[go: up one dir, main page]

CN106783862B - A kind of STT-MRAM storage unit - Google Patents

A kind of STT-MRAM storage unit Download PDF

Info

Publication number
CN106783862B
CN106783862B CN201611201099.7A CN201611201099A CN106783862B CN 106783862 B CN106783862 B CN 106783862B CN 201611201099 A CN201611201099 A CN 201611201099A CN 106783862 B CN106783862 B CN 106783862B
Authority
CN
China
Prior art keywords
layer
ferromagnetic
electrode
mtj
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611201099.7A
Other languages
Chinese (zh)
Other versions
CN106783862A (en
Inventor
王真
何岳巍
胡少杰
闵泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201611201099.7A priority Critical patent/CN106783862B/en
Publication of CN106783862A publication Critical patent/CN106783862A/en
Application granted granted Critical
Publication of CN106783862B publication Critical patent/CN106783862B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开一种STT‑MRAM存储单元,包括晶体管和MTJ单元;晶体管建立在基底上,晶体管的漏极与MTJ单元通过金属线达到漏接触;MTJ单元包括内电极和包裹在内电极外周的种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极;金属线与内电极连接;种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极均与基底所在平面不平行;种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极与金属线间隔设置。本发明中MTJ单元的设置形式将热稳定系数Δ随原本的平面结构尺寸的平方变化关系减弱为线性变化,可以用高度补偿,有利于MTJ小型化。本发明可有效的利用空间,保证良好的热稳定性,提高存储密度,提供多种存储模式,对20nm技术节点以下的存储器具有应用前景。

Figure 201611201099

The invention discloses an STT-MRAM storage unit, comprising a transistor and an MTJ unit; the transistor is built on a substrate, and the drain of the transistor and the MTJ unit are in drain contact through a metal wire; the MTJ unit includes an inner electrode and a seed wrapped around the periphery of the inner electrode layer, ferromagnetic pinned layer, non-magnetic barrier layer, ferromagnetic free layer and external electrode; metal wire connected to internal electrode; seed layer, ferromagnetic pinned layer, non-magnetic barrier layer, ferromagnetic free layer and external electrode The electrodes are not parallel to the plane where the substrate is located; the seed layer, the ferromagnetic pinning layer, the non-magnetic barrier layer, the ferromagnetic free layer and the external electrodes are arranged at intervals from the metal wire. The arrangement form of the MTJ unit in the present invention weakens the relationship between the thermal stability coefficient Δ and the square change of the original plane structure size to a linear change, which can be compensated by height, which is beneficial to the miniaturization of the MTJ. The invention can effectively utilize space, ensure good thermal stability, improve storage density, provide multiple storage modes, and has application prospects for memories below the 20nm technology node.

Figure 201611201099

Description

一种STT-MRAM存储单元A kind of STT-MRAM storage unit

技术领域technical field

本发明涉及STT-MRAM(Spin Transfer Torque-Magnetic Random AccessMemory,自旋转移矩-磁随机存储器)存储器件技术领域,尤其涉及一种磁隧道结(MagneticTunnel Junction,MTJ)结构和STT-MRAM器件的制备方法。The invention relates to the technical field of STT-MRAM (Spin Transfer Torque-Magnetic Random Access Memory, spin transfer torque-magnetic random access memory) storage devices, in particular to a magnetic tunnel junction (Magnetic Tunnel Junction, MTJ) structure and preparation of the STT-MRAM device method.

背景技术Background technique

磁随机存储器(MRAM)是一种可取代传统存储器的先进存储技术。具有良好的非挥发性,即断电后数据不丢失,良好的热稳定性,存储信息可保存超过十年,以及良好的读写稳定性,读写次数可达1016次。早期的MRAM是利用电流产生外磁场来改变自由层的磁性状态,由于所需写入电流大,能耗高而限制了小型化。而通过自旋电流来控制磁性状态的自旋转移矩磁随机存储器(STT-MRAM),可有效避免这种状况,对存储器件的小型化具有重要意义。Magnetic random access memory (MRAM) is an advanced storage technology that can replace traditional memory. It has good non-volatility, that is, data is not lost after power failure, good thermal stability, storage information can be stored for more than ten years, and good read and write stability, the number of reads and writes can reach 10 16 times. The early MRAM used a current to generate an external magnetic field to change the magnetic state of the free layer. Due to the large write current required and high energy consumption, miniaturization was limited. The spin-transfer torque magnetic random access memory (STT-MRAM), which controls the magnetic state through spin current, can effectively avoid this situation and is of great significance to the miniaturization of memory devices.

STT-MRAM存储器件的读写功能由其存储单元和自旋极化电流来控制,典型的STT-MRAM存储器件由MTJ存储单元和选择性晶体管组成。而MTJ存储单元又包括铁磁性钉扎层,绝缘隧穿层,铁磁性自由层。随着半导体技术的进步,当前已有MTJ的结构是平面结构,即MTJ各层平面平行于圆晶衬底表面,电流沿垂直膜面方向流动。随着纳米技术节点不断的按比例缩小,MTJ单元各部分的尺寸在不断减小,其热稳定性受到巨大挑战。MTJ的热稳定性可由公式Δ=KAt/kT表征。其中,Δ表示热稳定性因子,K表示各向异性常数,A表示磁自由层的面积,t表示自由层的厚度,k为玻尔兹曼常量,T为温度[A.V.Khvalkovskiy.J.Phys.D:Appl.Phys.2013]。一般要求存储单元对信息的存储具有10年以上的热稳定性,即要求热稳定性因子Δ必须保持在60-70左右。随着器件尺寸的减小,即MTJ面积A在缩小,要保持热稳定性Δ的值,需要通过增大各向异性常数K或/和薄膜的厚度t来保持。根据上述热稳定性公式,当器件尺寸减小时,自由层面积A将随器件尺寸以平方形式减小,此时为了保证热稳定性,Kt必须随器件尺寸以平方关系增加。一方面,各向异性常数K通常由磁性薄膜自由层和氧化物势垒层的界面工艺和材料类型决定,在MTJ中很难调节各向异性常数K,要使K按照MTJ尺寸的减小而增加去补偿,在技术上非常困难。另一方面,通过增加自由层的厚度t来增加Δ同样低效,因为Δ随t变化是线性的比MTJ尺寸的平方变化要缓慢很多,而且翻转电流密度与薄膜厚度t成正比,增加t使写入能量急剧升高[A.Goyal.Appl.Phys.Lett.1996],所以通过调节t来补偿也不可行。因此,在小尺寸10nm技术节点以下,MTJ要保持好的热稳定性,就需要对MTJ结构进行新的设计。The read and write functions of STT-MRAM memory devices are controlled by their memory cells and spin-polarized currents. A typical STT-MRAM memory device consists of MTJ memory cells and selective transistors. The MTJ memory cell further includes a ferromagnetic pinned layer, an insulating tunneling layer, and a ferromagnetic free layer. With the advancement of semiconductor technology, the structure of the existing MTJ is a planar structure, that is, the planes of each layer of the MTJ are parallel to the surface of the wafer substrate, and the current flows in the direction perpendicular to the film surface. As nanotechnology nodes continue to be scaled down, the size of each part of the MTJ unit is decreasing, and its thermal stability is greatly challenged. The thermal stability of MTJ can be characterized by the formula Δ=KAt/kT. where Δ is the thermal stability factor, K is the anisotropy constant, A is the area of the magnetic free layer, t is the thickness of the free layer, k is the Boltzmann constant, and T is the temperature [A.V.Khvalkovskiy.J.Phys. D: Appl. Phys. 2013]. Generally, the storage unit is required to have thermal stability for storing information for more than 10 years, that is, the thermal stability factor Δ must be maintained at about 60-70. As the size of the device decreases, that is, the area A of the MTJ is decreasing, to maintain the value of thermal stability Δ, it needs to be maintained by increasing the anisotropy constant K or/and the thickness t of the film. According to the above thermal stability formula, when the device size decreases, the free layer area A will decrease with the square of the device size. At this time, in order to ensure thermal stability, Kt must increase with the square of the device size. On the one hand, the anisotropy constant K is usually determined by the interface process and material type of the magnetic thin film free layer and the oxide barrier layer, and it is difficult to adjust the anisotropy constant K in MTJ. It is technically very difficult to increase the compensation. On the other hand, increasing Δ by increasing the thickness t of the free layer is equally inefficient because Δ varies linearly with t much more slowly than the square of the MTJ dimension, and the switching current density is proportional to the film thickness t, increasing t makes The write energy rises sharply [A.Goyal.Appl.Phys.Lett.1996], so it is not feasible to compensate by adjusting t. Therefore, in order to maintain good thermal stability of the MTJ below the small-scale 10nm technology node, a new design of the MTJ structure is required.

发明内容SUMMARY OF THE INVENTION

本发明目的在于提供一种STT-MRAM存储单元,以解决上述技术问题。The purpose of the present invention is to provide an STT-MRAM storage unit to solve the above technical problems.

为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

一种STT-MRAM存储单元,包括晶体管和MTJ单元;晶体管建立在基底上,晶体管的漏极与MTJ单元通过金属线达到漏接触;MTJ单元包括内电极和包裹在内电极外周的种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极;金属线与内电极连接;种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极均与基底所在平面不平行;种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极与金属线间隔设置。An STT-MRAM storage unit includes a transistor and an MTJ unit; the transistor is built on a substrate, and the drain of the transistor and the MTJ unit reach drain contact through a metal wire; the MTJ unit includes an inner electrode and a seed layer, an iron layer wrapped around the periphery of the inner electrode The magnetic pinned layer, the nonmagnetic barrier layer, the ferromagnetic free layer and the outer electrode; the metal wire is connected to the inner electrode; the seed layer, the ferromagnetic pinned layer, the nonmagnetic barrier layer, the ferromagnetic free layer and the outer electrode are all connected with the inner electrode. The plane on which the substrate is located is not parallel; the seed layer, the ferromagnetic pinning layer, the non-magnetic barrier layer, the ferromagnetic free layer and the external electrode are spaced apart from the metal wire.

进一步的,MTJ单元由内至外依次为内电极、种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极,或者由内至外依次为内电极、种子层、铁磁性自由层、非磁性势垒层、铁磁性钉扎层和外电极。Further, the MTJ unit is the inner electrode, the seed layer, the ferromagnetic pinning layer, the nonmagnetic barrier layer, the ferromagnetic free layer and the outer electrode in sequence from the inside to the outside, or the inner electrode, the seed layer, A ferromagnetic free layer, a nonmagnetic barrier layer, a ferromagnetic pinned layer, and an external electrode.

进一步的,晶体管包括源极、漏极和栅极迭层;源极和漏极间隔设置在基底上,源极和漏极通过栅极迭层连接;栅极迭层与第一字线相连,漏极与MTJ单元通过金属线达到漏接触。Further, the transistor includes a source electrode, a drain electrode and a gate stack; the source electrode and the drain electrode are arranged on the substrate at intervals, and the source electrode and the drain electrode are connected through the gate stack; the gate stack is connected to the first word line, The drain and the MTJ cell are in drain contact through metal lines.

进一步的,MTJ单元为长方体柱状结构。Further, the MTJ unit has a cuboid columnar structure.

进一步的,金属线与内电极为一体式结构,或者内电极制备在金属线上。Further, the metal wire and the internal electrode have an integral structure, or the internal electrode is prepared on the metal wire.

进一步的,MTJ单元由内向外表现为:长方体柱状结构的内电极,铁磁性钉扎层沿长方体内电极侧面保形包围内电极,非磁性势垒层沿侧面保形包围铁磁性钉扎层,铁磁性自由层沿侧面保形包围非磁性势垒层,铁磁性自由层外侧为外电极;或者,MTJ单元由内向外表现为:长方体柱状结构的内电极,铁磁性自由层沿长方体内电极侧面保形包围内电极,非磁性势垒层沿侧面保形包围铁磁性自由层,铁磁性钉扎层沿侧面保形包围非磁性势垒层,铁磁性钉扎层外侧为外电极。Further, the MTJ unit is expressed from the inside to the outside as: the inner electrode of the cuboid column structure, the ferromagnetic pinning layer conformally surrounds the inner electrode along the side of the cuboid inner electrode, the non-magnetic barrier layer conformally surrounds the ferromagnetic pinning layer along the side, The ferromagnetic free layer conformally surrounds the non-magnetic barrier layer along the side, and the outer side of the ferromagnetic free layer is the outer electrode; or, the MTJ unit is expressed from the inside to the outside as: the inner electrode of the cuboid column structure, and the ferromagnetic free layer is along the side of the cuboid inner electrode. The inner electrode is conformally surrounded by the non-magnetic barrier layer, the ferromagnetic free layer is conformally surrounded by the non-magnetic barrier layer along the side, the ferromagnetic pinned layer is conformally surrounded by the non-magnetic barrier layer along the side, and the outer electrode is outside the ferromagnetic pinned layer.

进一步的,MTJ单元上部为介电保护层,介电保护层覆盖种子层、铁磁性钉扎层、非磁性势垒层和铁磁性自由层,外电极部分暴露于介电保护层外部。Further, the upper part of the MTJ unit is a dielectric protection layer, the dielectric protection layer covers the seed layer, the ferromagnetic pinning layer, the non-magnetic barrier layer and the ferromagnetic free layer, and the external electrode is partially exposed outside the dielectric protection layer.

进一步的,MTJ顶部介电保护层由Al2O3、CrO、TaO中的一种或多种构成,其厚度为0.5-2nm。Further, the top dielectric protection layer of the MTJ is composed of one or more of Al 2 O 3 , CrO, and TaO, and its thickness is 0.5-2 nm.

进一步的,基底上设有包裹晶体管和MTJ单元的绝缘介质;MTJ单元暴露于介电保护层外部的外电极与第二字线相连。Further, an insulating medium wrapping the transistor and the MTJ unit is provided on the substrate; the external electrode of the MTJ unit exposed to the outside of the dielectric protection layer is connected to the second word line.

进一步的,种子层、铁磁性钉扎层、非磁性势垒层、铁磁性自由层和外电极均与基底所在平面垂直。Further, the seed layer, the ferromagnetic pinned layer, the non-magnetic barrier layer, the ferromagnetic free layer and the external electrode are all perpendicular to the plane where the substrate is located.

