙酮、四氢呋喃、N,N二甲基甲酰胺、二甲亚砜、碳酸乙烯酯、碳酸丙烯酯和N-甲基吡咯烷酮中的一种或几种的混合。The green, high-efficiency lignocellulose-based separator for lithium-ion batteries and its preparation method are characterized in that: in the electrospinning of lignocellulose as the main body and other natural or synthetic polymer materials binary or ternary composite separators In silk preparation, the solvents added when configuring the electrospinning solution are deionized water, acetone, tetrahydrofuran, N, N dimethylformamide, dimethyl sulfoxide, ethylene carbonate, propylene carbonate and N-methyl One or a mixture of pyrrolidones.
有益效果Beneficial effect
本发明的有益效果是,选用全世界年产量最多(近万亿吨)的天然高分子材料聚集体木质纤维素为基体或者选用以木质纤维素为主体与其他天然或合成高分子复合物为基体,制备能够用于锂离子电池中的隔膜,在彻底解决锂离子电池″白色污染″问题的同时,能够赋予电池高性能。发明内容不但解决了锂离子电池存在一些问题,而且开拓了木质纤维素全新的应用领域。The beneficial effects of the present invention are that the natural macromolecule material aggregate lignocellulose with the largest annual output (nearly one trillion tons) in the world is selected as the matrix or the matrix is selected with lignocellulose as the main body and other natural or synthetic macromolecular composites To prepare a separator that can be used in a lithium-ion battery, while completely solving the problem of "white pollution" of the lithium-ion battery, it can endow the battery with high performance. SUMMARY OF THE INVENTION The present invention not only solves some problems existing in lithium-ion batteries, but also opens up a new application field of lignocellulose.
附图说明Description of drawings
图1为涂覆法制备的纯木质纤维素隔膜的扫描电镜图。Figure 1 is a scanning electron micrograph of a pure lignocellulose membrane prepared by coating method.
图2为以涂覆法制备的纯木质纤维素隔膜组装半电池Li/S-LE/LFP的充放电图。Figure 2 is the charge-discharge diagram of the pure lignocellulose separator assembled half-cell Li/S-LE/LFP prepared by the coating method.
图3为以浇筑法制备的PEG1000含量为30wt.%木质纤维素二元复合物隔膜组装半电池Li/S-LE/LFP的充放电图。Fig. 3 is the charge-discharge diagram of half-cell Li/S-LE/LFP assembled with PEG1000 content of 30wt.% lignocellulose binary composite membrane prepared by casting method.
具体实施方式detailed description
下面结合附图和具体实施例对本发明作进一步的说明:The present invention will be further described below in conjunction with accompanying drawing and specific embodiment:
实施例1Example 1
称取1000mg木质纤维素、量取40ml的去离子水,均置于烧杯中;于室温25℃下,搅拌2h,得到均匀的悬浮液;将悬浮液倾入平底玻璃盘中,于常压和60℃条件下,直到水分挥发完,得到均匀的纯木质纤维素隔膜。Weigh 1000mg of lignocellulose and 40ml of deionized water and place them in a beaker; stir for 2 hours at room temperature at 25°C to obtain a uniform suspension; Under the condition of 60°C, until the water evaporates, a uniform pure lignocellulose membrane is obtained.
实施例2Example 2
称取五份质量为1000mg的木质纤维素,再称取五份质量分别为50mg、75mg、100mg、125mg和150mg的淀粉;将五份木质纤维素和五份淀粉依次分别置入五只烧杯中,并依次在烧杯中加入30ml去离子水;在80℃下,搅拌0.5h后得到粘稠的均匀溶液;将溶液倾倒在玻璃板上,于常压、60℃下干燥5h,得到均匀平整的木质纤维素为主体、淀粉为次体的二元复合物隔膜。Weigh five parts of lignocellulose with a mass of 1000 mg, and then weigh five parts of starch with a mass of 50 mg, 75 mg, 100 mg, 125 mg and 150 mg; put five parts of lignocellulose and five parts of starch into five beakers in turn , and successively add 30ml of deionized water into the beaker; at 80°C, stir for 0.5h to obtain a viscous uniform solution; pour the solution on a glass plate, and dry at normal pressure for 5h at 60°C to obtain a uniform and flat A binary composite membrane with lignocellulose as the main body and starch as the secondary body.
实施例3Example 3
称取900mg木质纤维素置于烧杯中,加入35ml去离子水;按照上述实施例1所述工艺,制备出纯木质纤维素隔膜;称取385mgPEG1000置于烧杯中,加入20ml去离子水,室温下搅拌至溶解得到均相粘稠溶液;将粘稠溶液缓慢浇淋在纯木质纤维素隔膜上,于常压、60℃下干燥10h,得到均匀平整的木质纤维素为主体、PEG1000为次体的二元复合物隔膜。Weigh 900mg of lignocellulose and place it in a beaker, add 35ml of deionized water; prepare a pure lignocellulose diaphragm according to the process described in Example 1 above; weigh 385mg of PEG1000 and place it in a beaker, add 20ml of deionized water, and Stir until dissolved to obtain a homogeneous viscous solution; slowly pour the viscous solution on the pure lignocellulose diaphragm, and dry it at normal pressure and 60°C for 10 hours to obtain a uniform and flat lignocellulose as the main body and PEG1000 as the secondary body. Binary complex diaphragm.
对实施例进行电池组装和性能测试:Carry out battery assembly and performance test to embodiment:
组装各种电池:将得到的隔膜在冲片机上冲成直径为19mm的圆片,转入真空烘箱;于真空和70±2℃条件下干燥5-7h后,迅速移入水、氧含量均小于0.5ppm的手套箱中;选用2032扣式电池壳,以不锈钢片惰性电极SS、活性锂片电极Li、磷酸铁锂正极LFP,以商业化新宙邦公司型号LBC305-01为液体电解质LE,以制备得到的复合物膜为隔膜S,组装SS/S-LE/SS、Li/S-LE/SS、Li/S-LE/Li和Li/S-LE/LFP电池;Assemble various batteries: Punch the obtained separator into a disc with a diameter of 19mm on a punching machine, transfer it to a vacuum oven; dry it in a vacuum at 70±2°C for 5-7 hours, then quickly transfer it into water with an oxygen content of less than 0.5ppm glove box; choose 2032 button battery shell, use stainless steel sheet inert electrode SS, active lithium sheet electrode Li, lithium iron phosphate positive electrode LFP, use the commercialized new Zhoubang company model LBC305-01 as the liquid electrolyte LE, and use The prepared composite membrane is separator S, and SS/S-LE/SS, Li/S-LE/SS, Li/S-LE/Li and Li/S-LE/LFP batteries are assembled;
性能测试:在中国上海辰华公司的电化学工作站CHI-660D上测试离子电导率、电化学稳定窗口和锂离子迁移数三种电化学性能;在中国深圳新威公司的充放电测试仪上测试电池的充点电性能。以测试SS/S-LE/SS电池交流阻抗的方法计算离子电导率,谱测试条件为扫描的频率范围为0.1Hz~100kHz,交换信号幅度为10mV;以测试Li/S-LE/SS线性扫描的方法确定电化学稳定窗口,测试条件为扫描的速率为1mV·s-1,锂片为对电极和参比电极、不锈钢为工作电极;以测试Li/S-LE/Li电池交流阻抗和直流极化法确定锂离子迁移数,测试条件为交流阻抗频率区间0.1Hz~100kHz,交换信号幅度10mV,直流极化施加的极化电压为10mV;测试Li/S-LE/LFP电池充点电性能,测试条件为采用恒流充放电、充放电截止高低电压分别为4.5V和2.0V、倍率区间0.2-3C。Performance test: three electrochemical properties of ion conductivity, electrochemical stability window and lithium ion migration number were tested on the electrochemical workstation CHI-660D of Shanghai Chenhua Company in China; tested on the charge and discharge tester of Shenzhen Xinwei Company in China Battery charging performance. The ionic conductivity is calculated by testing the AC impedance of SS/S-LE/SS batteries. The spectrum test conditions are that the scanning frequency range is 0.1Hz to 100kHz, and the exchange signal amplitude is 10mV; to test Li/S-LE/SS linear scanning The method to determine the electrochemical stability window, the test condition is that the scanning rate is 1mV s -1 , the lithium sheet is the counter electrode and the reference electrode, and the stainless steel is the working electrode; to test the AC impedance and DC resistance of the Li/S-LE/Li battery Polarization method to determine the number of lithium ion migration, the test conditions are AC impedance frequency range 0.1Hz ~ 100kHz, exchange signal amplitude 10mV, polarization voltage applied by DC polarization is 10mV; test the electrical performance of Li/S-LE/LFP battery charging point , The test conditions are constant current charge and discharge, the charge and discharge cut-off high and low voltages are 4.5V and 2.0V respectively, and the rate range is 0.2-3C.
测试结果:实施例1体系:室温下锂离子电导率2.53×10-3S·cm-1、电化学稳定窗口6.0V,锂离子迁移数0.82,在1.0C倍率下充放电容量分别为160mAh·g-1and 156mAh·g-1;实施例2体系:在制备得到的五种体系中,加入50mg淀粉体系表现出最高的性能:在室温下锂离子电导率1.27×10-3S·cm-1、电化学稳定窗口6.6V,锂离子迁移数0.79,在0.2C倍率下充放电容量分别为169mAh·g-1and 160mAh·g-1;实施例3体系:在室温下锂离子电导率1.50×10-3S·cm-1、电化学稳定窗口5.3V,锂离子迁移数0.81,在0.5C倍率下充放电容量分别为156mAh·g-1and152mAh·g-1。Test results: Example 1 system: lithium ion conductivity at room temperature is 2.53×10 -3 S·cm -1 , electrochemical stability window is 6.0V, lithium ion migration number is 0.82, and the charge and discharge capacity at 1.0C rate is 160mAh· g -1 and 156mAh·g -1 ; the system of Example 2: among the five prepared systems, the system with 50 mg of starch showed the highest performance: the lithium ion conductivity at room temperature was 1.27×10 -3 S·cm - 1. The electrochemical stability window is 6.6V, the lithium ion migration number is 0.79, and the charge and discharge capacities are 169mAh·g -1 and 160mAh·g -1 at a rate of 0.2C; the system of Example 3: the lithium ion conductivity at room temperature is 1.50 ×10 -3 S·cm -1 , electrochemical stability window 5.3V, lithium ion transfer number 0.81, charge and discharge capacities of 156mAh·g -1 and 152mAh·g -1 at a rate of 0.5C, respectively.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611173761.2A CN106784548A (en) | 2016-12-19 | 2016-12-19 | Lithium ion battery green, Efficient lignocellulose matrix barrier film and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611173761.2A CN106784548A (en) | 2016-12-19 | 2016-12-19 | Lithium ion battery green, Efficient lignocellulose matrix barrier film and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106784548A true CN106784548A (en) | 2017-05-31 |
Family
ID=58891254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611173761.2A Pending CN106784548A (en) | 2016-12-19 | 2016-12-19 | Lithium ion battery green, Efficient lignocellulose matrix barrier film and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106784548A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107369799A (en) * | 2017-06-27 | 2017-11-21 | 华南理工大学 | A kind of functionalization lithium ion battery separator and preparation method thereof |
CN107634262A (en) * | 2017-08-28 | 2018-01-26 | 哈尔滨理工大学 | A kind of preparation method of all solid state environment protection biological polymer dielectric film |
CN108649244A (en) * | 2018-05-10 | 2018-10-12 | 长沙理工大学 | Preparation method of SPEEK/lignin composite diaphragm |
CN110055680A (en) * | 2019-05-10 | 2019-07-26 | 上海纳旭实业有限公司 | The preparation method and product of nano cellulose composite film and application |
CN110943258A (en) * | 2019-12-16 | 2020-03-31 | 电子科技大学 | PVDF-HFP composite lignocellulose gel polymer electrolyte membrane and preparation method thereof |
CN112397850A (en) * | 2020-11-12 | 2021-02-23 | 同济大学 | Modified lignocellulose diaphragm for lithium ion battery and preparation method and application thereof |
CN112768837A (en) * | 2021-01-26 | 2021-05-07 | 惠州锂威电子科技有限公司 | Preparation method of diaphragm, diaphragm and lithium ion battery |
CN113328203A (en) * | 2021-04-21 | 2021-08-31 | 惠州锂威新能源科技有限公司 | Gel electrolyte diaphragm, preparation method thereof and lithium ion battery |
CN113794034A (en) * | 2021-08-03 | 2021-12-14 | 惠州锂威新能源科技有限公司 | Self-supporting diaphragm and preparation method thereof, composite pole piece and secondary battery |
CN114976480A (en) * | 2022-05-26 | 2022-08-30 | 山东大学 | A kind of wood separator applied to lithium-oxygen battery and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130183570A1 (en) * | 2004-09-02 | 2013-07-18 | Lg Chem, Ltd. | Organic/inorganic composite porous film and electrochemical device prepared thereby |
-
2016
- 2016-12-19 CN CN201611173761.2A patent/CN106784548A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130183570A1 (en) * | 2004-09-02 | 2013-07-18 | Lg Chem, Ltd. | Organic/inorganic composite porous film and electrochemical device prepared thereby |
Non-Patent Citations (2)
Title |
---|
迟婷玉等: "纤维素在锂离子电池隔膜中的应用", 《电池工业》 * |
郭群: "《砂浆实验及检测培训教材》", 31 December 2014 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107369799A (en) * | 2017-06-27 | 2017-11-21 | 华南理工大学 | A kind of functionalization lithium ion battery separator and preparation method thereof |
CN107634262A (en) * | 2017-08-28 | 2018-01-26 | 哈尔滨理工大学 | A kind of preparation method of all solid state environment protection biological polymer dielectric film |
CN107634262B (en) * | 2017-08-28 | 2019-08-13 | 哈尔滨理工大学 | A kind of preparation method of all solid state environment protection biological polymer dielectric film |
CN108649244B (en) * | 2018-05-10 | 2020-11-17 | 长沙理工大学 | Preparation method of SPEEK/lignin composite diaphragm |
CN108649244A (en) * | 2018-05-10 | 2018-10-12 | 长沙理工大学 | Preparation method of SPEEK/lignin composite diaphragm |
CN110055680A (en) * | 2019-05-10 | 2019-07-26 | 上海纳旭实业有限公司 | The preparation method and product of nano cellulose composite film and application |
CN110943258A (en) * | 2019-12-16 | 2020-03-31 | 电子科技大学 | PVDF-HFP composite lignocellulose gel polymer electrolyte membrane and preparation method thereof |
CN112397850A (en) * | 2020-11-12 | 2021-02-23 | 同济大学 | Modified lignocellulose diaphragm for lithium ion battery and preparation method and application thereof |
CN112768837A (en) * | 2021-01-26 | 2021-05-07 | 惠州锂威电子科技有限公司 | Preparation method of diaphragm, diaphragm and lithium ion battery |
CN112768837B (en) * | 2021-01-26 | 2023-09-12 | 惠州锂威电子科技有限公司 | Preparation method of diaphragm, diaphragm and lithium ion battery |
CN113328203A (en) * | 2021-04-21 | 2021-08-31 | 惠州锂威新能源科技有限公司 | Gel electrolyte diaphragm, preparation method thereof and lithium ion battery |
CN113794034A (en) * | 2021-08-03 | 2021-12-14 | 惠州锂威新能源科技有限公司 | Self-supporting diaphragm and preparation method thereof, composite pole piece and secondary battery |
CN114976480A (en) * | 2022-05-26 | 2022-08-30 | 山东大学 | A kind of wood separator applied to lithium-oxygen battery and preparation method thereof |
CN114976480B (en) * | 2022-05-26 | 2023-05-09 | 山东大学 | A kind of wooden diaphragm applied to lithium-oxygen battery and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106784548A (en) | Lithium ion battery green, Efficient lignocellulose matrix barrier film and preparation method thereof | |
Li et al. | A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries | |
CN103326027B (en) | A kind of negative electrode of lithium ion battery and lithium ion battery | |
CN103545474B (en) | A kind of lithium ion battery separator of poly-dopamine modification and preparation method | |
CN107959049B (en) | Preparation method of gel electrolyte, gel electrolyte and lithium ion battery | |
CN106025283B (en) | The aqueous adhesive of lignin-base for negative electrode of lithium ion battery and the electrode slice and lithium ion battery based on it | |
CN103887474B (en) | Method for improving capacity and cyclic stability of lithium-sulfur battery cathode material | |
WO2015180472A1 (en) | Terpene resin base water-series binder and use thereof in lithium ion battery negative electrode or supercapacitor | |
CN110158200A (en) | Porous carbon nanofiber and preparation method thereof and lithium-sulfur cell | |
CN103872282B (en) | A kind of polymer lithium cell diaphragm and preparation method thereof | |
CN104466063B (en) | Poly-dopamine surface modification polyether sulfone nanofiber composite diaphragm, preparation method and application | |
CN111063884B (en) | Aqueous ion battery negative electrode material, water ion battery negative electrode and preparation method thereof, and water ion battery | |
CN106356556B (en) | A kind of lithium-ion-power cell with long service life and preparation method thereof | |
CN106207190B (en) | A kind of anode material for lithium-ion batteries compound binding agent and preparation method thereof | |
CN110148793A (en) | Method for judging electrolyte infiltration state of lithium ion battery | |
CN108134032A (en) | A kind of lithium ion battery polyether-ether-ketone porous septum and its preparation and application | |
CN105161762A (en) | Preparation method of polymer electrolyte membrane and lithium-ion battery | |
CN111490288A (en) | Preparation method of polymer electrolyte with cellulose as additive | |
CN100513467C (en) | Porous gel polyelectrolyte thin film and preparation method thereof | |
CN114256560B (en) | A cellulose inorganic composite film, a high temperature resistant battery separator and its preparation method and application | |
CN107293751A (en) | A kind of flexible self-supporting polymer overmold carbon interlayer, preparation method and applications | |
CN103065815B (en) | A kind of electric energy energy storage film and preparation method thereof, electric energy storage device | |
CN115377606B (en) | High-performance chitosan/polyacrylonitrile membrane for multifunctional lithium sulfur battery, and preparation method and application thereof | |
CN105355978A (en) | Xylogen matrix gel polymer electrolyte and preparation method therefor | |
CN109659475A (en) | A kind of preparation method of high-performance high-voltage lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |
|
RJ01 | Rejection of invention patent application after publication |