CN106762824B - Axial fan three-way impeller with vein-like structure and seagull-shaped splitter blades - Google Patents
Axial fan three-way impeller with vein-like structure and seagull-shaped splitter blades Download PDFInfo
- Publication number
- CN106762824B CN106762824B CN201710209088.1A CN201710209088A CN106762824B CN 106762824 B CN106762824 B CN 106762824B CN 201710209088 A CN201710209088 A CN 201710209088A CN 106762824 B CN106762824 B CN 106762824B
- Authority
- CN
- China
- Prior art keywords
- blade
- shaped
- vein
- splitter
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005452 bending Methods 0.000 claims abstract 17
- 210000003462 vein Anatomy 0.000 claims abstract 7
- 241000272168 Laridae Species 0.000 claims 1
- 238000000034 method Methods 0.000 claims 1
- 238000004134 energy conservation Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/325—Rotors specially for elastic fluids for axial flow pumps for axial flow fans
- F04D29/326—Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
- F04D29/384—Blades characterised by form
- F04D29/386—Skewed blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/666—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/667—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
技术领域technical field
本发明涉及轴流风机设计领域,特别涉及一种带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮。The invention relates to the design field of an axial flow fan, in particular to a novel three-way impeller of an axial flow fan with a vein-like structure and seagull-shaped splitter blades.
背景技术Background technique
轴流风机的工作原理是将电机输入的机械能用来提高气体的压力,进行输送和排放气体。轴流风机在国民经济的各个领域发挥着作用,广泛应用于工厂、矿井、车辆、船泊和建筑物等,在通风、排尘和冷却方面发挥着不可替代的作用,据不完全统计,全国各类风机年用电量占全国发电量的20%,其中很多的风机不是年代久远,就是效率低,造成了电力的严重浪费,可见提高风机性能实现节能在国民经济中的重要性。轴流风机通常作用在流量要求高而压力低的场合,结构相对简单且便于安装,在风机领域有着不可替代的作用。The working principle of the axial flow fan is to use the mechanical energy input by the motor to increase the pressure of the gas to transport and discharge the gas. Axial flow fans play a role in various fields of the national economy, widely used in factories, mines, vehicles, boats and buildings, etc., and play an irreplaceable role in ventilation, dust removal and cooling. According to incomplete statistics, all countries in the country The annual power consumption of wind turbines accounts for 20% of the country's power generation. Many of the wind turbines are either old or low in efficiency, resulting in a serious waste of electricity. It can be seen that improving the performance of wind turbines to achieve energy conservation is important in the national economy. Axial flow fans are usually used in occasions with high flow requirements and low pressure. The structure is relatively simple and easy to install, and it plays an irreplaceable role in the field of fans.
尽管轴流风机的结构简单,但是流动情况确实相当复杂。流动往往具有三维性、粘性和非定常性,在以往的风机设计中很少或很难全面的考虑这些情况,即便是数值分析成熟的今天也很难控制上述因素对风机的影响,特别是流体具有粘性这个关键因素,因为粘性常常会使叶片出口边形成叶片尾迹漩涡;由于粘性,叶片表面会存在粘性边界层(特别是叶片表面非常光滑的情况下),与主流之间产生的强烈的相互作用,产生二次流现象;粘性的存在也会形成空气动力噪声,主要包括旋转噪声和涡流噪声。除此之外,叶片压力面和吸力面的压差、叶片顶部和机壳的径向间隙和叶片本身边界层内径向流动产生的二次流也是造成风机损失上升、效率降低的主要根源。Although the structure of the axial flow fan is simple, the flow situation is indeed quite complicated. The flow is often three-dimensional, viscous and unsteady, and it is rarely or difficult to fully consider these situations in the past fan design. Even with the mature numerical analysis, it is difficult to control the influence of the above factors on the fan, especially the fluid The key factor is viscosity, because the viscosity often causes the blade wake vortex to form at the blade outlet; due to the viscosity, there will be a viscous boundary layer on the blade surface (especially when the blade surface is very smooth), and there will be a strong interaction between the blade surface and the mainstream. Effect, resulting in secondary flow phenomenon; the existence of viscosity will also form aerodynamic noise, mainly including rotational noise and eddy current noise. In addition, the pressure difference between the pressure surface and the suction surface of the blade, the radial clearance between the top of the blade and the casing, and the secondary flow generated by the radial flow in the boundary layer of the blade itself are also the main sources of increased fan losses and reduced efficiency.
综上所述,只有控制和减少二次流现象,防止边界层分离,抑制叶片尾迹漩涡的产生,减少湍流耗散和流动损失才能设计出效率高、性能好、噪声低和节能的轴流风机,满足现代生产对风机的需求。In summary, only by controlling and reducing the secondary flow phenomenon, preventing boundary layer separation, suppressing the generation of blade wake vortices, and reducing turbulent dissipation and flow loss can an axial flow fan with high efficiency, good performance, low noise and energy saving be designed , to meet the needs of modern production for fans.