进一步的,MTJ结构的内电极长为1-10nm,宽为1-10nm,高为1-100nm;种子层的厚度为0.5-3nm;铁磁性钉扎层厚度为0.5-15nm;势垒层厚度为0.5-5nm;自由层厚度为1-10nm;外电极厚度为0.5-10nm。Further, the inner electrode of the MTJ structure has a length of 1-10 nm, a width of 1-10 nm and a height of 1-100 nm; the thickness of the seed layer is 0.5-3 nm; the thickness of the ferromagnetic pinning layer is 0.5-15 nm; the thickness of the barrier layer is 0.5-15 nm. is 0.5-5nm; the thickness of the free layer is 1-10nm; the thickness of the external electrode is 0.5-10nm.

进一步的,内电极的材料为Au、Ag、Cu、Nd、Ti、Al、Ru、Rh、Mo、Zr、Hf、Ta、V、Cr、W、Nb、poly-Si及其合金或半导体材料;Further, the material of the inner electrode is Au, Ag, Cu, Nd, Ti, Al, Ru, Rh, Mo, Zr, Hf, Ta, V, Cr, W, Nb, poly-Si and its alloys or semiconductor materials;

种子层的材料为NiFe、NiCr、NiFeCr、Cu、Ti、TiN、Ta、Ru或Rh;The material of the seed layer is NiFe, NiCr, NiFeCr, Cu, Ti, TiN, Ta, Ru or Rh;

铁磁性钉扎层由一层反铁磁薄膜和一层铁磁薄膜构成,或由一层硬铁磁薄膜和一层铁磁薄膜构成,或由一层反铁磁、一层耦合层和一层铁磁薄膜构成,或由一层硬铁磁薄膜、一层耦合层和一层铁磁薄膜构成;制备反铁磁薄膜的材料为IrMn、RhMn、RuMn、OsMn、FeMn、FeMnCr、FeMnRh、CrPtMn、TbMn、NiMn、PtMn、PtPdMn、NiO、CoNiO合金及包含上述元素的合金形成的多层膜;制备硬铁磁薄膜的材料为Co、Fe、Pt、Pd及其中两种或两种以上元素形成的合金,或CoPtB合金;制备铁磁薄膜的材料为过渡金属Fe、Co、Ni及其合金,以及与B、Zr、Pt、Pd、Hf、Ta、V、Zr、Ti、Cr、W、Mo、Nb组成的合金,以及上述元素或合金形成的多层膜;The ferromagnetic pinning layer consists of an antiferromagnetic film and a ferromagnetic film, or a hard ferromagnetic film and a ferromagnetic film, or an antiferromagnetic, a coupling layer, and a It is composed of a layer of ferromagnetic film, or a hard ferromagnetic film, a coupling layer and a ferromagnetic film; the materials for preparing the antiferromagnetic film are IrMn, RhMn, RuMn, OsMn, FeMn, FeMnCr, FeMnRh, CrPtMn , TbMn, NiMn, PtMn, PtPdMn, NiO, CoNiO alloy and the multilayer film formed by the alloy containing the above-mentioned elements; the material for preparing the hard ferromagnetic film is Co, Fe, Pt, Pd and two or more of them. alloys, or CoPtB alloys; the materials for preparing ferromagnetic films are transition metals Fe, Co, Ni and their alloys, as well as with B, Zr, Pt, Pd, Hf, Ta, V, Zr, Ti, Cr, W, Mo , an alloy composed of Nb, and a multilayer film formed by the above elements or alloys;

制备铁磁性自由层的材料为过渡金属Fe、Co、Ni及其合金,以及与B、Zr、Pt、Pd、Hf、Ta、V、Zr、Ti、Cr、W、Mo、Nb组成的合金,以及上述元素或合金形成的多层膜;The materials for preparing the ferromagnetic free layer are transition metals Fe, Co, Ni and their alloys, as well as alloys with B, Zr, Pt, Pd, Hf, Ta, V, Zr, Ti, Cr, W, Mo, Nb, And the multi-layer film formed by the above-mentioned elements or alloys;

非磁性势垒层的材料为MgO、Al2O3、Al2MgO4、ZnO、ZnMgO2、TiO2、HfO2、TaO2、Cd2O3、ZrO2、Ga2O3、Sc2O3、V2O5、Fe2O3、Co2O3及NiO,以及以上化合物中的一种或多种混合;或者,非磁性势垒层的材料为氮化物;The material of the non-magnetic barrier layer is MgO, Al 2 O 3 , Al 2 MgO 4 , ZnO, ZnMgO 2 , TiO 2 , HfO 2 , TaO 2 , Cd 2 O 3 , ZrO 2 , Ga 2 O 3 , Sc 2 O 3. V 2 O 5 , Fe 2 O 3 , Co 2 O 3 and NiO, and a mixture of one or more of the above compounds; or, the material of the non-magnetic barrier layer is nitride;

外电极材料为Au、Ag、Cu、Nd、Ti、Al、Ru、Rh、Mo、Zr、Hf、Ta、V、Cr、W、Nb、poly-Si及其合金或半导体材料。The external electrode materials are Au, Ag, Cu, Nd, Ti, Al, Ru, Rh, Mo, Zr, Hf, Ta, V, Cr, W, Nb, poly-Si and their alloys or semiconductor materials.

相对于现有技术,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明中,STT-MRAM存储单元将MTJ单元设计为垂直型或与基底不平行的形式,即MTJ的各层与圆晶衬底表面垂直,且各层为封闭的,呈回字型的长方体柱状结构,MTJ单元长、宽分别为5-50nm,高为1-100nm之间。在本发明所提供的结构中,随着MTJ尺寸的减小,热稳定系数Δ=2LK(a+b)t/kT,其中a、b、L分别为MTJ的长、宽、高,则Δ将随平面尺寸长、宽a、b线性变化,且随高度也是线性变化。这种MTJ结构可将Δ随原本的平面结构尺寸的平方变化关系减弱为线性变化,可以用高度补偿,有利于MTJ单元结构的小型化。当今半导体产业内已经相当完善的自对准双图案技术(Self-Alignment Double Patterning,SADP)制出的图案是长方形结构[Zigang Xiao,IEEE,IEEE Transactions on Computer-Aided Designof Integrated Circuits and Systems,2013],因此,在本发明中的方形MTJ单元结构设计很容易用SADP技术实现。In the present invention, the MTJ unit is designed to be vertical or non-parallel to the substrate in the STT-MRAM memory cell, that is, each layer of the MTJ is vertical to the surface of the wafer substrate, and each layer is closed and is a rectangular parallelepiped in the shape of a back. Columnar structure, the length and width of the MTJ unit are respectively 5-50nm, and the height is between 1-100nm. In the structure provided by the present invention, as the size of the MTJ decreases, the thermal stability coefficient Δ=2LK(a+b)t/kT, where a, b and L are the length, width and height of the MTJ respectively, then Δ It will vary linearly with the length, width a, b of the plane dimension, and also linearly with the height. This MTJ structure can weaken the relationship between Δ and the square change of the original planar structure size to a linear change, which can be compensated by height, which is beneficial to the miniaturization of the MTJ unit structure. The well-established Self-Alignment Double Patterning (SADP) in the semiconductor industry today produces a rectangular structure [Zigang Xiao, IEEE, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013] , therefore, the square MTJ cell structure design in the present invention is easily realized by SADP technology.

MTJ结构的最中间为长方体柱状内电极,由内向外横向沿内电极侧面向周围保形延伸,依次为铁磁性钉扎层,非磁性势垒层,铁磁性自由层和外电极;或者为铁磁性自由层,非磁性势垒层,铁磁性钉扎层和外电极。在此MTJ结构中,自由电子沿横向由内电极通过钉扎层产生自旋极化电流,然后通过势垒层,到达自由层,引起自由层磁化方向转向电子自旋极化方向,达到两磁性层磁矩为平行态,即数据“1”。自由电子沿横向由外电极通过自由层产生,然后通过势垒层,到达钉扎层,与钉扎层极化方向一致的电子通过,极化相反的反射回然后作用于自由层,达到两磁性层磁矩为反平行态,即数据“0”。The middle of the MTJ structure is a cuboid columnar inner electrode, which extends laterally from the inside to the outside along the side of the inner electrode to the periphery, followed by a ferromagnetic pinning layer, a non-magnetic barrier layer, a ferromagnetic free layer and an outer electrode; or iron Magnetic free layer, nonmagnetic barrier layer, ferromagnetic pinned layer and external electrodes. In this MTJ structure, the free electrons generate spin-polarized current from the inner electrode through the pinning layer in the lateral direction, and then pass through the barrier layer to reach the free layer, causing the magnetization direction of the free layer to turn to the electron spin polarization direction, achieving two magnetic The layer magnetic moment is in the parallel state, that is, the data "1". The free electrons are generated by the external electrode through the free layer in the lateral direction, and then pass through the barrier layer to reach the pinned layer. The electrons with the same polarization direction as the pinned layer pass through, and the opposite polarization is reflected back and then acts on the free layer to achieve two magnetic properties. The layer magnetic moment is in the antiparallel state, that is, the data "0".

STT-MRAM的磁性存储单元的长方体柱状内电极形成于底电极之上,沿内电极侧面横向制备长方体柱状MTJ结构,再沿侧面制备外电极。发明内容还包括内电极的制备方法,在金属线上制备长方体柱状内电极,之后覆盖一层绝缘介质并使内电极部分外露,再沿外露部分的侧面制备MTJ结构,MTJ具体结构要均匀沿内电极侧面横向由内向外包括种子层、钉扎层、势垒层和自由层或种子层、自由层、势垒层和钉扎层,在MTJ外侧制备外电极。The cuboid columnar inner electrode of the magnetic memory cell of STT-MRAM is formed on the bottom electrode, the cuboid columnar MTJ structure is prepared laterally along the side surface of the inner electrode, and then the outer electrode is prepared along the side surface. The content of the invention also includes the preparation method of the inner electrode. The cuboid columnar inner electrode is prepared on the metal wire, and then a layer of insulating medium is covered to expose the inner electrode part, and then the MTJ structure is prepared along the side of the exposed part. The lateral side of the electrode includes a seed layer, a pinned layer, a barrier layer and a free layer or a seed layer, a free layer, a barrier layer and a pinned layer from the inside to the outside, and an external electrode is prepared outside the MTJ.

本发明存储单元表现为长方体柱状的三维磁隧道结(MTJ)结构,长、宽分别为5-50nm,高度为1-100nm;三维磁隧道结(MTJ)结构外形为长方体柱状结构,其中钉扎层(自由层),势垒层和自由层(钉扎层)围绕内电极侧面组成三维的MTJ结构。该结构的优势在于可有效的利用空间,保证良好的热稳定性,提高存储密度,提供多种存储模式,对20nm技术节点以下的存储器具有应用前景。The memory cell of the present invention exhibits a three-dimensional magnetic tunnel junction (MTJ) structure in the shape of a rectangular parallelepiped column, the length and width are respectively 5-50 nm, and the height is 1-100 nm; The layer (free layer), the barrier layer and the free layer (pinning layer) form a three-dimensional MTJ structure around the sides of the inner electrode. The advantage of this structure is that it can effectively use space, ensure good thermal stability, improve storage density, provide multiple storage modes, and have application prospects for memories below the 20nm technology node.

附图说明Description of drawings

附图用于辅助描述实施例,仅用于说明而非对其加以限制。The accompanying drawings are used to assist in describing the embodiments, for illustration only and not for limitation.

图1为本发明实施例中提出的三维STT-MRAM存储单元结构的侧面示意图;1 is a schematic side view of a three-dimensional STT-MRAM memory cell structure proposed in an embodiment of the present invention;

图2为MTJ200的示意图;其中,图2(a)为俯视图,图2(b)为剖面示意图;Figure 2 is a schematic diagram of MTJ200; wherein, Figure 2 (a) is a top view, Figure 2 (b) is a schematic cross-sectional view;

图3为本发明实施例中提出的MTJ内电极示意图;其中,图3(a)为俯视图,图3(b)为剖面示意图;3 is a schematic diagram of the MTJ inner electrode proposed in the embodiment of the present invention; wherein, FIG. 3(a) is a top view, and FIG. 3(b) is a schematic cross-sectional view;

图4-13为本发明实施例中提出的MTJ单元的具体制备过程示意图。4-13 are schematic diagrams of the specific preparation process of the MTJ unit proposed in the embodiment of the present invention.

图14为MTJ200第二种形式的示意图;其中,图14(a)为俯视图,图14(b)为剖面示意图;Figure 14 is a schematic diagram of the second form of MTJ200; wherein, Figure 14 (a) is a top view, Figure 14 (b) is a schematic cross-sectional view;

图15为MTJ200第二种形式的结构示意图;Figure 15 is a schematic structural diagram of the second form of MTJ200;

图16-19为本发明实施例中提出的MTJ内电极的一种制备方法示意图;16-19 are schematic diagrams of a preparation method of the MTJ inner electrode proposed in the embodiment of the present invention;

图20-22为本发明实施例中提出的MTJ内电极的另一种制备方法示意图。20-22 are schematic diagrams of another preparation method of the MTJ inner electrode proposed in the embodiment of the present invention.

具体实施方式Detailed ways

在针对本发明具体实例的如下描述以及相关图式中揭示本发明的实施例方面。在不脱离本发明范围的情况下设想替代实施例。另,众所周知的技术方法将不做出详述说明,以避免与本发明发生混淆。本文使用词语“示范性”来表示“用作实例、例子、或说明”。在此,描述为“示范性”的任何实例均不一定解释为比其他实施例优选或有利。同样,术语“本发明的实施例”不要求本发明的所有实施例均包含所述的特征、优点或操作模式。Embodiment aspects of the invention are disclosed in the following description and related drawings directed to specific examples of the invention. Alternative embodiments are contemplated without departing from the scope of the present invention. In addition, well-known technical methods will not be described in detail to avoid confusion with the present invention. The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any example described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term "embodiments of the invention" does not require that all embodiments of the invention include the recited feature, advantage or mode of operation.

下面结合附图,对本发明具体实施方案作进一步详细说明。本发明描述了一种自旋转移矩存储器STT-MRAM的磁存储单元结构。The specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings. The invention describes a magnetic storage unit structure of a spin transfer torque memory STT-MRAM.

一种STT-MRAM存储单元,包括一个磁隧道结MTJ结构单元(磁性隧道结(MagneticTunnel Junction)),MTJ单元包括钉扎层、势垒层和自由层,其几何结构为长方柱状体。信息的写入和更改是通过自旋极化电流改变MTJ单元中自由层磁矩的方向来实现的。磁矩的变化引起MTJ单元电阻的变化,电阻态的差异可用于程序编入或擦掉记忆单元中的信息。An STT-MRAM storage unit includes a magnetic tunnel junction MTJ structural unit (Magnetic Tunnel Junction), the MTJ unit includes a pinned layer, a potential barrier layer and a free layer, and its geometric structure is a rectangular columnar body. The writing and modification of information is achieved by changing the orientation of the magnetic moment of the free layer in the MTJ cell by a spin-polarized current. Changes in the magnetic moment cause changes in the resistance of the MTJ cells, and the difference in resistance states can be used to program or erase information in the memory cells.

实施例1Example 1

图1是STT-MRAM存储单元结构图。包含一个晶体管101和MTJ单元200。晶体管101建立在基底100上,包括源极103a,漏极103b和栅极迭层102。栅极迭层102与字线105相连,漏极103b与MTJ单元200通过金属线106达到漏接触,源极103a与源节点区104实现源接触。MTJ单元200与字线107相连。MTJ单元200由钉扎层和自由层之间加一层隧穿层形成,且垂直于金属线106的上平面。Figure 1 is a structural diagram of an STT-MRAM memory cell. A transistor 101 and MTJ cell 200 are included. Transistor 101 is built on substrate 100 and includes source 103a, drain 103b and gate stack 102. The gate stack 102 is connected to the word line 105 , the drain electrode 103 b is in drain contact with the MTJ cell 200 through the metal line 106 , and the source electrode 103 a is in source contact with the source node region 104 . The MTJ cell 200 is connected to the word line 107 . The MTJ unit 200 is formed by adding a tunnel layer between the pinned layer and the free layer, and is perpendicular to the upper plane of the metal line 106 .

与此相关的各种技术描述表明,制备MTJ单元可通过保形沉积技术实现,如原子层沉积技术(ALD)来制备MTJ单元结构。图1-2揭示了磁记录元件相关发明的详细结构。第一部分发明为晶体管101,晶体管101制备于基底100上,包括源极103a、漏极103b和栅极迭层102。栅极迭层102与字线105相连,漏极103b与磁记录单元200通过金属线106达到漏接触,源极103a与源节点区104实现源接触。第二部分发明为MTJ单元200,位于晶体管101上方并通过106与晶体管101连接。金属线106与内电极204连接,其中内电极204垂直于金属线106且内电极204为长方体柱状,内电极204底部被埋于206内。通过保形沉积技术在内电极204漏出部分侧面制备MTJ结构,由内向外依次为种子层212,钉扎层203,势垒层202,自由层201。自由层外是外电极205。MTJ单元200上部是介电保护层207。图2(a)是MTJ单元200的俯视图。Various technical descriptions related to this show that the fabrication of MTJ cells can be achieved by conformal deposition techniques such as atomic layer deposition (ALD) to fabricate MTJ cell structures. 1-2 disclose the detailed structure of the invention related to the magnetic recording element. The first part of the invention is the transistor 101 . The transistor 101 is fabricated on the substrate 100 and includes a source electrode 103 a , a drain electrode 103 b and a gate stack 102 . The gate stack 102 is connected to the word line 105 , the drain electrode 103 b is in drain contact with the magnetic recording unit 200 through the metal line 106 , and the source electrode 103 a is in source contact with the source node region 104 . The second part of the invention is the MTJ cell 200 located above and connected to transistor 101 via 106 . The metal wire 106 is connected to the inner electrode 204 , wherein the inner electrode 204 is perpendicular to the metal wire 106 , the inner electrode 204 is a rectangular parallelepiped column, and the bottom of the inner electrode 204 is buried in the 206 . The MTJ structure is prepared by the conformal deposition technology on the side of the leakage part of the inner electrode 204 . Outside the free layer is the outer electrode 205 . Above the MTJ unit 200 is a dielectric protection layer 207 . FIG. 2( a ) is a top view of the MTJ unit 200 .

图2中的MTJ单元,电子通过钉扎层203自旋极化,然后通过势垒层202到达自由层201,引起自由层201的磁矩方向发生改变。这个过程就是自旋转移矩开关(Spin-transferTorque Switching,STS),可将信息由钉扎层203通过自旋极化电流传递到自由层201。在这个过程中,钉扎层203起到自旋过滤的作用,自旋过滤的电子隧穿势垒层202,然后自旋电子作用于自由层201的磁矩上,使MTJ的状态由反平行“1”变为平行“0”。反之,使电流反向,可以使MTJ的状态由平行“0”变为反平行“1”。再利用晶体管101作为选择器件,就可通过控制电流在STT-MRAM芯片上写入或更改二进制存储信息。In the MTJ unit in FIG. 2 , electrons are spin-polarized through the pinned layer 203 , and then pass through the barrier layer 202 to reach the free layer 201 , causing the direction of the magnetic moment of the free layer 201 to change. This process is Spin-transfer Torque Switching (STS), which can transfer information from the pinned layer 203 to the free layer 201 through a spin-polarized current. In this process, the pinned layer 203 acts as a spin filter, the spin-filtered electrons tunnel through the barrier layer 202, and then the spin electrons act on the magnetic moment of the free layer 201, so that the state of the MTJ changes from anti-parallel "1" becomes parallel "0". Conversely, by reversing the current, the state of the MTJ can be changed from a parallel "0" to an anti-parallel "1". Using the transistor 101 as a selection device again, the binary storage information can be written or changed on the STT-MRAM chip by controlling the current.

图3为本发明实施例中提出的MTJ内电极制备示意图。首先利用磁控溅射或原子层沉积技术(ALD)制备一层金属电极,其厚度约为10-50nm。然后利用离子束刻蚀或电子束刻蚀按照图3(a)对金属层刻蚀。在刻蚀时,不完全将金属层刻完,得到图3(b)倒T形电极。最后,再镀一层绝缘层,将底部未刻蚀完部分埋在绝缘层之下。外露的长方体柱状金属为内电极204。FIG. 3 is a schematic diagram of the preparation of the MTJ inner electrode proposed in the embodiment of the present invention. First, a layer of metal electrodes is prepared by magnetron sputtering or atomic layer deposition (ALD), and its thickness is about 10-50 nm. The metal layer is then etched according to Figure 3(a) using ion beam etching or electron beam etching. During the etching, the metal layer is not completely etched to obtain an inverted T-shaped electrode as shown in FIG. 3(b). Finally, another insulating layer is plated, and the unetched part of the bottom is buried under the insulating layer. The exposed cuboid columnar metal is the inner electrode 204 .

图4-12为本发明实施例中提出的MTJ单元的具体制备过程。在制备好的内电极上制备种子层212,利用磁控溅射或原子层沉积技术(ALD)制备一层种子层如图4。再通过离子束刻蚀或电子束刻蚀得到所需种子层212如图5。之后,反复利用磁控溅射或原子层沉积技术(ALD)和离子束刻蚀或电子束刻蚀制备铁磁性钉扎层201、绝缘势垒层202、自由层203。4-12 are the specific preparation process of the MTJ unit proposed in the embodiment of the present invention. A seed layer 212 is prepared on the prepared inner electrode, and a layer of seed layer is prepared by magnetron sputtering or atomic layer deposition (ALD) as shown in FIG. 4 . The desired seed layer 212 is obtained by ion beam etching or electron beam etching as shown in FIG. 5 . After that, magnetron sputtering or atomic layer deposition (ALD) and ion beam etching or electron beam etching are repeatedly used to prepare the ferromagnetic pinning layer 201 , the insulating barrier layer 202 and the free layer 203 .

实施例2Example 2

图14是另一种三维STT-MRAM存储单元结构图。包含一个晶体管101和MTJ单元200。晶体管结构与实施例1相同。在MTJ单元200处进行了部分调整:MTJ的相应结构由内至外改为内电极,自由层,势垒层,钉扎层和外电极。各层结构所采用的材料以及制备方法与实施例1中类似。其MTJ具体结构如图15所示。FIG. 14 is a structural diagram of another three-dimensional STT-MRAM memory cell. A transistor 101 and MTJ cell 200 are included. The transistor structure is the same as that of Embodiment 1. Partial adjustments were made at the MTJ unit 200: the corresponding structure of the MTJ was changed from inside to outside to inner electrode, free layer, barrier layer, pinned layer, and outer electrode. The materials and preparation methods used for each layer structure are similar to those in Example 1. The specific structure of its MTJ is shown in Figure 15.

MTJ200内电极204的两种制备方法。Two methods of making the inner electrode 204 of the MTJ 200.

第一种制备方法,利用离子束刻蚀或电子束刻蚀直接在106上制备内电极204,如图16、17所示。再利磁控溅射或原子层沉积技术(ALD)在图17基础上制备一层绝缘介质206,得到图18结构。离子束刻蚀或电子束刻蚀将204周边的绝缘介质去除,得到如图19所示,然后经过实施例1和2中制备MTJ的过程制备器件。In the first preparation method, the inner electrode 204 is directly prepared on the 106 by ion beam etching or electron beam etching, as shown in FIGS. 16 and 17 . Then, magnetron sputtering or atomic layer deposition (ALD) is used to prepare a layer of insulating medium 206 on the basis of FIG. 17 to obtain the structure of FIG. 18 . The insulating medium around 204 is removed by ion beam etching or electron beam etching, as shown in FIG. 19 , and then the device is prepared through the process of preparing the MTJ in Examples 1 and 2.

第二种制备方法,利磁控溅射或原子层沉积技术(ALD)在106上先覆盖一层绝缘介质206,如图20所示。利用离子束刻蚀或电子束刻蚀技术在绝缘介质206上刻蚀出一个长方体形状的凹槽,深度直达106。然后再利磁控溅射或原子层沉积技术(ALD)在凹槽中填满制备内电极204的材料,如图21所示。利用离子束刻蚀或电子束刻蚀技术将内电极204周边的绝缘介质刻蚀成如图22结构,即得到所需电极。然后经过实施例1和2中制备MTJ的过程制备器件。In the second preparation method, a layer of insulating medium 206 is firstly covered on 106 by magnetron sputtering or atomic layer deposition (ALD), as shown in FIG. 20 . A cuboid-shaped groove is etched on the insulating medium 206 by using ion beam etching or electron beam etching technology, and the depth reaches 106 . Then, magnetron sputtering or atomic layer deposition (ALD) is used to fill the groove with the material for preparing the inner electrode 204, as shown in FIG. 21 . The insulating medium around the inner electrode 204 is etched into the structure shown in FIG. 22 by using ion beam etching or electron beam etching technology to obtain the desired electrode. Devices were then prepared through the procedures for preparing MTJs in Examples 1 and 2.

Claims (2)

1.一种STT-MRAM存储单元的制备方法,其特征在于,所述STT-MRAM存储单元包括晶体管(101)和MTJ单元(200);1. a preparation method of STT-MRAM storage unit is characterized in that, described STT-MRAM storage unit comprises transistor (101) and MTJ unit (200); 晶体管(101)建立在基底(100)上,晶体管(101)的漏极(103b)与MTJ单元(200)通过金属线(106)达到漏接触;晶体管(101)包括源极(103a)、漏极(103b)和栅极迭层(102);源极(103a)和漏极(103b)间隔设置在基底(100)上,源极(103a)和漏极(103b)通过栅极迭层(102)连接;栅极迭层(102)与第一字线(105)相连,漏极(103b)与MTJ单元(200)通过金属线(106)达到漏接触;The transistor (101) is built on the substrate (100), and the drain (103b) of the transistor (101) is in drain contact with the MTJ unit (200) through a metal wire (106); the transistor (101) includes a source (103a), a drain The electrode (103b) and the gate stack (102); the source (103a) and the drain (103b) are arranged on the substrate (100) at intervals, and the source (103a) and the drain (103b) pass through the gate stack ( 102) connection; the gate stack (102) is connected to the first word line (105), and the drain (103b) is in drain contact with the MTJ cell (200) through the metal line (106); MTJ单元(200)由内至外依次为内电极(204)和包裹在内电极(204)外周的种子层(212)、铁磁性钉扎层(203)、非磁性势垒层(202)、铁磁性自由层(201)和外电极(205),其中铁磁性钉扎层(203)与铁磁性自由层(201)能够交换顺序;The MTJ unit (200) is, from inside to outside, an inner electrode (204), a seed layer (212) wrapped around the outer periphery of the inner electrode (204), a ferromagnetic pinning layer (203), a nonmagnetic barrier layer (202), a ferromagnetic free layer (201) and an external electrode (205), wherein the ferromagnetic pinned layer (203) and the ferromagnetic free layer (201) can exchange order; 种子层(212)、铁磁性钉扎层(203)、非磁性势垒层(202)、铁磁性自由层(201)和外电极(205)均与基底(100)所在平面不平行;种子层(212)、铁磁性钉扎层(203)、非磁性势垒层(202)、铁磁性自由层(201)和外电极(205)与金属线(106)间隔设置;The seed layer (212), the ferromagnetic pinned layer (203), the non-magnetic barrier layer (202), the ferromagnetic free layer (201) and the external electrode (205) are not parallel to the plane of the substrate (100); the seed layer (212), a ferromagnetic pinning layer (203), a non-magnetic barrier layer (202), a ferromagnetic free layer (201), and an external electrode (205) and a metal wire (106) spaced apart; MTJ单元(200)位于晶体管(101)上方并通过金属线(106)与晶体管(101)连接;金属线(106)与内电极(204)连接,其中内电极(204)垂直于金属线(106)且内电极(204)为长方体柱状;通过保形沉积技术在内电极(204)漏出部分侧面制备MTJ单元;The MTJ unit (200) is located above the transistor (101) and is connected to the transistor (101) through a metal wire (106); the metal wire (106) is connected to an internal electrode (204), wherein the internal electrode (204) is perpendicular to the metal wire (106) ) and the inner electrode (204) is in the shape of a rectangular parallelepiped column; MTJ cells are prepared on the side of the leakage part of the inner electrode (204) by a conformal deposition technique; MTJ结构的内电极长为1-10nm,宽为1-10nm,高为1-100nm;种子层的厚度为0.5-3nm;铁磁性钉扎层厚度为0.5-15nm;势垒层厚度为0.5-5nm;自由层厚度为1-10nm;外电极厚度为0.5-10nm;The inner electrode of the MTJ structure is 1-10nm long, 1-10nm wide and 1-100nm high; the thickness of the seed layer is 0.5-3nm; the thickness of the ferromagnetic pinning layer is 0.5-15nm; the thickness of the barrier layer is 0.5- 5nm; the thickness of the free layer is 1-10nm; the thickness of the external electrode is 0.5-10nm; 所述制备方法包括以下步骤:The preparation method comprises the following steps: MTJ单元(200)的制备过程:在制备好的内电极上制备一层种子层,再刻蚀得到所需种子层(212);之后,反复利用原子层沉积技术和离子束刻蚀或电子束刻蚀制备铁磁性钉扎层、非磁性势垒层(202)和铁磁性自由层;The preparation process of the MTJ unit (200): a layer of seed layer is prepared on the prepared internal electrode, and then the desired seed layer (212) is obtained by etching; after that, the atomic layer deposition technology and ion beam etching or electron beam are repeatedly used Etching to prepare a ferromagnetic pinned layer, a non-magnetic barrier layer (202) and a ferromagnetic free layer; 内电极(204)的制备方法包括:利用原子层沉积技术在金属线(106)上先覆盖一层绝缘介质(206);利用离子束刻蚀或电子束刻蚀技术在绝缘介质(206)上刻蚀出一个长方体形状的凹槽,深度直达金属线(106);然后再利用原子层沉积技术在凹槽中填满制备内电极(204)的材料;然后将内电极(204)周边的绝缘介质刻蚀,得到内电极(204);或者,首先利用原子层沉积技术制备一层金属电极;然后对金属电极刻蚀,在刻蚀时,不完全将金属电极刻完,得到倒T形电极;最后,再镀一层绝缘层,将底部未刻蚀完部分埋在绝缘层之下;外露的长方体柱状金属为内电极(204);The preparation method of the inner electrode (204) includes: firstly covering a layer of insulating medium (206) on the metal wire (106) by using atomic layer deposition technology; using ion beam etching or electron beam etching technology on the insulating medium (206) A groove in the shape of a cuboid is etched, and the depth reaches the metal line (106); then the material for preparing the internal electrode (204) is filled in the groove by the atomic layer deposition technology; then the insulation around the internal electrode (204) is Dielectric etching to obtain the inner electrode (204); or, firstly, a layer of metal electrode is prepared by using atomic layer deposition technology; then the metal electrode is etched, and during the etching, the metal electrode is not completely etched to obtain an inverted T-shaped electrode ; Finally, another layer of insulating layer is plated, and the unetched part of the bottom is buried under the insulating layer; the exposed cuboid columnar metal is the inner electrode (204); MTJ单元由内向外表现为:长方体柱状结构的内电极,铁磁性钉扎层沿长方体内电极侧面保形包围内电极,非磁性势垒层沿侧面保形包围铁磁性钉扎层,铁磁性自由层沿侧面保形包围非磁性势垒层,铁磁性自由层外侧为外电极;或者,MTJ单元由内向外表现为:长方体柱状结构的内电极,铁磁性自由层沿长方体内电极侧面保形包围内电极,非磁性势垒层沿侧面保形包围铁磁性自由层,铁磁性钉扎层沿侧面保形包围非磁性势垒层,铁磁性钉扎层外侧为外电极;The MTJ unit is expressed from the inside to the outside as: the inner electrode of the cuboid column structure, the ferromagnetic pinning layer conformally surrounds the inner electrode along the side of the cuboid inner electrode, the non-magnetic barrier layer conformally surrounds the ferromagnetic pinning layer along the side, and the ferromagnetic free The layer conformally surrounds the non-magnetic barrier layer along the side, and the outer side of the ferromagnetic free layer is the outer electrode; or, the MTJ unit is expressed from the inside to the outside as: the inner electrode of the cuboid column structure, and the ferromagnetic free layer conforms to the side of the cuboid inner electrode. In the inner electrode, the non-magnetic barrier layer conformally surrounds the ferromagnetic free layer along the side, the ferromagnetic pinning layer conformally surrounds the non-magnetic barrier layer along the side, and the outside of the ferromagnetic pinned layer is the outer electrode; MTJ单元上部为介电保护层(207),介电保护层(207)覆盖种子层(212)、铁磁性钉扎层(203)、非磁性势垒层(202)和铁磁性自由层(201),外电极(205)部分暴露于介电保护层(207)外部;The upper part of the MTJ unit is a dielectric protection layer (207), and the dielectric protection layer (207) covers the seed layer (212), the ferromagnetic pinning layer (203), the nonmagnetic barrier layer (202) and the ferromagnetic free layer (201) ), the outer electrode (205) is partially exposed outside the dielectric protection layer (207); 基底(100)上设有包裹晶体管(101)和MTJ单元(200)的绝缘介质;MTJ单元(200)暴露于介电保护层(207)外部的外电极(205)与第二字线(107)相连;The substrate (100) is provided with an insulating medium wrapping the transistor (101) and the MTJ unit (200); the MTJ unit (200) is exposed to the external electrode (205) and the second word line (107) outside the dielectric protection layer (207) ) connected; 种子层(212)、铁磁性钉扎层(203)、非磁性势垒层(202)、铁磁性自由层(201)和外电极(205)均与基底(100)所在平面垂直。The seed layer (212), the ferromagnetic pinned layer (203), the non-magnetic barrier layer (202), the ferromagnetic free layer (201) and the external electrode (205) are all perpendicular to the plane of the substrate (100). 2.根据权利要求1所述的一种STT-MRAM存储单元的制备方法,其特征在于,内电极的材料为Au、Ag、Cu、Nd、Ti、Al、Ru、Rh、Mo、Zr、Hf、Ta、V、Cr、W、Nb及其合金,或者半导体材料;2. the preparation method of a kind of STT-MRAM memory cell according to claim 1 is characterized in that, the material of inner electrode is Au, Ag, Cu, Nd, Ti, Al, Ru, Rh, Mo, Zr, Hf , Ta, V, Cr, W, Nb and their alloys, or semiconductor materials; 种子层的材料为NiFe、NiCr、NiFeCr、Cu、Ti、TiN、Ta、Ru或Rh;The material of the seed layer is NiFe, NiCr, NiFeCr, Cu, Ti, TiN, Ta, Ru or Rh; 铁磁性钉扎层由一层反铁磁薄膜和一层铁磁薄膜构成,或由一层硬铁磁薄膜和一层铁磁薄膜构成,或由一层反铁磁、一层耦合层和一层铁磁薄膜构成,或由一层硬铁磁薄膜、一层耦合层和一层铁磁薄膜构成;The ferromagnetic pinning layer consists of an antiferromagnetic film and a ferromagnetic film, or a hard ferromagnetic film and a ferromagnetic film, or an antiferromagnetic, a coupling layer, and a layer of ferromagnetic film, or a layer of hard ferromagnetic film, a layer of coupling layer and a layer of ferromagnetic film; 反铁磁薄膜为单层膜或者多层膜,每层膜的材料为IrMn、RhMn、RuMn、OsMn、FeMn、FeMnCr、FeMnRh、CrPtMn、TbMn、NiMn、PtMn、PtPdMn、NiO或CoNiO;The antiferromagnetic film is a single-layer film or a multi-layer film, and the material of each film is IrMn, RhMn, RuMn, OsMn, FeMn, FeMnCr, FeMnRh, CrPtMn, TbMn, NiMn, PtMn, PtPdMn, NiO or CoNiO; 制备硬铁磁薄膜的材料为Co、Fe、Pt、Pd及其中两种或两种以上元素形成的合金,或CoPtB合金;The material for preparing the hard ferromagnetic thin film is Co, Fe, Pt, Pd and an alloy formed by two or more of them, or a CoPtB alloy; 铁磁薄膜为单层膜或者多层膜,每层膜的材料为过渡金属Fe、Co、Ni及其合金,或者Fe、Co、Ni与B、Zr、Pt、Pd、Hf、Ta、V、Zr、Ti、Cr、W、Mo、Nb组成的合金;The ferromagnetic film is a single-layer film or a multi-layer film, and the material of each film is transition metal Fe, Co, Ni and its alloys, or Fe, Co, Ni and B, Zr, Pt, Pd, Hf, Ta, V, Alloys composed of Zr, Ti, Cr, W, Mo, Nb; 铁磁性自由层为单层膜或者多层膜,每层膜的材料为过渡金属Fe、Co、Ni及其合金,或者Fe、Co、Ni与B、Zr、Pt、Pd、Hf、Ta、V、Zr、Ti、Cr、W、Mo、Nb组成的合金;The ferromagnetic free layer is a single-layer film or a multi-layer film, and the material of each film is transition metal Fe, Co, Ni and their alloys, or Fe, Co, Ni and B, Zr, Pt, Pd, Hf, Ta, V , alloys composed of Zr, Ti, Cr, W, Mo, Nb; 非磁性势垒层的材料为MgO、Al2O3、Al2MgO4、ZnO、ZnMgO2、TiO2、HfO2、TaO2、Cd2O3、ZrO2、Ga2O3、Sc2O3、V2O5、Fe2O3、Co2O3及NiO,以及以上化合物中的一种或多种混合;或者,非磁性势垒层的材料为氮化物;The material of the non-magnetic barrier layer is MgO, Al 2 O 3 , Al 2 MgO 4 , ZnO, ZnMgO 2 , TiO 2 , HfO 2 , TaO 2 , Cd 2 O 3 , ZrO 2 , Ga 2 O 3 , Sc 2 O 3. V 2 O 5 , Fe 2 O 3 , Co 2 O 3 and NiO, and a mixture of one or more of the above compounds; or, the material of the non-magnetic barrier layer is nitride; 外电极材料为Au、Ag、Cu、Nd、Ti、Al、Ru、Rh、Mo、Zr、Hf、Ta、V、Cr、W、Nb及其合金,或半导体材料。The external electrode materials are Au, Ag, Cu, Nd, Ti, Al, Ru, Rh, Mo, Zr, Hf, Ta, V, Cr, W, Nb and their alloys, or semiconductor materials.
CN201611201099.7A 2016-12-22 2016-12-22 A kind of STT-MRAM storage unit Active CN106783862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611201099.7A CN106783862B (en) 2016-12-22 2016-12-22 A kind of STT-MRAM storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611201099.7A CN106783862B (en) 2016-12-22 2016-12-22 A kind of STT-MRAM storage unit

Publications (2)

Publication Number Publication Date
CN106783862A CN106783862A (en) 2017-05-31
CN106783862B true CN106783862B (en) 2020-11-10

Family

ID=58897308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611201099.7A Active CN106783862B (en) 2016-12-22 2016-12-22 A kind of STT-MRAM storage unit

Country Status (1)

Country Link
CN (1) CN106783862B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658382B (en) * 2017-08-28 2019-10-18 西安交通大学 A Magnetic Random Access Memory Based on Spin Hall Effect
CN110544498B (en) * 2018-05-28 2021-03-16 上海磁宇信息科技有限公司 Magnetic random access memory using bow-shaped word line
CN113016033B (en) * 2018-11-20 2024-06-25 华为技术有限公司 Magnetic tunnel junction, magnetoresistive random access memory, chip and preparation method
CN111293138A (en) * 2018-12-07 2020-06-16 中国科学院上海微系统与信息技术研究所 Three-dimensional MRAM storage structure and fabrication method thereof
CN113424331B (en) 2019-02-15 2025-01-07 应用材料公司 Magnetic memory device and method of forming the same
CN111739570B (en) * 2019-03-25 2022-05-31 中电海康集团有限公司 SOT-MRAM memory cell and SOT-MRAM memory
US11917835B2 (en) * 2020-12-21 2024-02-27 International Business Machines Corporation Three-dimensional funnel-like spin transfer torque MRAM cell with a non-uniform thicknesses in each layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090114681A (en) * 2008-04-30 2009-11-04 주식회사 하이닉스반도체 Magnetic tunnel junction device and memory cell having same
CN103887425A (en) * 2012-12-21 2014-06-25 三星电子株式会社 Magnetic junction, magnetic memory and method for providing magnetic junction
CN106024790A (en) * 2015-03-25 2016-10-12 爱思开海力士有限公司 Semiconductor device and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097625A (en) * 1998-07-16 2000-08-01 International Business Machines Corporation Magnetic random access memory (MRAM) array with magnetic tunnel junction (MTJ) cells and remote diodes
US6621730B1 (en) * 2002-08-27 2003-09-16 Motorola, Inc. Magnetic random access memory having a vertical write line
US7319262B2 (en) * 2004-08-13 2008-01-15 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM over sloped pillar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090114681A (en) * 2008-04-30 2009-11-04 주식회사 하이닉스반도체 Magnetic tunnel junction device and memory cell having same
CN103887425A (en) * 2012-12-21 2014-06-25 三星电子株式会社 Magnetic junction, magnetic memory and method for providing magnetic junction
CN106024790A (en) * 2015-03-25 2016-10-12 爱思开海力士有限公司 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
CN106783862A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106783862B (en) A kind of STT-MRAM storage unit
CN101288186B (en) Magnetoresistive Tunnel Junction Magnetic Devices and Its Application in Magnetic Random Access Memory
US9666793B2 (en) Method of manufacturing magnetoresistive element(s)
JP5104090B2 (en) Memory element and memory
CN107658382B (en) A Magnetic Random Access Memory Based on Spin Hall Effect
CN1329916C (en) Embracing layer read/wright conductor of soft reference layer fixed in operation
JP5618474B2 (en) Bottom spin valve type magnetic tunnel junction device, MRAM, STT-RAM, MRAM manufacturing method, STT-RAM manufacturing method
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
JP5537791B2 (en) Manufacturing method of MTJ element
US20160149124A1 (en) Mram having spin hall effect writing and method of making the same
US11257862B2 (en) MRAM having spin hall effect writing and method of making the same
JP5146836B2 (en) Magnetic random access memory and manufacturing method thereof
JP5609652B2 (en) Magnetic tunnel junction element, manufacturing method thereof, and MRAM
US11527708B2 (en) Ultra-fast magnetic random access memory having a composite SOT-MTJ structure
JP4444257B2 (en) Spin FET
US9087983B2 (en) Self-aligned process for fabricating voltage-gated MRAM
KR20080070812A (en) Magnetic device with stabilized ferromagnetic free layer or multilayer ferromagnetic free layer
KR20220029381A (en) Dipole coupled spin-orbit torque structure
CN104995685A (en) Mg discontinuous insertion layer for improving mt j shunt
JP2005093488A (en) Magnetoresistive effect element, its manufacturing method, magnetic memory device, and its manufacturing method
TWI473088B (en) Memory elements and memory devices
JP2008153527A (en) Storage element and memory
US20160064652A1 (en) Three-terminal stt-mram and method to make the same
CN110265427B (en) STT-MRAM memory and preparation method thereof
JP5058236B2 (en) Spin memory

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant