CN106784181B - Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well - Google Patents
Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well Download PDFInfo
- Publication number
- CN106784181B CN106784181B CN201611153017.6A CN201611153017A CN106784181B CN 106784181 B CN106784181 B CN 106784181B CN 201611153017 A CN201611153017 A CN 201611153017A CN 106784181 B CN106784181 B CN 106784181B
- Authority
- CN
- China
- Prior art keywords
- ingan quantum
- quantum well
- green light
- longer wavelength
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/821—Bodies characterised by their shape, e.g. curved or truncated substrates of the light-emitting regions, e.g. non-planar junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体技术领域,具体地讲,涉及一种提高绿光或更长波长InGaN量子阱发光效率的方法及结构。The invention belongs to the technical field of semiconductors, and in particular relates to a method and a structure for improving the luminous efficiency of a green light or longer wavelength InGaN quantum well.
背景技术Background technique
GaN基绿光或更长波长激光器和LED在半导体显示与照明方面有非常广泛的应用。InGaN量子阱有源区作为GaN基激光器和LED的核心结构,其生长行为、形貌对InGaN量子阱的光学性质和器件的性能有非常重要的影响。GaN-based green or longer wavelength lasers and LEDs are widely used in semiconductor displays and lighting. The InGaN quantum well active region is the core structure of GaN-based lasers and LEDs, and its growth behavior and morphology have a very important impact on the optical properties of InGaN quantum wells and device performance.
由于InN的平衡蒸汽压非常高,并且In-N键能弱,导致InN的分解温度低。因此,高In组分的InGaN必须在低温下生长以保证足够多的In并入外延层。一般用MOCVD生长InGaN的温度大概在650℃~750℃之间。但通常在较低的生长温度下,表面原子的迁移率低,迁移距离短。对于绿光或更长波长InGaN量子阱,由于InGaN量子阱层有更高的In组分以获得长波长发光,在采用MOCVD的方法生长时,需要更低的温度与更高的In/Ga比。当在斜切角较小的衬底上外延生长时,由于原子台阶宽度较大,原子落到样品表面的时候不能迁移到原子台阶边缘适合并入的位置并入,而是直接在原子台阶表面成核,这种情况下InGaN的AFM形貌一般是一些沿原子台阶分布的二维岛状的形貌。在这种二维岛的形貌之上再生长量子垒层,会导致InGaN量子阱和量子垒层之间的表面粗糙,进而影响InGaN量子阱有源区的光学性能。Since the equilibrium vapor pressure of InN is very high and the In-N bond energy is weak, the decomposition temperature of InN is low. Therefore, InGaN with high In composition must be grown at low temperature to ensure sufficient In incorporation into the epitaxial layer. Generally, the temperature for growing InGaN by MOCVD is between 650°C and 750°C. But usually at lower growth temperatures, the mobility of surface atoms is low and the migration distance is short. For green light or longer wavelength InGaN quantum wells, since the InGaN quantum well layer has a higher In composition to obtain long-wavelength luminescence, a lower temperature and a higher In/Ga ratio are required when growing by MOCVD. . When epitaxial growth is carried out on a substrate with a small chamfer angle, due to the large width of the atomic step, when the atoms fall on the surface of the sample, they cannot migrate to the position where the edge of the atomic step is suitable for incorporation, but directly on the surface of the atomic step. Nucleation, the AFM morphology of InGaN in this case is generally some two-dimensional island-like morphology distributed along the atomic steps. Regrowing the quantum barrier layer on top of this 2D island morphology will cause the surface roughness between the InGaN quantum well and the quantum barrier layer, which in turn affects the optical properties of the InGaN quantum well active region.
发明内容SUMMARY OF THE INVENTION
为了解决上述现有技术中存在的问题,本发明的目的在于提供一种提高绿光或更长波长InGaN量子阱发光效率的方法,从而得到呈原子台阶流生长且内量子效率高的InGaN量子阱。In order to solve the above-mentioned problems in the prior art, the purpose of the present invention is to provide a method for improving the luminous efficiency of green light or longer wavelength InGaN quantum wells, so as to obtain InGaN quantum wells grown in atomic step flow and with high internal quantum efficiency .
本发明提供了一种提高绿光或更长波长InGaN量子阱发光效率的方法,其包括:The present invention provides a method for improving the luminous efficiency of green light or longer wavelength InGaN quantum wells, comprising:
采用一具有原子台阶的衬底,其中所述衬底上相邻原子台阶形成的斜切角大于0.2°;Using a substrate with atomic steps, wherein the chamfer angle formed by adjacent atomic steps on the substrate is greater than 0.2°;
在所述原子台阶面上形成缓冲层;forming a buffer layer on the atomic step surface;
在所述缓冲层上形成高温n型GaN层;forming a high temperature n-type GaN layer on the buffer layer;
在所述高温n型GaN层上形成InGaN量子阱。InGaN quantum wells are formed on the high temperature n-type GaN layer.
进一步地,每相邻两个原子台阶形成的斜切角相等;和/或所述衬底上相邻原子台阶形成的斜切角为0.2°~15°。Further, the chamfer angle formed by every two adjacent atomic steps is equal; and/or the chamfer angle formed by adjacent atomic steps on the substrate is 0.2°˜15°.
进一步地,所述缓冲层为低温不掺杂GaN层,所述低温不掺杂GaN层的厚度为10nm~30nm。Further, the buffer layer is a low temperature undoped GaN layer, and the thickness of the low temperature undoped GaN layer is 10 nm˜30 nm.
进一步地,所述高温n型GaN层的厚度小于5000nm。Further, the thickness of the high temperature n-type GaN layer is less than 5000 nm.
进一步地,所述高温n型GaN层的电子浓度在1017cm-3到1019cm-3之间。Further, the electron concentration of the high temperature n-type GaN layer is between 10 17 cm -3 and 10 19 cm -3 .
进一步地,所述绿光或更长波长InGaN量子阱为不掺杂的InxGa1-xN量子阱。Further, the green light or longer wavelength InGaN quantum well is an undoped InxGa1 - xN quantum well.
进一步地,所述InxGa1-xN量子阱的厚度为1nm~5nm,且所述InxGa1-xN量子阱的In组分随InGaN量子阱发光波长的增加而增大。Further, the thickness of the InxGa1 - xN quantum well is 1 nm˜5 nm, and the In composition of the InxGa1 - xN quantum well increases with the increase of the emission wavelength of the InGaN quantum well.
进一步地,每一级原子台阶上形成的InGaN量子阱呈原子台阶流形貌。Further, the InGaN quantum wells formed on each level of atomic steps have an atomic step flow morphology.
进一步地,所述InGaN量子阱的原子台阶高度与相邻高一级原子台阶的高度相等。Further, the height of the atomic step of the InGaN quantum well is equal to the height of the adjacent one-step higher atomic step.
本发明还提供了一种利用如上所述的方法来提高绿光或更长波长InGaN量子阱发光效率的结构,包括:衬底,具有原子台阶,且相邻原子台阶形成的斜切角大于0.2°;缓冲层,形成在所述原子台阶面上;高温n型GaN层,形成在所述缓冲层上;InGaN量子阱,形成在所述高温n型GaN层上。The present invention also provides a structure for improving the luminous efficiency of green light or longer wavelength InGaN quantum wells by using the above method, comprising: a substrate with atomic steps, and the chamfer angle formed by adjacent atomic steps is greater than 0.2 °; a buffer layer is formed on the atomic step surface; a high temperature n-type GaN layer is formed on the buffer layer; an InGaN quantum well is formed on the high temperature n-type GaN layer.
本发明的有益效果:本发明的提高绿光或更长波长InGaN量子阱发光效率的方法采用斜切角大于0.2°的衬底生长绿光或更长波长InGaN量子阱有源区,可以实现绿光或更长波长InGaN量子阱的原子台阶流生长,改善其形貌,并提高InGaN量子阱的内量子效率。此外,由上述方法制备得到的InGaN量子阱既可以广泛应用于GaN基绿光或更长波长LED、GaN基绿光或更长波长激光器中,也可以广泛应用于多量子阱太阳能电池中。Beneficial effects of the present invention: the method for improving the luminous efficiency of green light or longer wavelength InGaN quantum wells of the present invention uses a substrate with a chamfer angle greater than 0.2° to grow green light or longer wavelength InGaN quantum well active regions, which can realize green light Atomic step flow growth of optical or longer wavelength InGaN quantum wells, improving their morphology and increasing the internal quantum efficiency of InGaN quantum wells. In addition, the InGaN quantum well prepared by the above method can be widely used not only in GaN-based green light or longer wavelength LEDs, GaN-based green light or longer wavelength lasers, but also in multi-quantum well solar cells.
附图说明Description of drawings
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:The above and other aspects, features and advantages of embodiments of the present invention will become more apparent from the following description taken in conjunction with the accompanying drawings, in which:
图1是本发明实施例的提高绿光或更长波长InGaN量子阱发光效率的方法的步骤流程图;1 is a flow chart of the steps of a method for improving the luminous efficiency of a green light or longer wavelength InGaN quantum well according to an embodiment of the present invention;
图2是由本发明实施例的方法制备得到的绿光或更长波长InGaN量子阱结构的材料结构示意图;2 is a schematic diagram of the material structure of a green light or longer wavelength InGaN quantum well structure prepared by the method of an embodiment of the present invention;
图3是由本发明实施例的方法制备得到的绿光或更长波长InGaN量子阱结构的立体图;3 is a perspective view of a green light or longer wavelength InGaN quantum well structure prepared by the method of an embodiment of the present invention;
图4是本发明实施例的衬底的斜切角与原子台阶宽度关系示意图;4 is a schematic diagram of the relationship between the chamfer angle and the atomic step width of a substrate according to an embodiment of the present invention;
图5(a)是在斜切角度为0.2°的GaN衬底上形成的绿光InGaN量子阱的AFM形貌图;Figure 5(a) is an AFM topography of a green light InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.2°;
图5(b)是在斜切角度为0.54°的GaN衬底上形成的绿光InGaN量子阱的AFM形貌图;Figure 5(b) is an AFM topography of a green light InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.54°;
图5(c)是在斜切角度为0.6°的GaN衬底上形成的绿光InGaN量子阱的AFM形貌图;Figure 5(c) is an AFM topography of a green light InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.6°;
图6(a)是在斜切角度为0.2°的GaN衬底上形成的绿光InGaN量子阱的变温PL测试结果曲线图;Fig. 6(a) is a graph showing the result of a variable temperature PL test of a green light InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.2°;
图6(b)是在斜切角度为0.56°的GaN衬底上形成的绿光InGaN量子阱的变温PL测试结果曲线图。Fig. 6(b) is a graph showing the result of a variable temperature PL test of a green light InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.56°.
具体实施方式Detailed ways
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。相同的标号在整个说明书和附图中可用来表示相同的元件。Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the specific embodiments set forth herein. Rather, these embodiments are provided to explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular intended use. The same reference numbers may be used throughout the specification and drawings to refer to the same elements.
在附图中,为了使组件清晰展示,夸大了层和区域的厚度。此外,相同的标号在整个说明书和附图中可用来表示相同的元件。In the drawings, the thicknesses of layers and regions are exaggerated for clarity of illustration of components. Furthermore, the same reference numbers may be used throughout the specification and drawings to refer to the same elements.
图1是本发明实施例的提高绿光或更长波长InGaN量子阱发光效率的方法的步骤流程图。FIG. 1 is a flow chart of steps of a method for improving the luminous efficiency of a green light or longer wavelength InGaN quantum well according to an embodiment of the present invention.
参照图1,本发明的实施例提供了一种提高绿光或更长波长InGaN量子阱发光效率的方法,其包括以下步骤:Referring to FIG. 1, an embodiment of the present invention provides a method for improving the luminous efficiency of a green light or longer wavelength InGaN quantum well, which includes the following steps:
步骤S1:采用一具有原子台阶的衬底,其中所述衬底上相邻原子台阶形成的斜切角大于0.2°;Step S1: using a substrate with atomic steps, wherein the chamfer angle formed by adjacent atomic steps on the substrate is greater than 0.2°;
步骤S2:在所述原子台阶面上形成缓冲层;Step S2: forming a buffer layer on the atomic step surface;
步骤S3:在所述缓冲层上形成高温n型GaN层;Step S3: forming a high temperature n-type GaN layer on the buffer layer;
步骤S4:在所述高温n型GaN层上形成InGaN量子阱。Step S4: forming InGaN quantum wells on the high temperature n-type GaN layer.
图2是由本发明实施例的方法制备得到的InGaN量子阱结构的材料结构示意图。图3是由本发明实施例的方法制备得到的InGaN量子阱结构的立体图。FIG. 2 is a schematic diagram of the material structure of the InGaN quantum well structure prepared by the method of the embodiment of the present invention. FIG. 3 is a perspective view of an InGaN quantum well structure prepared by the method of an embodiment of the present invention.
参照图2和图3,采用上述方法,制备得到如图2和图3所示的用于提高绿光或更长波长InGaN量子阱发光效率的结构,在这里,简称为InGaN量子阱结构。该InGaN量子阱结构包括衬底1、缓冲层2、高温n型GaN层3、InGaN量子阱4。其中,衬底1具有原子台阶,且相邻原子台阶形成的斜切角大于0.2°。缓冲层2形成在所述原子台阶面上。高温n型GaN层3形成在缓冲层2上。InGaN量子阱4形成在所述高温n型GaN层3上。Referring to FIGS. 2 and 3 , using the above method, a structure for improving the luminous efficiency of green light or longer wavelength InGaN quantum wells as shown in FIGS. 2 and 3 is prepared, which is referred to as an InGaN quantum well structure here. The InGaN quantum well structure includes a
结合步骤S1,衬底1可以是GaN衬底,也可以是蓝宝石衬底或SiC衬底或Si衬底。本发明并不限制于此。Combined with step S1, the
图4是本发明实施例的衬底的斜切角与原子台阶宽度关系示意图。FIG. 4 is a schematic diagram of the relationship between the chamfer angle and the atomic step width of the substrate according to an embodiment of the present invention.
减小衬底1的表面原子台阶宽度,在低温下生长高In组分绿光或更长波长InGaN量子阱4时,原子能够迁移到原子台阶边缘并入,以原子台阶流生长模式生长,获得好的表面形貌与晶体质量。如图4所示,图4为斜切角与原子台阶宽度关系示意图。假定衬底1的相邻两个原子台阶之间的坡度为斜切角α,原子台阶的高度为h,Lt为原子台阶宽度,则tanα=h/Lt,即Lt=h/tanα。那么当原子台阶高度h一定时,原子台阶宽度Lt随衬底1斜切角α的增大而减小。在本实施例中,相邻两个原子台阶之间的坡度大于0.2°,即采用斜切角α大于0.2°的衬底1生长高In组分绿光或更长波长InGaN量子阱4。衬底1的斜切角α越大时,表面原子台阶的宽度越小,低温下生长时原子能够迁移到原子台阶边缘并入,形成原子台阶流的生长模式。进一步地,相邻原子台阶形成的斜切角α可以是大于0.2°小于15°,对于绿光InGaN量子阱优选为0.4°~0.7°,而对于更长波长InGaN量子阱,最优斜切角更大,本发明并不限制于此。The atomic step width on the surface of the
优选地,在本实施例中,所述原子台阶为规则递增型台阶。每相邻两个原子台阶形成的斜切角α相等。Preferably, in this embodiment, the atomic steps are regularly increasing steps. The chamfer angle α formed by every two adjacent atomic steps is equal.
结合步骤S2、S3、S4,缓冲层2、高温n型GaN层3和InGaN量子阱4的生长方法可以是MOCVD也可以是MBE。MOCVD指的是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。MBE指的是一种分子束外延的晶体生长技术。但本发明并不限制于此。Combining steps S2, S3 and S4, the growth method of the
具体地,结合步骤S2,缓冲层2形成在衬底1的原子台阶面上,缓冲层2具体为低温不掺杂GaN层。具体地,低温不掺杂GaN层的厚度为10nm~30nm。Specifically, in combination with step S2, the
结合步骤S3,高温n型GaN层3形成在缓冲层2上,其厚度小于5000nm,电子浓度在1017cm-3到1019cm-3之间。Combined with step S3, a high temperature n-
在本实施例中,低温不掺杂GaN层(缓冲层2)和高温n型GaN层3依次形成在原子台阶的上表面之上,即原子台阶宽为Lt的表面(如图4所示)上。In this embodiment, the low-temperature undoped GaN layer (buffer layer 2 ) and the high-temperature n-
结合步骤S4,InGaN量子阱4为不掺杂的InxGa1-xN量子阱。InxGa1-xN量子阱的厚度为1nm~5nm之间,其In组分随InGaN量子阱发光波长的增加而增大,例如发光波长为520nm的InGaN量子阱中的In组分大约为25%,发光波长更长的InGaN量子阱中的In组分也更高。Combined with step S4, the InGaN quantum well 4 is an undoped InxGa1 - xN quantum well. The thickness of the In x Ga 1-x N quantum well is between 1 nm and 5 nm, and its In composition increases with the increase of the emission wavelength of the InGaN quantum well. For example, the In composition in the InGaN quantum well with the emission wavelength of 520 nm is approximately 25%, and the In composition in the InGaN quantum wells with longer emission wavelengths is also higher.
从图3中可知,每一级原子台阶上的InGaN量子阱4呈原子台阶流形貌,且每一级原子台阶上的InGaN量子阱4恰好布满该原子台阶。或者说InGaN量子阱4分布于原子台阶水平台阶面外沿。更具体地,InGaN量子阱4与其相邻的高级原子台阶的上表面齐平,或者说他们位于同一高度(同一水平面)上。It can be seen from FIG. 3 that the
根据本发明实施例的采用大斜切角衬底提高InGaN量子阱发光效率的方法,采用斜切角大的衬底1来依次生长缓冲层2、高温n型GaN层3、InGaN量子阱4,由于衬底1原子台阶的宽度窄,因此在特定温度特定生长速率下生长绿光或更长波长InGaN量子阱4时,原子的迁移距离一定,当原子台阶的宽度较窄时,原子有更大几率迁移到原子台阶边缘并入原子台阶,从而形成原子台阶流生长模式。通过变温PL测试内量子效率发现本发明实施例的原子台阶流生长模式的InGaN量子阱4有更高的内量子效率。According to the method for improving the luminous efficiency of an InGaN quantum well by using a substrate with a large chamfer angle according to an embodiment of the present invention, a
图5(a)是在斜切角度为0.2°的GaN衬底上形成的InGaN量子阱4的AFM形貌图。图5(b)是在斜切角度为0.54°的GaN衬底上形成的InGaN量子阱的AFM形貌图。图5(c)是在斜切角度为0.6°的GaN衬底上形成的InGaN量子阱的AFM形貌图。FIG. 5( a ) is an AFM topography diagram of an InGaN quantum well 4 formed on a GaN substrate with a chamfer angle of 0.2°. Figure 5(b) is an AFM topography of an InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.54°. Figure 5(c) is an AFM topography of an InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.6°.
需要说明的是,在该测试中采用的是绿光InGaN量子阱。由图5(a)~图5(c)的AFM形貌测试结果可知,在斜切角较小的衬底1上生长的绿光InGaN量子阱4的表面形貌是沿原子台阶分布的二维岛形貌,并且原子台阶宽度较大。在斜切角较大的衬底1上生长的绿光InGaN量子阱4的表面形貌是原子台阶流形貌,并且原子台阶宽度较小。It should be noted that the green light InGaN quantum well was used in this test. From the AFM topography test results in Figures 5(a) to 5(c), it can be seen that the surface topography of the green light InGaN quantum well 4 grown on the
图6(a)是在斜切角度为0.2°的GaN衬底上形成的InGaN量子阱的变温PL测试结果曲线图。图6(b)是在斜切角度为0.56°的GaN衬底上形成的绿光InGaN量子阱的变温PL测试结果曲线图。其中,横坐标表示的是1000除以温度的数值,纵坐标表示的是PL积分强度。FIG. 6( a ) is a graph showing the result of a variable temperature PL test of an InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.2°. Fig. 6(b) is a graph showing the result of a variable temperature PL test of a green light InGaN quantum well formed on a GaN substrate with a chamfer angle of 0.56°. Among them, the abscissa represents the value of 1000 divided by the temperature, and the ordinate represents the PL integral intensity.
结合图6(a)和图6(b)可以看出,当斜切角从0.2°增加到0.56°,绿光InGaN量子阱4的内量子效率(IQE)从0.67%增加到3.5%。因此采用斜切角大于0.2°的衬底1生长绿光InGaN量子阱4可以有效提高绿光InGaN量子阱4的内量子效率。6(a) and 6(b), it can be seen that when the chamfer angle increases from 0.2° to 0.56°, the internal quantum efficiency (IQE) of the green InGaN quantum well 4 increases from 0.67% to 3.5%. Therefore, using the
综上所述,根据本发明的实施例,采用斜切角大于0.2°的衬底生长绿光或更长波长InGaN量子阱有源区,可以实现绿光或更长波长InGaN量子阱的原子台阶流生长,改善其形貌,并提高InGaN量子阱的内量子效率。此外,通过上述方法制备得到的InGaN量子阱既可以广泛应用于GaN基绿光或更长波长LED、GaN基绿光或更长波长激光器中,也可以广泛应用于多量子阱太阳能电池中。To sum up, according to the embodiments of the present invention, using a substrate with a chamfer angle greater than 0.2° to grow green light or longer wavelength InGaN quantum well active regions can realize the atomic steps of green light or longer wavelength InGaN quantum wells flow growth, improve its morphology, and increase the internal quantum efficiency of InGaN quantum wells. In addition, the InGaN quantum well prepared by the above method can be widely used not only in GaN-based green light or longer wavelength LEDs, GaN-based green light or longer wavelength lasers, but also in multi-quantum well solar cells.
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。While the invention has been shown and described with reference to specific embodiments, those skilled in the art will appreciate that forms and Various changes in details.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611153017.6A CN106784181B (en) | 2016-12-14 | 2016-12-14 | Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611153017.6A CN106784181B (en) | 2016-12-14 | 2016-12-14 | Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106784181A CN106784181A (en) | 2017-05-31 |
CN106784181B true CN106784181B (en) | 2020-06-23 |
Family
ID=58888532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611153017.6A Active CN106784181B (en) | 2016-12-14 | 2016-12-14 | Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106784181B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108511323A (en) * | 2018-04-04 | 2018-09-07 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method and its application based on big angle of chamfer Sapphire Substrate epitaxial growth of gallium nitride |
CN110491774B (en) * | 2019-08-19 | 2021-10-26 | 中国科学院苏州纳米技术与纳米仿生研究所 | Surface treatment method of sapphire substrate and crucible used by surface treatment method |
CN114551217A (en) * | 2020-11-25 | 2022-05-27 | 东莞市中镓半导体科技有限公司 | Preparation method of gallium nitride template on large-deflection-angle sapphire substrate |
CN112670383B (en) * | 2020-12-25 | 2023-07-14 | 广东省科学院半导体研究所 | Ultraviolet light electric device and preparation method thereof |
CN113013302A (en) * | 2021-02-26 | 2021-06-22 | 东莞市中麒光电技术有限公司 | Preparation method of InGaN-based red light LED chip structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103296168A (en) * | 2012-02-28 | 2013-09-11 | 苏州新纳晶光电有限公司 | InGaN quantum dot epitaxial wafer prepared through substrate with atom step and preparation method thereof |
CN103903966A (en) * | 2014-03-11 | 2014-07-02 | 复旦大学 | Method for manufacturing ultrahigh-density germanium silicon quantum dots based on obliquely-cut silicon substrate |
CN104538524A (en) * | 2014-12-17 | 2015-04-22 | 中国科学院半导体研究所 | Epitaxy structure of InGaN quantum dot and growth method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005021099A1 (en) * | 2005-05-06 | 2006-12-07 | Universität Ulm | GaN layers |
JP4890558B2 (en) * | 2006-10-20 | 2012-03-07 | パナソニック電工株式会社 | Sapphire substrate, nitride semiconductor light emitting device using the same, and method for manufacturing nitride semiconductor light emitting device |
KR20110129444A (en) * | 2009-03-02 | 2011-12-01 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | Devices grown on nonpolar or semipolar (gallium, aluminum, indium, boron) nitrogen substrates |
US9236530B2 (en) * | 2011-04-01 | 2016-01-12 | Soraa, Inc. | Miscut bulk substrates |
US9368582B2 (en) * | 2013-11-04 | 2016-06-14 | Avogy, Inc. | High power gallium nitride electronics using miscut substrates |
CN104037287B (en) * | 2014-06-10 | 2017-01-11 | 广州市众拓光电科技有限公司 | LED epitaxial wafer grown on Si substrate and preparation method thereof |
CN106098890B (en) * | 2016-06-21 | 2019-04-09 | 吉林大学 | A vertical structure nitrogen polar GaN-based green LED chip based on carbon-face SiC substrate and its preparation method |
-
2016
- 2016-12-14 CN CN201611153017.6A patent/CN106784181B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103296168A (en) * | 2012-02-28 | 2013-09-11 | 苏州新纳晶光电有限公司 | InGaN quantum dot epitaxial wafer prepared through substrate with atom step and preparation method thereof |
CN103903966A (en) * | 2014-03-11 | 2014-07-02 | 复旦大学 | Method for manufacturing ultrahigh-density germanium silicon quantum dots based on obliquely-cut silicon substrate |
CN104538524A (en) * | 2014-12-17 | 2015-04-22 | 中国科学院半导体研究所 | Epitaxy structure of InGaN quantum dot and growth method |
Also Published As
Publication number | Publication date |
---|---|
CN106784181A (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104393124B (en) | A kind of preparation method of LED epitaxial slice structure | |
CN103681985B (en) | Epitaxial wafer of a kind of light emitting diode and preparation method thereof | |
CN105355738B (en) | A kind of LED epitaxial slice structure and preparation method | |
CN105226149B (en) | A kind of LED epitaxial structure and production method | |
CN106784181B (en) | Method and structure for improving luminous efficiency of green light or longer wavelength InGaN quantum well | |
CN110233190B (en) | Light emitting device | |
CN105870283A (en) | Light-emitting diode with composite polar face electron blocking layer | |
CN109411579B (en) | Semiconductor device with graphene structure and preparation method thereof | |
JP2008277714A (en) | METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR LIGHT EMITTING DIODE | |
CN104993028B (en) | A kind of LED epitaxial slice | |
JP2023511822A (en) | Epitaxial structure of micro light-emitting diode and its fabrication method | |
CN116314501A (en) | LED epitaxial structure and preparation method thereof | |
CN114038954A (en) | Epitaxial structure of light emitting diode and manufacturing method thereof | |
CN104377283B (en) | A kind of LED epitaxial slice structure | |
CN106784204A (en) | A kind of gallium nitride based light emitting diode structure and preparation method thereof | |
CN116598396A (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN106025009B (en) | A kind of light emitting diode and preparation method thereof | |
CN103996766B (en) | Gallium nitride based light emitting diode and preparation method thereof | |
CN117810332B (en) | Gallium nitride-based light-emitting diode epitaxial wafer and preparation method thereof | |
CN103985799B (en) | Light-emitting diode and manufacturing method thereof | |
CN117747725A (en) | Epitaxial structure of long-wavelength InGaN-based light-emitting diode and preparation method thereof | |
CN107681030B (en) | A novel P-GaN film structure LED chip and its preparation method | |
CN113964246A (en) | Epitaxial structure of light emitting diode and manufacturing method thereof | |
CN106159046A (en) | A kind of LED epitaxial structure improving GaN crystal quality | |
Kuo et al. | Efficiency improvement of near-ultraviolet nitride-based light-emitting-diode prepared on GaN nano-rod arrays by metalorganic chemical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20170531 Assignee: Suzhou Jiaruixin Light Technology Co.,Ltd. Assignor: SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS (SINANO), CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980013916 Denomination of invention: Methods and structures for improving the luminescence efficiency of green or longer wavelength InGaN quantum wells Granted publication date: 20200623 License type: Common License Record date: 20240905 |
|
EE01 | Entry into force of recordation of patent licensing contract |