发明内容Contents of the invention
本发明所要解决的问题是提供一种带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮;本发明能减少二次流现象,防止边界层分离,抑制叶片尾迹漩涡的产生,减少湍流耗散和流动损失,具有效率高、性能好、噪声低和节能的特点。The problem to be solved by the present invention is to provide a new three-dimensional impeller for axial fans with a vein-like structure and seagull-shaped splitter blades; the present invention can reduce secondary flow phenomena, prevent boundary layer separation, suppress the generation of blade wake vortices, and reduce Turbulence dissipation and flow loss, characterized by high efficiency, good performance, low noise and energy saving.
为了解决上述技术问题,本发明提供一种带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮,包括轮毂,轴套用连接件固定在轮毂上;还包括固定连接在轮毂上的弯扭叶片及分流叶片;In order to solve the above-mentioned technical problems, the present invention provides a new three-dimensional impeller of an axial flow fan with a vein-shaped structure and seagull-shaped splitter blades, which includes a hub, and the shaft sleeve is fixed on the hub with a connecting piece; Twisted blades and splitter blades;
所述弯扭叶片包括吸力面和压力面;所述弯扭叶片顶部设置有翼型槽;所述弯扭叶片压力面的上半部设置有叶脉状凹槽,翼型槽通过出气口与叶脉状凹槽相通;所述弯扭叶片吸力面尾部设置有小翼突起;所述弯扭叶片上设置有抛物线小孔;The curved and twisted blade includes a suction surface and a pressure surface; the top of the curved and twisted blade is provided with an airfoil groove; the upper half of the pressure surface of the curved and twisted blade is provided with a vein-shaped groove, and the airfoil groove passes through the air outlet and the vein Shaped grooves are connected; the tail of the suction surface of the twisted blade is provided with a small wing protrusion; the curved blade is provided with a parabolic small hole;
在相邻两个弯扭叶片之间设置分流叶片;所述分流叶片的高度小于弯扭叶片一半的高度。A splitter vane is arranged between two adjacent twisted vanes; the height of the splitter vane is less than half of the height of the twisted vane.
作为本发明的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的改进:所述分流叶片为海鸥型,由弧形面板和圆弧形直板组成;所述圆弧形直板设置在弧形面板的凹部的正中间。As the improvement of the novel axial-flow fan ternary impeller with leaf vein structure and seagull-shaped splitter blades of the present invention: the splitter blades are seagull-shaped, composed of arc-shaped panels and arc-shaped straight plates; the arc-shaped straight plates are set In the middle of the recess of the curved panel.
作为本发明的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的进一步改进:所述圆弧形直板的两侧面的结构相同,均分别为:在侧面上设有至少两个径向等距的凹槽组,每个凹槽组都包含至少两个的仿生圆槽,每个凹槽组的仿生圆槽的中心线连线垂直于弧形面板的弦,仿生凹槽轴心线垂直于圆弧形直板;所述弧形面板的两端分别与相邻的弯扭叶片固定相连。As a further improvement of the ternary impeller of the novel axial flow fan with vein-like structure and seagull-shaped splitter blades of the present invention: the structures on both sides of the arc-shaped straight plate are the same, and are respectively: at least two Radially equidistant groove groups, each groove group contains at least two bionic circular grooves, the center line of the bionic circular grooves in each groove group is perpendicular to the chord of the curved panel, and the bionic groove axis The center line is perpendicular to the arc-shaped straight plate; the two ends of the arc-shaped panel are respectively fixedly connected with the adjacent curved and twisted blades.
作为本发明的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的进一步改进:所述叶脉状凹槽包括至少两条脉槽,每条脉槽和一个出气口相通,出气口与翼型槽相通。As a further improvement of the novel axial-flow fan ternary impeller with vein-shaped structure and seagull-shaped splitter blades of the present invention: the vein-shaped groove includes at least two vein grooves, each vein groove communicates with an air outlet, and the air outlet communicate with the airfoil groove.
作为本发明的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的进一步改进:所述弯扭叶片的吸力面后端等距设置有三个小翼突起。As a further improvement of the three-dimensional impeller of the novel axial flow fan with vein-like structure and seagull-shaped splitter blades of the present invention: the rear end of the suction surface of the twisted blades is equidistantly provided with three winglet protrusions.
作为本发明的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的进一步改进:所述轮毂上等距设置有八个弯扭叶片及八个分流叶片。As a further improvement of the three-dimensional impeller of the novel axial flow fan with vein-like structure and seagull-shaped splitter blades of the present invention: eight twisted blades and eight splitter blades are equidistantly arranged on the hub.
作为本发明的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的进一步改进:所述弯扭叶片的扭曲15°-20°,弯曲15°-20°。As a further improvement of the ternary impeller of the novel axial flow fan with vein-like structure and seagull-shaped splitter blades of the present invention: the twisted blades are twisted by 15°-20° and bent by 15°-20°.
作为本发明的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的进一步改进:分流叶片的高度为弯扭叶片的高度的30%-40%。As a further improvement of the ternary impeller of the novel axial flow fan with the vein-like structure and seagull-shaped splitter blades of the present invention: the height of the splitter blades is 30%-40% of the height of the curved and twisted blades.
本发明所要解决的问题是针对现有技术的不足通过控制和减少二次流、边界层分离、尾迹漩涡和涡流噪声的产生,所提供的一种带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮。The problem to be solved by the present invention is to provide a new type of shaft with vein-like structure and seagull-shaped splitter blades by controlling and reducing the generation of secondary flow, boundary layer separation, wake vortex and eddy current noise in view of the deficiencies in the prior art. Flow fan three-way impeller.
本发明具有以下技术优势:本发明通过采用弯扭叶片使得叶根部安装角大,叶顶部处安装角小,保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失而且能够有效抑制叶栅内部的二次流动(静压呈C型分布叶片吸力面和压力面压差小于常规叶片),同时能够提高根部反动度,降低顶部反动度,达到均化反动度沿叶高分布的目的,提高根部的通流能力;弯扭叶片压力面顶部开有叶脉状凹槽,弯扭叶片顶部开有翼型槽,翼型槽和叶脉状凹槽通过出气口相连,该结构能够在叶脉状凹槽内形成低速二次涡,槽内粘性阻力与总阻力相反以减少粘性阻力,抑制湍流强度,减少湍流耗散,能够将压力面上部的高能气体引通过叶脉状凹槽和出气口引进叶顶翼型槽,阻止一些气体通过径向间隙从压力面流向吸力面,造成弯扭叶片顶部附近流动的混乱,改善弯扭叶片顶部的流动情况,也可以避免气体从弯扭叶片的压力面流向相邻的吸力面产生的横向二次流现象,从而达到减少流动损失,同时叶脉状凹槽也有普通凹槽的作用;弯扭叶片上的抛物线小孔能减少叶片吸力面和压力面的压力差,改善叶片周围边界层分离,减少了涡流噪声的产生;弯扭叶片后端上的小翼突起可以引导气流沿着弦向运动,可以很好的控制径向流动,减少径向运动的二次流,防止尾迹射流,使叶片吸力面边界层分离点向后运动,减小能量损失;海鸥型分流叶片能在径向和轴向都起作用,提高破涡效率,使流道内的流动更加稳定,减少流动分离和二次流等不稳定现象,弧形面板还能阻止叶片本身边界层由叶根向叶顶的径向潜流,除外圆弧形直板上开有的仿生圆槽能够减少壁面摩擦阻力,降低流动阻力,减少流动损失。依托原理在轴流风机叶轮不同位置进行改进使轴流风机的效率更高,性能更好,更节能环保。The present invention has the following technical advantages: the present invention uses curved and twisted blades so that the installation angle at the blade root is large and the installation angle at the top of the blade is small, ensuring that the air has a relatively uniform axial velocity at each position in the radial direction, ensuring normal operation and avoiding The separation of air flow reduces the flow loss and can effectively suppress the secondary flow inside the cascade (the pressure difference between the suction surface and the pressure surface of the static pressure is C-shaped distribution is smaller than that of the conventional blade), and at the same time it can increase the root reaction degree and reduce the top reaction degree to achieve The purpose of equalizing the distribution of reaction degree along the blade height is to improve the flow capacity of the root; there is a vein-like groove on the top of the pressure surface of the twisted blade, and there is an airfoil groove on the top of the twisted blade, and the airfoil groove and the vein-shaped groove pass through The gas outlet is connected. This structure can form a low-speed secondary vortex in the vein-shaped groove. The viscous resistance in the groove is opposite to the total resistance to reduce the viscous resistance, suppress the turbulence intensity, and reduce the turbulence dissipation. The blade top airfoil groove is introduced through the vein-like groove and the air outlet to prevent some gas from flowing from the pressure surface to the suction surface through the radial gap, causing chaos in the flow near the top of the twisted blade and improving the flow at the top of the twisted blade. Avoid the lateral secondary flow phenomenon caused by the gas flowing from the pressure surface of the twisted blade to the adjacent suction surface, so as to reduce the flow loss. At the same time, the vein-shaped grooves also have the function of ordinary grooves; the parabolic small holes on the twisted blades can Reduce the pressure difference between the suction surface and the pressure surface of the blade, improve the separation of the boundary layer around the blade, and reduce the generation of eddy noise; flow in the radial direction, reduce the secondary flow of radial movement, prevent the wake jet, and move the separation point of the boundary layer of the suction surface of the blade backward to reduce energy loss; The vortex efficiency makes the flow in the flow channel more stable and reduces the unstable phenomena such as flow separation and secondary flow. The curved panel can also prevent the radial underflow of the boundary layer of the blade itself from the blade root to the blade tip, except for the arc-shaped straight plate The bionic round grooves can reduce the frictional resistance of the wall, reduce the flow resistance and reduce the flow loss. Relying on the principle to improve the different positions of the impeller of the axial flow fan, the efficiency of the axial flow fan is higher, the performance is better, and it is more energy-saving and environmentally friendly.
附图说明Description of drawings
下面结合附图对本发明的具体实施方式作进一步详细说明。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings.
图1为本发明带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮的整体结构示意图;Fig. 1 is the overall structure schematic diagram of the novel axial flow fan ternary impeller of the present invention with vein-like structure and seagull type splitter blade;
图2为图1中弯扭叶片1的吸力面18的结构示意图;FIG. 2 is a schematic structural view of the
图3为图1中弯扭叶片1的压力面19的结构示意图;Fig. 3 is a structural schematic diagram of the
图4为图1中分流叶片2的结构示意图;Fig. 4 is a schematic structural view of the
图5为图4中分流叶片2的A-A面的结构示意图;Fig. 5 is a schematic structural view of the A-A surface of the
图6为图4中圆弧形直板22的B-B面的结构示意图;Fig. 6 is the structural representation of the B-B face of arc-shaped
图7为图2中弯扭叶片1和小翼突起13的C-C面的结构示意图;Fig. 7 is a schematic structural view of the C-C surface of the
图8为图1中分流叶片2的仿生圆槽23的结构示意图;Fig. 8 is a structural schematic diagram of the
图9为图1中翼型槽11的结构示意图;Fig. 9 is a schematic structural view of the
图10为图1中弯扭叶片1的叶栅结构示意图;FIG. 10 is a schematic diagram of the cascade structure of the
图11为图1中弯扭叶片1弯曲和扭曲的结构示意图。FIG. 11 is a schematic diagram of the bent and twisted structure of the
具体实施方式Detailed ways
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。The present invention will be further described below in conjunction with specific examples, but the protection scope of the present invention is not limited thereto.
实施例1、带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮,如图1-7所示,包括轮毂、固定连接在轮毂上的弯扭叶片1和分流叶片2、轴套3和连接件4。
弯扭叶片1包括吸力面18和压力面19,弯扭叶片1的吸力面18顶部设置有叶脉状凹槽15,弯扭叶片1后端设置有小翼突起13,叶脉状凹槽15包括至少两个脉槽,弯扭叶片1的根部处安装角大(安装角为弯扭叶片1半径r处回转平面与翼型弦长之间的夹角,由图中的β1和β2表示),顶部安装角小,保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失而且能够有效抑制叶栅内部的二次流动;静压呈C型分布,从而使叶片吸力面18和压力面19压差小于常规叶片,同时能够提高弯扭叶片1根部反动度,降低弯扭叶片1顶部反动度,达到均化反动度沿叶高分布的目的,提高弯扭叶片1根部的通流能力。叶栅是指在某一半径r上,用其轴圆柱面将叶片截断,然后再将这一截面展成的平面,体现相邻弯扭叶片1位置关系,弯扭叶片1安装角等。The curved and
在吸力面18设置小翼突起13能使流体在在叶栅内流动,由于弯扭叶片1和流体相互作用,叶片压力面19压力大于吸力面18,流体从弯扭叶片1压力面19向吸力面18流动,加之来流使的吸力面18的气流更紊乱,所以设计尾翼使气流沿着弦向运动,控制径向流动,同时还可以控制弯扭叶片1流道中通道涡的尺寸和叶片表面附面层潜移流,控制径向运动的二次流,减小速度的不均匀,防止尾迹射流,使弯扭叶片1的吸力面18边界层分离点向后运动,减小能量损失。The
弯扭叶片1顶部设置有翼型槽11,翼型槽11通过若干出气口14与弯扭叶片1吸力面18顶部的叶脉状凹槽15相通,该结构能够在叶脉状凹槽15内形成低速二次涡,叶脉状凹槽15内粘性阻力与总阻力相反以减少粘性阻力,抑制湍流强度,减少湍流耗散,能够将弯扭叶片1压力面19上部的高能气体引通过叶脉状凹槽15和出气口14引进叶顶翼型槽11,阻止一些气体通过径向间隙从压力面19流向吸力面18,造成弯扭叶片1顶部附近流动的混乱,改善弯扭叶片1顶部的流动情况,也可以避免气体从弯扭叶片1的压力面19流向相邻的吸力面18产生的横向二次流现象,从而达到减少流动损失,同时弯扭叶片1顶部的翼型槽11也有普通凹槽的作用,能形成涡垫效应,使近壁区湍流强度减少。弯扭叶片1上设置有抛物线小孔12,抛物线小孔12能减少弯扭叶片1吸力面18和压力面19的压力差,改善弯扭叶片1周围边界层分离,减少了涡流噪声的产生;弯扭叶片1后端的小翼突起13可以引导气流沿着弦向运动,可以很好的控制径向流动,减少径向运动的二次流,防止尾迹射流,使弯扭叶片1的吸力面18边界层分离点向后运动,减小能量损失。分流叶片2为海鸥型,设置在相邻两个弯扭叶片1之间,由弧形面板21和圆弧形直板22组成,圆弧形直板22设置在弧形面板21正中间,圆弧形直板22两侧面均设有径向等距的凹槽组,每个凹槽组都包含两个以上的仿生圆槽23,仿生圆槽23设置在同一直线上,弧形面板21两端和弯扭叶片1相连,圆弧形直板22两侧面相对应仿生圆槽23的中心线连线垂直于弧形直板22的弦。海鸥型分流叶片2能在径向和轴向都起作用,提高破涡效率,使流道内的流动更加稳定,减少流动分离和二次流等不稳定现象,弧形面板21还能阻止弯扭叶片1本身边界层由根部向顶部的径向潜流,除外弯扭叶片1上开有的仿生圆槽23能够减少壁面摩擦阻力,降低流动阻力,减少流动损失。分流叶片2的高度小于弯扭叶片1一般的高度,轴套3用标准连接件4固定在轮毂上。分流叶片2是为了阻断弯扭叶片1叶根部分出现从弯扭叶片1的压力面19向叶片吸力面18横向的流动以及破涡等。The top of the
参照叶片的工作原理,弯扭叶片1扭曲能保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常的工作,避免气流分离,减少流动损失,借鉴王仲奇(院士)根据小径高比叶片环形叶栅静态吹风实验和数值计算结果而提出的附面层迁移理论,即弯扭叶片1周向弯曲后,弯扭叶片1表面与气流的作用力在径向的分力不等于零,从而控制了压力沿弯扭叶片1高度的分布,弯扭叶片1周向弯曲以后,弯扭叶片1表面与气流的作用力在径向的分力不等于零,从而控制了压力沿弯扭叶片1高度的分布,使得在弯扭叶片1表面,尤其是吸力面18上形成了两端压力高、中间压力低的压力分布,即“C”型压力分布,在它的作用下,两端附面层被吸到中部并被主流带走,这样就减少了低能流体在两端壁与吸力面18组成的角隅处的堆积,避免了分离的发生,因而两端部的流动损失下降,其次弯扭叶片1的压力面19和吸力面18的压差明显小于常规叶片,在端壁上的横向二次流减弱,相应的横向二次流损失下降,合理的匹配弯扭将使叶轮风机获得极佳的性能,能改善级反动度和提高级通流能力,推迟通道涡形成时间和减小通道涡的尺寸和强度,弯扭叶片1在设计中扭曲15°-20°,弯曲15°-20°,同时为了更有效减少二次流,抑制边界层厚度,控制尾迹翼尖涡的形成,减少湍流耗散等设计了叶脉状凹槽15、翼型槽11、抛物线小孔12和小翼突起13等。Referring to the working principle of the blade, the twisting of the curved and
本发明首先对轮毂上的叶片进行弯扭设计,保证气流在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失而且能够有效抑制叶栅内部的径向和横向的二次流,同时能够提高根部反动度,降低顶部反动度,达到均化反动度沿叶高分布的目的,提高根部的通流能力,推迟通道涡形成时间和减小通道涡的尺寸和强度;弯扭叶片1压力面19上半部开有的叶脉状凹槽15和弯扭叶片1顶部的翼型槽11通过出气口14相连,该结构能够在叶脉状凹槽15内形成低速二次涡,槽内粘性阻力与总阻力相反以减少粘性阻力,抑制湍流强度,减少湍流耗散,能够将压力面19上部的高能气体引通过叶脉状凹槽15和出气口14引进叶顶翼型槽11,阻止一些气体通过径向间隙从压力面19流向吸力面18,造成弯扭叶片1顶部附近流动的混乱,改善叶顶的流动情况,也可以避免气体从弯扭叶片1的压力面19流向相邻的吸力面18产生的横向二次流现象,从而达到减少流动损失,同时弯扭叶片1顶部的叶脉状凹槽15也有普通凹槽的作用,能形成涡垫效应,使近壁区湍流强度减少;弯扭叶片1上的抛物线小孔12能减少吸力面18和压力面19的压力差,改善弯扭叶片1周围边界层分离,减少了涡流噪声的产生;尾翼可以引导气流沿着弦向运动,可以很好的控制径向流动,减少径向运动的二次流,防止尾迹射流,使弯扭叶片1的吸力面18边界层分离点向后运动,减小能量损失;海鸥型分流叶片2能在径向和轴向都起作用,提高破涡效率,使流道内的流动更加稳定,减少流动分离和二次流等不稳定现象,弧形面板21还能阻止本身边界层由弯扭叶片1叶根部向叶顶部的径向潜流,除外圆弧形直板22上开有的仿生圆槽23,仿生圆槽23设置在圆弧形直板22上,能够减少壁面摩擦阻力,降低流动阻力,减少流动损失,同时抑制涡噪的产生。依托原理在轴流风机叶轮不同位置进行改进使轴流风机的效率更高,性能更好,更节能环保。In the present invention, the blades on the hub are first designed to be bent and twisted to ensure that the air flow has a relatively uniform axial velocity at each position in the radial direction, to ensure normal operation, to avoid air separation, to reduce flow loss and to effectively suppress the internal diameter of the cascade. At the same time, it can increase the degree of reaction at the root, reduce the degree of reaction at the top, achieve the purpose of equalizing the distribution of the degree of reaction along the blade height, improve the flow capacity of the root, delay the formation time of channel vortex and reduce the time of channel vortex Size and strength; the vein-shaped groove 15 on the upper half of the pressure surface 19 of the twisted blade 1 is connected to the airfoil groove 11 on the top of the twisted blade 1 through the air outlet 14, and this structure can be formed in the vein-shaped groove 15 Low-speed secondary vortex, the viscous resistance in the groove is opposite to the total resistance to reduce viscous resistance, suppress turbulent flow intensity, reduce turbulent flow dissipation, and can guide the high-energy gas on the upper part of the pressure surface 19 to the blade tip through the vein-shaped groove 15 and the gas outlet 14 The airfoil groove 11 prevents some gas from flowing from the pressure surface 19 to the suction surface 18 through the radial gap, causing chaos in the flow near the top of the twisted blade 1, improving the flow of the blade tip, and also avoiding the pressure of the gas from the curved blade 1 Surface 19 flows to the lateral secondary flow phenomenon that adjacent suction surface 18 produces, so as to reduce flow loss, and at the same time, the vein-shaped groove 15 on the top of the curved and twisted blade 1 also has the effect of a common groove, which can form a vortex pad effect, making the near The turbulence intensity in the wall area is reduced; the parabolic small hole 12 on the twisted blade 1 can reduce the pressure difference between the suction surface 18 and the pressure surface 19, improve the boundary layer separation around the twisted blade 1, and reduce the generation of eddy current noise; the empennage can guide the airflow Moving along the chord direction can well control the radial flow, reduce the secondary flow of the radial movement, prevent the wake jet, and make the separation point of the suction surface 18 of the twisted blade 1 move backward to reduce energy loss; Seagull-shaped splitter blades 2 can work in both radial and axial directions, improve vortex breaking efficiency, make the flow in the flow channel more stable, and reduce unstable phenomena such as flow separation and secondary flow. The
弯扭叶片1是采用等环量孤立翼型法设计的翼型叶片,弯扭叶片1厚度分布与NACA四位数字翼型厚度分布相同,翼型相对厚度为10%-15%,弯扭叶片1数量为8个;弯扭叶片1顶部的翼型槽11的槽深为弯扭叶片1高度的1%-2%,翼型槽11的厚度为弯扭叶片1顶面的50%-60%;在弯扭叶片1后端上等距分布着小翼突起13,小翼突起13间距d1为弯扭叶片1高度H的18%-22%,小翼突起13的长度d4为弯扭叶片1弦长的15%-17%,与弦长的夹角ω为30°-40°,离弯扭叶片1后端边缘的距离d5为弯扭叶片1弦长的1%-3%;弯扭叶片1中分布着抛物线小孔12,孔径为1-2mm;弯扭叶片1压力面19顶部的叶脉状凹槽15槽深为1-2mm,最大槽长为弯扭叶片1高度的30%-40%,脉槽的间距为20-30mm,每条脉槽都单独和一个出气口14相通,脉槽的具体数量视弯扭叶片1大小而定;弯扭叶片1扭曲15°-20°,弯曲15°-20°。弯曲是指弯扭叶片1在用等环量孤立翼型法设计时沿水平中截面(与弯扭叶片1的高垂直的面)弯曲,即不同半径处的翼型截面在水平方向上彼此有相应的间距;扭曲是指弯扭叶片1在用等环量孤立翼型法设计时沿竖直中截面(与弯扭叶片1的高平行的面)扭曲,即不同半径处的翼型截面绕竖直方向扭曲相应的角度。扭曲益处:不仅使得弯扭叶片1的叶根处安装角大,叶尖处安装角小,还能保证空气在径向上各个位置都有一个比较均匀的轴向速度,保证正常工作,避免气流分离,减少流动损失。弯曲和扭曲益处:能够有效抑制叶栅内部的二次流动(静压呈C型分布弯扭叶片1的吸力面18和压力面19压差小于常规叶片),同时能够提高根部反动度,降低顶部反动度,达到均化反动度沿叶高分布的目的,提高根部的通流能力。
分流叶片2为海鸥型,由圆弧形直板22和弧形面板21组成,分流叶片2的高度为弯扭叶片1高度的30%-40%,圆弧形直板22两侧面均设有径向等距的n个凹槽组(径向是指沿圆弧形直板22高度方向),每个凹槽组又包含c个仿生圆槽23,仿生圆槽23与分流叶片2顶部、根部、前缘和后端最小的间距都为圆弧形板长的6%-12%,相邻仿生圆槽23彼此间距d均为为5-8mm,圆槽半径为1-2mm,n和c的值具体视分流叶片2的高度和宽度而定;仿生圆槽23呈直线分布,弧形面板21两端和相邻弯扭叶片1相连,不同仿生圆槽23的间距定了,距离四周的间距能也定了。上述连接件4用轴套3固定在轮毂上,轴套3采用常规的轴套,连接件4采用标准件螺栓来通过轴套3与轮毂连接。The
实验一、将实施例1所述的带叶脉状结构和海鸥型分流叶片的新型轴流风机三元叶轮采用CFD技术进行简单的验证,在入口速度2m/s、旋转速度100rad/s等边界条件一致的情况下,通过测量出口的静压来判断性能,因为轴流风机主要是将机械能转化为风的静压,在输入功率相同的情况下,静压大说明效率高,湍流耗散和流动损失较少,即二次流、尾迹漩涡等都得到了有效的控制。
对比例1:取消实施例1中的弯扭叶片1顶部的翼型槽11及弯扭叶片1吸力面18顶部的叶脉状凹槽15,其余等同于实施例1,进行对比例1,。Comparative Example 1: Cancel the
对比例2:取消实施例1中的抛物线小孔12,其余等同于实施例1,进行对比例2。Comparative Example 2: Cancel the parabolic
对比例3:取消实施例1中海鸥型分流叶片2,其余等同于实施例1,进行对比例3。Comparative Example 3: Cancel the gull-shaped
对比例4:将实施例1中的弯扭叶片1替换成普通直叶片,其余等同于实施例1,进行对比例4。Comparative Example 4: The
将上述所有的对比例1-4,如同实验一所述方法进行检测,输入功率相同,所得结果(参考大气压)分别为:All of the above comparative examples 1-4 were detected as described in
本发明在相同的条件下下,相较于对比例1-4,出口静压得到了显著的提高,说明湍流耗散和流动损失得到了明显的减少。Under the same conditions, the static pressure at the outlet of the present invention is significantly improved compared with Comparative Examples 1-4, indicating that turbulence dissipation and flow loss are significantly reduced.
最后应说明的是:以上各实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照签署各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前处各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离发明个实施例方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to signing each embodiment, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the previous embodiments, or to perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the invention embodiment. .
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611118353 | 2016-12-07 | ||
CN2016111183537 | 2016-12-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106762824A CN106762824A (en) | 2017-05-31 |
CN106762824B true CN106762824B (en) | 2023-05-30 |
Family
ID=58965662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710209088.1A Active CN106762824B (en) | 2016-12-07 | 2017-03-31 | Axial fan three-way impeller with vein-like structure and seagull-shaped splitter blades |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106762824B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109002572A (en) * | 2018-05-29 | 2018-12-14 | 南京航空航天大学 | A kind of array flows to the control of slit pressure-vaccum and reduces turbulent flow frictional resistance method |
CN110701111B (en) * | 2019-10-25 | 2021-02-09 | 江汉大学 | A method for reducing the total pressure loss of the guide vane of an axial flow fan by using the splitter vane |
CN112268012B (en) * | 2020-10-10 | 2022-02-11 | 浙江理工大学 | Spiralless centrifugal fan impeller with tail jet device and its working method |
CN112377936A (en) * | 2020-11-18 | 2021-02-19 | 哈尔滨锅炉厂有限责任公司 | Method for reducing resistance of boiler flue gas duct system |
CN117236228B (en) * | 2023-11-13 | 2024-02-02 | 山东省科学院海洋仪器仪表研究所 | An optimization method for tidal energy turbine blades |
CN118346650B (en) * | 2024-04-19 | 2024-11-22 | 东莞慧达雨模具科技有限公司 | A low-noise heat dissipation fan blade and a manufacturing method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0168594A1 (en) * | 1984-06-27 | 1986-01-22 | Canadian Fram Limited | Improved axial fan |
CN201436402U (en) * | 2009-06-08 | 2010-04-07 | 珠海格力电器股份有限公司 | Axial flow fan blade |
CN203453120U (en) * | 2013-09-03 | 2014-02-26 | 讯凯国际股份有限公司 | Fan and fan impeller thereof |
CN103775388A (en) * | 2014-01-08 | 2014-05-07 | 南京航空航天大学 | Sweeping and twisting type three-dimensional blade diffuser and design method thereof |
CN203962051U (en) * | 2014-06-30 | 2014-11-26 | 中航商用航空发动机有限责任公司 | A kind of concave surface rib point turbine blade and turbogenerator |
CN204175643U (en) * | 2014-09-30 | 2015-02-25 | 美的集团武汉制冷设备有限公司 | Axial-flow windwheel and the air conditioner with it |
CN105179022A (en) * | 2015-09-30 | 2015-12-23 | 北京大学 | Turbine blade of blade top rib wing structure |
CN105650032A (en) * | 2016-03-29 | 2016-06-08 | 浙江理工大学 | Pressure expander of centrifugal compressor |
CN105736426A (en) * | 2016-04-26 | 2016-07-06 | 浙江理工大学 | Axial flow fan comprising blade pressure surfaces with winglets and blade tops with blowing structures |
CN206929130U (en) * | 2016-12-07 | 2018-01-26 | 浙江理工大学 | Axial flow blower 3 d impeller with leaf vein texture and sea-gull type splitterr vanes |
-
2017
- 2017-03-31 CN CN201710209088.1A patent/CN106762824B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0168594A1 (en) * | 1984-06-27 | 1986-01-22 | Canadian Fram Limited | Improved axial fan |
CN201436402U (en) * | 2009-06-08 | 2010-04-07 | 珠海格力电器股份有限公司 | Axial flow fan blade |
CN203453120U (en) * | 2013-09-03 | 2014-02-26 | 讯凯国际股份有限公司 | Fan and fan impeller thereof |
CN103775388A (en) * | 2014-01-08 | 2014-05-07 | 南京航空航天大学 | Sweeping and twisting type three-dimensional blade diffuser and design method thereof |
CN203962051U (en) * | 2014-06-30 | 2014-11-26 | 中航商用航空发动机有限责任公司 | A kind of concave surface rib point turbine blade and turbogenerator |
CN204175643U (en) * | 2014-09-30 | 2015-02-25 | 美的集团武汉制冷设备有限公司 | Axial-flow windwheel and the air conditioner with it |
CN105179022A (en) * | 2015-09-30 | 2015-12-23 | 北京大学 | Turbine blade of blade top rib wing structure |
CN105650032A (en) * | 2016-03-29 | 2016-06-08 | 浙江理工大学 | Pressure expander of centrifugal compressor |
CN105736426A (en) * | 2016-04-26 | 2016-07-06 | 浙江理工大学 | Axial flow fan comprising blade pressure surfaces with winglets and blade tops with blowing structures |
CN206929130U (en) * | 2016-12-07 | 2018-01-26 | 浙江理工大学 | Axial flow blower 3 d impeller with leaf vein texture and sea-gull type splitterr vanes |
Also Published As
Publication number | Publication date |
---|---|
CN106762824A (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106762824B (en) | Axial fan three-way impeller with vein-like structure and seagull-shaped splitter blades | |
CN106704261B (en) | Axial flow fan ternary impeller with vein structure and non-uniform tail fin | |
CN105756975B (en) | The axial flow blower that a kind of blade inlet edge is blown with groove structure and blade root | |
CN105650032B (en) | The diffuser of centrifugal compressor | |
CN105736426A (en) | Axial flow fan comprising blade pressure surfaces with winglets and blade tops with blowing structures | |
CN105736425B (en) | A kind of blade has the axial flow blower of bionical trailing edge with aerofoil profile deflector and stator | |
CN105756996B (en) | A kind of blade suction surface has the axial flow blower of turbo-charger set structure and leaf top fluting | |
CN205639000U (en) | Blade leading edge takes axial fan that groove structure and blade root blew | |
CN109026830B (en) | Centrifugal impeller | |
CN111425451A (en) | A blade tip winglet used on the moving blade of a diagonal flow fan | |
CN104564802B (en) | Volute-less centrifugal ventilator with resistance reduction grooves | |
CN107061329A (en) | A kind of axial flow blower | |
CN114396393A (en) | An adaptive design method for guide vanes of a bulb tubular pump and guide vanes of a bulb tubular pump | |
CN206929130U (en) | Axial flow blower 3 d impeller with leaf vein texture and sea-gull type splitterr vanes | |
CN106837867B (en) | Three-way impeller for axial fans with vein-like structure and splitter blades | |
CN207004920U (en) | Axial flow blower 3 d impeller with leaf vein texture and circular arc post splitterr vanes | |
CN219492667U (en) | Energy-saving centrifugal sewage pump | |
CN205639001U (en) | Axial fan that winglet and ye ding have air -blowing structure is worn to blade pressure | |
CN204921480U (en) | Centrifugal compressor model level | |
CN113653649A (en) | Interstage flow channel structure for improving performance of secondary impeller of multi-stage pump | |
CN207004919U (en) | Axial flow blower 3 d impeller with leaf vein texture and splitterr vanes | |
CN108953222B (en) | Centrifugal impeller | |
CN209228724U (en) | A kind of blade of adaptive active control | |
CN103939150B (en) | Stationary blade structure lowering turbine stage air flow exciting force | |
CN205639070U (en) | Blade suction surface has broken structure in whirlpool and grooved axial fan in leaf top |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |