CN106757239B - A kind of method of silicon carbide fibre electroplating nickel on surface - Google Patents
A kind of method of silicon carbide fibre electroplating nickel on surface Download PDFInfo
- Publication number
- CN106757239B CN106757239B CN201710061198.8A CN201710061198A CN106757239B CN 106757239 B CN106757239 B CN 106757239B CN 201710061198 A CN201710061198 A CN 201710061198A CN 106757239 B CN106757239 B CN 106757239B
- Authority
- CN
- China
- Prior art keywords
- fiber
- nickel
- sic
- electroplating
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 138
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 108
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 106
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 88
- 238000009713 electroplating Methods 0.000 title claims abstract description 55
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000000243 solution Substances 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 238000000576 coating method Methods 0.000 claims abstract description 21
- 239000011248 coating agent Substances 0.000 claims abstract description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 18
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 5
- 238000007788 roughening Methods 0.000 claims abstract description 5
- 239000002253 acid Substances 0.000 claims abstract description 4
- 230000007797 corrosion Effects 0.000 claims abstract description 4
- 238000005260 corrosion Methods 0.000 claims abstract description 4
- 238000005238 degreasing Methods 0.000 claims abstract description 4
- 238000007747 plating Methods 0.000 claims description 23
- 238000001035 drying Methods 0.000 claims description 6
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004327 boric acid Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000012153 distilled water Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 5
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 5
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- 235000019333 sodium laurylsulphate Nutrition 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- -1 Sodium Alkyl Sulfate Chemical class 0.000 claims description 2
- 239000012190 activator Substances 0.000 claims description 2
- 238000004070 electrodeposition Methods 0.000 claims description 2
- 239000006174 pH buffer Substances 0.000 claims description 2
- 238000011010 flushing procedure Methods 0.000 claims 1
- 229910052708 sodium Inorganic materials 0.000 claims 1
- 239000011734 sodium Substances 0.000 claims 1
- 238000004381 surface treatment Methods 0.000 abstract description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 18
- 239000004917 carbon fiber Substances 0.000 description 18
- 239000002131 composite material Substances 0.000 description 13
- 239000011156 metal matrix composite Substances 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000007772 electroless plating Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 229910001453 nickel ion Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 229920003257 polycarbosilane Polymers 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- YFKIWUQBRSMPMZ-UHFFFAOYSA-N methane;nickel Chemical compound C.[Ni] YFKIWUQBRSMPMZ-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/12—Electroplating: Baths therefor from solutions of nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0607—Wires
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
一种碳化硅纤维表面电镀镍的方法,涉及碳化硅纤维的表面处理。将连续SiC纤维裁剪,得连续SiC纤维后进行热处理脱胶,得脱胶后的SiC纤维;将脱胶后的SiC纤维置于NaOH溶液中煮沸,冲洗后,得除油污后的SiC纤维;把除油污后的SiC纤维放入硝酸水溶液中浸泡进行酸腐蚀,让其表面粗糙化,以提高其表面能,增强镀层与纤维间的结合力,从硝酸水溶液取出后,再冲洗,得表面粗化后的SiC纤维;将表面粗化后的SiC纤维干燥,得预处理的干燥SiC纤维;配制电镀液,将得的预处理的干燥SiC纤维作为阴极,金属镍板作为阳极,置于电镀液中,预处理的干燥SiC纤维表面形成一层光亮致密的镍金属涂层,实现碳化硅纤维表面电镀镍。The invention discloses a method for electroplating nickel on the surface of silicon carbide fibers, which relates to the surface treatment of silicon carbide fibers. The continuous SiC fiber is cut to obtain the continuous SiC fiber, and then heat-treated to degumming to obtain the degummed SiC fiber; the degummed SiC fiber is boiled in NaOH solution, and after rinsing, the degreasing SiC fiber is obtained; the degreasing SiC fiber is obtained Soak the SiC fibers in nitric acid aqueous solution for acid corrosion to roughen the surface to increase the surface energy and enhance the bonding force between the coating and the fiber. After taking it out of the nitric acid aqueous solution, rinse it again to obtain SiC with a roughened surface. fiber; dry the SiC fiber after surface roughening to obtain pretreated dry SiC fiber; prepare the electroplating solution, use the obtained pretreated dry SiC fiber as the cathode, and the metal nickel plate as the anode, place it in the electroplating solution, and pretreat A layer of bright and dense nickel metal coating is formed on the surface of the dry SiC fiber, and the surface of the silicon carbide fiber is electroplated with nickel.
Description
技术领域technical field
本发明涉及碳化硅(SiC)纤维的表面处理,尤其是涉及一种碳化硅纤维表面电镀镍的方法。The invention relates to surface treatment of silicon carbide (SiC) fibers, in particular to a method for electroplating nickel on the surface of silicon carbide fibers.
背景技术Background technique
连续纤维增强金属基复合材料是一类新型复合材料。它是由力学性能优异的连续纤维作为增强体,与金属基体复合而成。增强纤维一般为低密度、高强度、耐高温的陶瓷纤维。由于纤维的加入,使得复合材料具有密度低、高比强度、高比模量、耐高温、高导电性、高导热性等优异的综合性能,在先进武器、航空航天、核能及电气等领域有着广阔的应用前景。例如,连续纤维增强钛合金复合材料已被国外用于喷气发动机叶片、传动轴等重要零件;连续纤维增强铝基复合材料已被国外用于喷气式战斗机垂直尾翼平衡和尾翼梁、汽车空调器箱、小型压力容器及核聚变反应器;连续纤维增强镍基复合材料也正在研发之中(王涛,赵宇新,等.连续纤维增强金属基复合材料研制进展及关键问题[J].航空材料学报,2013,33(2):87-96;于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006,50)。Continuous fiber reinforced metal matrix composites are a new type of composite materials. It is composed of continuous fiber with excellent mechanical properties as reinforcement and composited with metal matrix. Reinforcing fibers are generally low-density, high-strength, high-temperature-resistant ceramic fibers. Due to the addition of fibers, the composite material has excellent comprehensive properties such as low density, high specific strength, high specific modulus, high temperature resistance, high electrical conductivity, and high thermal conductivity. It has great potential in advanced weapons, aerospace, nuclear energy, and electrical fields. Broad application prospects. For example, continuous fiber-reinforced titanium alloy composite materials have been used abroad for important parts such as jet engine blades and drive shafts; continuous fiber-reinforced aluminum-based composite materials have been used abroad for jet fighter vertical tail balance and tail beams, and automotive air conditioner boxes , small pressure vessels and nuclear fusion reactors; continuous fiber-reinforced nickel-based composites are also being developed (Wang Tao, Zhao Yuxin, et al. Progress and key issues in the development of continuous fiber-reinforced metal-based composites [J]. Journal of Aeronautical Materials, 2013 ,33(2):87-96; Yu Huashun. Metal matrix composites and their preparation technology [M]. Beijing: Chemical Industry Press, 2006,50).
连续纤维增强金属基复合材料一般采用液态铸造法制备,即金属需要在高温下熔融,而后(在压力的作用下)流经填充好纤维织物的固定模具,冷却后获得所需形状的复合材料。该法所用到的连续增强纤维大多为无机纤维,如碳纤维、石英纤维、SiC纤维、硼纤维等。这些纤维与液态金属的浸润性有限,导致复合材料中纤维与基体界面黏合性能差,复合材料力学性能差;另外,某些纤维与基体合金在高温下有可能发生剧烈的化学反应,造成纤维的损伤,从而损失复合材料的性能。Continuous fiber-reinforced metal matrix composites are generally prepared by liquid casting, that is, the metal needs to be melted at high temperature, and then (under pressure) flow through a fixed mold filled with fiber fabrics, and the composite material in the desired shape can be obtained after cooling. Most of the continuous reinforcing fibers used in this method are inorganic fibers, such as carbon fibers, quartz fibers, SiC fibers, boron fibers, etc. These fibers have limited wettability with the liquid metal, resulting in poor bonding between the fiber and the matrix interface in the composite material, and poor mechanical properties of the composite material; in addition, some fibers and the matrix alloy may undergo violent chemical reactions at high temperatures, resulting in fiber breakdown. damage, thereby losing the performance of the composite material.
在纤维表面预先制备金属涂层是解决上述问题的有效途径。纤维表面金属化处理不仅能够有效改善纤维与金属基体间的润湿性和相容性,还可以防止后续复合处理对纤维的损害,从而提高复合材料的性能。金属镍是目前研究较为成熟的涂层材料,主要原因是其具有良好的热稳定性和物理化学稳定性,而且能与各种金属基体具有良好的浸润性。连续纤维的表面镀镍的方法主要有电镀、化学镀、磁控溅射法等。其中电镀法具有设备简单、成本低廉、效率高、易于控制和可连续生产等优点,受到应用行业的青睐。Pre-preparing metal coating on the fiber surface is an effective way to solve the above problems. The fiber surface metallization treatment can not only effectively improve the wettability and compatibility between the fiber and the metal matrix, but also prevent the subsequent composite treatment from damaging the fiber, thereby improving the performance of the composite material. Metallic nickel is currently a relatively mature coating material, mainly because it has good thermal stability and physical and chemical stability, and it has good wettability with various metal substrates. The methods of nickel plating on the surface of continuous fiber mainly include electroplating, electroless plating, magnetron sputtering and so on. Among them, the electroplating method has the advantages of simple equipment, low cost, high efficiency, easy control and continuous production, and is favored by the application industry.
目前,用于金属镀镍的纤维主要是有机纤维、石英纤维和碳纤维。有机纤维和石英纤维均为绝缘材料,导电性能差,不能直接实施电镀,通常采用化学镀的方法制备金属涂层,或采用先化学镀、再电镀的复合工艺。如方东升等人采用化学镀技术,实现了芳纶纤维表面镀镍(方东升,孙勇,等.芳纶纤维表面化学镀镍的研究[J].化工新型材料,2013,41(2):60-62);白立晓等人在石英光纤表面先化学镀Ni-P,再电镀Ni,成功实现了石英纤维的表面金属化(白立晓,石英光纤表面化学镀Ni-P和电镀Ni联合工艺研究.南昌大学硕士学位论文,2007.)。化学镀工艺的特点是需要对施镀表面进行粗化、敏化和活化处理(活化处理需要贵金属试剂),与电镀相比,其工艺复杂,且成本高,不利于大规模生产。碳纤维是可以直接实施电镀的纤维材料,主要原因是碳纤维由于具有较低的电阻率(低于10-2Ω·cm)。目前已有较多针对碳纤维的表面金属化的研究(万里鹰,尧章福.碳纤维表面连续电镀镍的研究[J].南昌航空大学学报,2015,29(2):57-61;吕晓轩,吕春祥,等.碳纤维表面电镀镍研究[J].化工新型材料,2011,39(8):89-91;韩笑,周玉玺,等.电镀时间对碳纤维表面电镀镍的影响[J].电镀与涂饰,2014,33(9):363-365;徐先锋,洪龙龙,等.碳纤维表面电镀镍和化学镀镍研究[J].功能材料,2013,增刊(Ⅱ)(44):264-267;吕晓轩,吕春祥,等.阳极氧化对碳纤维电镀镍的影响[J].新型碳材料,2010,25(6):454-459)。碳纤维虽然适合作为直接电镀的衬底,但后续制备金属基复合材料的工艺是在金属的熔融温度下实施的,碳纤维容易在高温下与金属镀层发生反应,且其高温抗氧化性差,会导致力学性能的严重丧失,最终降低了金属基复合材料的性能。因此,寻求热物理化学稳定性更好的增强体是金属基复合材料制备的迫切需求。At present, the fibers used for metal nickel plating are mainly organic fibers, quartz fibers and carbon fibers. Both organic fibers and quartz fibers are insulating materials with poor electrical conductivity and cannot be directly electroplated. Usually, electroless plating is used to prepare metal coatings, or a composite process of first electroless plating and then electroplating is used. For example, Fang Dongsheng and others have achieved nickel plating on the surface of aramid fiber by using electroless plating technology (Fang Dongsheng, Sun Yong, et al. Research on electroless nickel plating on the surface of aramid fiber [J]. New Chemical Materials, 2013, 41(2) :60-62); Bai Lixiao and others first electroless Ni-P plating on the surface of quartz fiber, and then electroplating Ni, successfully realized the surface metallization of quartz fiber (Bai Lixiao, research on the joint process of electroless Ni-P plating and electroplating Ni on the surface of quartz fiber .Master's degree thesis of Nanchang University, 2007.). The characteristic of the electroless plating process is that it needs to roughen, sensitize and activate the plating surface (activation treatment requires precious metal reagents). Compared with electroplating, the process is complicated and the cost is high, which is not conducive to large-scale production. Carbon fiber is a fiber material that can be directly electroplated, mainly because carbon fiber has a low resistivity (less than 10 -2 Ω·cm). At present, there have been many studies on the surface metallization of carbon fibers (Wan Liying, Yao Zhangfu. Research on continuous nickel plating on the surface of carbon fibers [J]. Journal of Nanchang Hangkong University, 2015,29(2):57-61; Lu Xiaoxuan, Lu Chunxiang, et al. Research on electroplating nickel on the surface of carbon fiber[J]. New Chemical Materials, 2011,39(8):89-91; Han Xiao, Zhou Yuxi, et al. Effect of electroplating time on electroplating nickel on carbon fiber surface[J].Electroplating and Finishing, 2014,33(9):363-365; Xu Xianfeng, Hong Longlong, et al. Research on Electroless Nickel Plating and Electroless Nickel Plating on Carbon Fiber Surface[J]. Functional Materials, 2013, Supplement (Ⅱ)(44):264-267 ; Lv Xiaoxuan, Lv Chunxiang, et al. Effect of anodic oxidation on carbon fiber nickel plating [J]. New Carbon Materials, 2010,25(6):454-459). Although carbon fiber is suitable as a substrate for direct electroplating, the subsequent preparation of metal matrix composites is carried out at the melting temperature of the metal. Carbon fiber is easy to react with the metal coating at high temperature, and its high temperature oxidation resistance is poor, which will lead to mechanical damage. Severe loss of properties, which ultimately degrades the performance of metal matrix composites. Therefore, seeking reinforcements with better thermophysical and chemical stability is an urgent need for the preparation of metal matrix composites.
先驱体转化法制备的碳化硅(SiC)纤维具有轻质、高强、高模、耐高温、抗氧化等优异性能。与碳纤维相比,其直径略大(约14μm),且与金属在高温下的相容性更好,不容易发生表面反应,因此是高性能金属基复合材料的理想增强纤维。该纤维的制备技术是由日本东北大学Yajima教授在1975年发明的(S.Yajima,J.Hayashi,M.Omori.ContinuousSilicon Carbide fiber of tensile strength[J].Chemical Letters,1975(9):931)。其主要技术路线是:首先合成聚碳硅烷先驱体;聚碳硅烷经熔融纺丝制备原纤维;原纤维经热空气交联进行不熔化处理;最后在保护气氛下(Ar或N2)高温处理得到SiC纤维。利用该技术路线制得的SiC纤维电阻率可在较大范围内变化,远高于碳纤维的电阻率范围,使其导电性能与碳纤维仍存在显著差异。另外,SiC纤维的表面形貌及电化学状态与碳纤维也不同,为较难镀的基材。因此,SiC纤维与碳纤维电镀的原理及具体工艺均不相同。Silicon carbide (SiC) fibers prepared by the precursor conversion method have excellent properties such as light weight, high strength, high modulus, high temperature resistance, and oxidation resistance. Compared with carbon fibers, its diameter is slightly larger (about 14 μm), and it has better compatibility with metals at high temperatures, and is less prone to surface reactions, so it is an ideal reinforcing fiber for high-performance metal matrix composites. The fiber preparation technology was invented by Professor Yajima of Tohoku University in 1975 (S.Yajima, J.Hayashi, M.Omori.Continuous Silicon Carbide fiber of tensile strength[J].Chemical Letters,1975(9):931) . Its main technical route is: first synthesize polycarbosilane precursor; polycarbosilane is melt-spun to prepare fibrils; fibrils are cross-linked by hot air for non-melting treatment; finally, high-temperature treatment under protective atmosphere (Ar or N 2 ) Obtain SiC fiber. The resistivity of SiC fibers prepared by this technical route can vary in a wide range, which is much higher than that of carbon fibers, so that there is still a significant difference between its electrical conductivity and carbon fibers. In addition, the surface morphology and electrochemical state of SiC fibers are also different from those of carbon fibers, making them difficult to plate. Therefore, the principle and specific process of SiC fiber and carbon fiber electroplating are different.
截至目前为止,尚未见报道直接在SiC纤维表面电镀镍的研究。So far, there has been no report on the direct electroplating of nickel on the surface of SiC fibers.
发明内容Contents of the invention
本发明的目的是提供一种碳化硅纤维表面电镀镍的方法。The purpose of the present invention is to provide a method for electroplating nickel on the surface of silicon carbide fibers.
本发明包括以下步骤:The present invention comprises the following steps:
1)将连续SiC纤维裁剪,得到定长的连续SiC纤维;1) Cutting the continuous SiC fiber to obtain a fixed-length continuous SiC fiber;
在步骤1)中,所述连续SiC纤维可采用先驱体转化法制备的连续SiC纤维;所述裁剪可按照需求长度进行裁剪。In step 1), the continuous SiC fiber can be prepared by the precursor conversion method; the cutting can be cut according to the required length.
2)将连续SiC纤维进行热处理脱胶,得到脱胶后的SiC纤维;2) heat-treating and degumming the continuous SiC fibers to obtain degummed SiC fibers;
在步骤2)中,所述热处理脱胶可将连续SiC纤维置于多孔石墨坩埚内,再将该坩埚放入管式炉内进行热处理脱胶,以5℃/min的速度升温至500~700℃,并保温0.5h,而后随炉冷却。In step 2), the heat treatment degumming can place the continuous SiC fiber in a porous graphite crucible, then put the crucible into a tube furnace for heat treatment and degumming, and raise the temperature to 500-700°C at a rate of 5°C/min, And keep warm for 0.5h, then cool with the furnace.
3)将脱胶后的SiC纤维置于NaOH溶液中煮沸,冲洗后,得到除油污后的SiC纤维;3) Boiling the degummed SiC fibers in NaOH solution, and rinsing to obtain degreased SiC fibers;
在步骤3)中,所述NaOH溶液的摩尔浓度可为1mol/L;所述煮沸的时间可为10~30min;所述冲洗可采用蒸馏水冲洗至少3次,In step 3), the molar concentration of the NaOH solution can be 1mol/L; the boiling time can be 10-30min; the washing can be washed at least 3 times with distilled water,
4)把除油污后的SiC纤维放入硝酸水溶液中浸泡进行酸腐蚀,让其表面粗糙化,以提高其表面能,增强镀层与纤维间的结合力,从硝酸水溶液取出后,再冲洗,得到表面粗化后的SiC纤维;4) Soak the degreasing SiC fibers in aqueous nitric acid solution for acid corrosion to roughen the surface to increase the surface energy and strengthen the bonding force between the coating and the fibers. After taking it out from the aqueous nitric acid solution, rinse it again to obtain SiC fiber after surface roughening;
在步骤4)中,所述硝酸水溶液的质量分数可为65%,所述浸泡的时间可为15~45min,所述冲洗可采用蒸馏水冲洗至少3次。In step 4), the mass fraction of the nitric acid aqueous solution may be 65%, the soaking time may be 15-45 minutes, and the rinsing may be at least 3 times with distilled water.
5)将表面粗化后的SiC纤维干燥,得到预处理的干燥SiC纤维;5) drying the SiC fibers after surface roughening to obtain pretreated dry SiC fibers;
在步骤5)中,所述干燥可将表面粗化后的SiC纤维放入真空干燥箱内,50~70℃干燥10~30min。In step 5), the drying may be performed by putting the roughened SiC fiber into a vacuum drying oven, and drying at 50-70° C. for 10-30 minutes.
6)配制电镀液,将步骤5)得到的预处理的干燥SiC纤维作为阴极,金属镍板作为阳极,置于电镀液中,在100~200mA的恒定直流电流作用下,通电1~10min后,预处理的干燥SiC纤维表面形成一层光亮致密的镍金属涂层,实现碳化硅纤维表面电镀镍。6) Prepare the electroplating solution, use the pretreated dry SiC fiber obtained in step 5) as the cathode, and the metal nickel plate as the anode, put them in the electroplating solution, and under the action of a constant direct current of 100-200mA, energize for 1-10 minutes, A layer of bright and dense nickel metal coating is formed on the surface of the pretreated dry SiC fiber to realize nickel plating on the surface of the silicon carbide fiber.
在步骤6)中,所述电镀液的组成可为:硫酸镍100~350g/L,氯化镍50~80g/L,硼酸30~45g/L,十二烷基硫酸钠0.05~0.2g/L,其中,硫酸镍为电沉积提供镍源,氯化镍为阳极活化剂,硼酸为pH缓冲剂,十二烷基硫酸钠为防针孔剂;所述电镀液的pH可为3~4,温度可为25~60℃;所述电镀液的pH调节,可通过滴加氨水和HCl溶液调节电镀液的pH值;电镀液pH的调节是实施电镀的关键步骤之一,改变溶液pH值可改变基材表面电荷状态,进而改变其对于金属镍离子的吸附能力,由于结构的特殊性,SiC纤维具有特殊的等电点(pHiep=2~3),需要将pH值限定在较窄的范围内才能实现电镀,这是SiC纤维与其他纤维材料的主要区别之一;将电镀液的温度调整为25~60℃是施镀温度的精确控制,也是对SiC纤维实施电镀的关键步骤之一,这主要有两方面原因:其一,温度对电镀速度有显著的影响,调节温度可控制电镀速度;其二,SiC纤维的电阻率远高于碳纤维,同样的施镀电流下,SiC纤维的实时功率更大,放热更显著,因此需要通过控制溶液温度来调节SiC纤维的放热现象,避免镀速过快。对于高电阻率的SiC纤维,需要降低镀液温度来控制镀速;在100~200mA的恒定直流电流作用下,电镀液(H)中的镍离子在预处理的干燥SiC纤维(E)表面发生还原反应,通电1~10min后,预处理的干燥SiC纤维表面可形成一层光亮致密的镍金属涂层,调控电流是对SiC纤维实施电镀的又一关键步骤,SiC纤维的电阻率处于100~107Ω·cm之间,不同的电阻率对应不同的施镀电流,电阻率越高,所需施镀电流越大,需针对不同电阻率的SiC纤维实施电流控制。In step 6), the composition of the electroplating solution can be: nickel sulfate 100~350g/L, nickel chloride 50~80g/L, boric acid 30~45g/L, sodium lauryl sulfate 0.05~0.2g/L L, wherein, nickel sulfate provides a nickel source for electrodeposition, nickel chloride is an anode activator, boric acid is a pH buffer, and sodium lauryl sulfate is an anti-pinhole agent; the pH of the electroplating solution can be 3 to 4 , the temperature can be 25-60°C; the pH adjustment of the electroplating solution can be adjusted by dripping ammonia water and HCl solution; the pH adjustment of the electroplating solution is one of the key steps to implement electroplating, changing the pH value of the solution The surface charge state of the substrate can be changed, thereby changing its adsorption capacity for metal nickel ions. Due to the particularity of the structure, SiC fibers have a special isoelectric point (pHiep=2~3), and the pH value needs to be limited to a narrow range. It is one of the main differences between SiC fiber and other fiber materials; adjusting the temperature of the electroplating solution to 25-60°C is the precise control of the plating temperature, and it is also one of the key steps for electroplating SiC fiber , there are two main reasons: first, the temperature has a significant impact on the electroplating speed, and adjusting the temperature can control the electroplating speed; second, the resistivity of SiC fiber is much higher than that of carbon fiber, under the same plating current, the SiC fiber The real-time power is higher and the heat release is more significant. Therefore, it is necessary to adjust the heat release of SiC fibers by controlling the solution temperature to avoid excessive plating speed. For SiC fibers with high resistivity, it is necessary to reduce the temperature of the plating solution to control the plating speed; under the action of a constant DC current of 100-200mA, the nickel ions in the plating solution (H) are generated on the surface of the pretreated dry SiC fiber (E) Reduction reaction, after energizing for 1-10 minutes, a layer of bright and dense nickel metal coating can be formed on the surface of the pretreated dry SiC fiber. Regulating the current is another key step in electroplating the SiC fiber. The resistivity of the SiC fiber is between 100 and Between 107Ω·cm, different resistivities correspond to different plating currents. The higher the resistivity, the greater the plating current required. Current control needs to be implemented for SiC fibers with different resistivities.
本发明利用电解原理,以金属镍板为阳极,SiC纤维为阴极,直接在SiC纤维表面沉积出细致紧密、孔隙率小、厚度均匀且可控的金属镍镀层。该方法工艺路线简单,成本低廉,所制得的镀镍SiC纤维可用做金属导线以及金属基复合材料的增强体。The invention utilizes the principle of electrolysis, uses the metal nickel plate as the anode, and the SiC fiber as the cathode, directly deposits a fine, compact, small porosity, uniform and controllable metal nickel coating on the surface of the SiC fiber. The process route of the method is simple and the cost is low, and the prepared nickel-plated SiC fiber can be used as a reinforcing body of a metal wire and a metal-matrix composite material.
在本发明中,以先驱体转化法制备的连续SiC纤维为衬底,利用电解原理,在SiC纤维表面沉积一层致密、细晶、厚度均匀可控的镍金属涂层。In the present invention, the continuous SiC fiber prepared by the precursor conversion method is used as the substrate, and a layer of dense, fine-grained, uniform and controllable nickel metal coating is deposited on the surface of the SiC fiber by using the principle of electrolysis.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)采用电镀技术,在连续SiC纤维表面获得镍金属涂层。该工艺路线具有设备简单、成本低廉、效率高,易于工业化生产的优点;(1) Electroplating technology is used to obtain nickel metal coating on the surface of continuous SiC fiber. The process route has the advantages of simple equipment, low cost, high efficiency and easy industrial production;
(2)在本发明规定的工艺条件下,SiC纤维具有合适的表面粗糙度和电化学状态,在SiC纤维上获得的金属镍涂层具有细晶、致密、孔隙率小、厚度均匀且与镀层结合良好的特点;(2) Under the process conditions specified in the present invention, the SiC fiber has a suitable surface roughness and electrochemical state, and the metallic nickel coating obtained on the SiC fiber has fine grain, compactness, small porosity, uniform thickness and is compatible with the coating Combining good features;
(3)本发明制备的镀镍层厚度可控,且纤维之间不桥接,使得镀镍后的SiC纤维强度和编织性能不产生显著降低,有望作为金属导线以及高性能金属基复合材料的增强体使用。(3) The thickness of the nickel-plated layer prepared by the present invention is controllable, and there is no bridging between the fibers, so that the strength and weaving performance of the SiC fiber after nickel-plating will not be significantly reduced, and it is expected to be used as a reinforcement for metal wires and high-performance metal matrix composites Body use.
附图说明Description of drawings
图1为电镀10min后获得的镀镍SiC纤维表面形貌图。Figure 1 is the surface morphology of nickel-plated SiC fibers obtained after electroplating for 10 min.
图2为电镀10min后获得的镀镍SiC纤维截面形貌图。Figure 2 is the cross-sectional morphology of nickel-plated SiC fibers obtained after electroplating for 10 min.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细说明。The present invention is described in further detail below in conjunction with embodiment.
(1)将电阻率为10Ω·cm连续SiC纤维按照需求长度进行裁剪,得到定长的连续SiC纤维(A);(1) Cut the continuous SiC fiber with a resistivity of 10Ω·cm according to the required length to obtain a fixed-length continuous SiC fiber (A);
(2)将连续SiC纤维(A)置于多孔石墨坩埚内,再将该坩埚放入管式炉内进行热处理脱胶:以5℃/min的速度升温至600℃,并在600℃保温0.5h,而后随炉冷却,得到脱胶后的SiC纤维(B);(2) Place the continuous SiC fiber (A) in a porous graphite crucible, and then put the crucible into a tube furnace for heat treatment and degumming: heat up to 600°C at a rate of 5°C/min, and keep it at 600°C for 0.5h , and then cooled with the furnace to obtain degummed SiC fibers (B);
(3)将脱胶后的SiC纤维(B)置于1mol/L的NaOH溶液中煮沸15min,以除去其表面的有机和无机附着物,再用蒸馏水冲洗3次以上,得到除油污后的SiC纤维(C);(3) Boil the degummed SiC fiber (B) in 1mol/L NaOH solution for 15min to remove the organic and inorganic attachments on the surface, and then rinse it with distilled water for more than 3 times to obtain the degreased SiC fiber (C);
(4)把除油污后的SiC纤维(C)放入质量分数为65%的硝酸的水溶液中进行酸腐蚀,让其表面粗糙化,以提高其表面能,增强镀层与纤维间的结合力。浸泡30min后,将其从硝酸溶液中取出,再用蒸馏水冲洗3次以上,得到表面粗化后的SiC纤维(D)。(4) Put the degreased SiC fiber (C) into an aqueous solution of nitric acid with a mass fraction of 65% for acid corrosion to roughen its surface to increase its surface energy and enhance the bonding between the coating and the fiber. After soaking for 30 min, it was taken out from the nitric acid solution, and then rinsed with distilled water for more than 3 times to obtain the SiC fiber (D) with a roughened surface.
(5)将表面粗化后的SiC纤维(D)放入真空干燥箱内,60℃干燥15min,得到预处理的干燥SiC纤维(E)。(5) Put the roughened SiC fiber (D) into a vacuum drying oven, and dry at 60° C. for 15 minutes to obtain a pretreated dry SiC fiber (E).
(6)配制电镀液(F),电镀液中各物质的浓度分别为:硫酸镍160g/L,氯化镍80g/L,硼酸30g/L,十二烷基硫酸钠0.1g/L。(6) Prepare electroplating solution (F), the concentration of each substance in the electroplating solution is respectively: nickel sulfate 160g/L, nickel chloride 80g/L, boric acid 30g/L, sodium lauryl sulfate 0.1g/L.
(7)测得待镀SiC纤维的等电点为pHiep=2.5。调节电镀液pH值为3.5,获得电镀液(G)。(7) The measured isoelectric point of the SiC fiber to be plated is pH iep =2.5. Adjust the pH value of the electroplating solution to 3.5 to obtain the electroplating solution (G).
(8)将电镀液(G)的温度调整为50℃,获得电镀液(H)。(8) Adjust the temperature of the electroplating solution (G) to 50° C. to obtain the electroplating solution (H).
(9)将预处理的干燥SiC纤维(E)作为阴极,金属镍板作为阳极,在150mA的恒定直流电流作用下,电镀液(H)中的镍离子在预处理的干燥SiC纤维(E)表面发生还原反应,通电10min后,预处理的干燥SiC纤维(E)表面可形成一层光亮致密的镍金属涂层。(9) The pretreated dry SiC fiber (E) is used as the cathode, and the metal nickel plate is used as the anode. Under the action of a constant direct current of 150mA, the nickel ions in the electroplating solution (H) are deposited on the pretreated dry SiC fiber (E) A reduction reaction occurs on the surface, and a layer of bright and dense nickel metal coating can be formed on the surface of the pretreated dry SiC fiber (E) after electrification for 10 minutes.
电镀10min后获得的镀镍SiC纤维表面和截面形貌图参见图1和2,由图1和2可知,已经施镀成功,镀层颗粒细小,镀层厚度均匀。经测试该镀镍SiC纤维(镀层厚度为700nm)的拉伸强度为2GPa,电阻率为1.5×10-3Ω·cm。See Figures 1 and 2 for the surface and cross-sectional topography of the nickel-plated SiC fiber obtained after electroplating for 10 minutes. It can be seen from Figures 1 and 2 that the plating has been successful, the coating particles are fine, and the coating thickness is uniform. After testing, the tensile strength of the nickel-plated SiC fiber (the thickness of the coating is 700nm) is 2GPa, and the resistivity is 1.5×10 -3 Ω·cm.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710061198.8A CN106757239B (en) | 2017-01-25 | 2017-01-25 | A kind of method of silicon carbide fibre electroplating nickel on surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710061198.8A CN106757239B (en) | 2017-01-25 | 2017-01-25 | A kind of method of silicon carbide fibre electroplating nickel on surface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106757239A CN106757239A (en) | 2017-05-31 |
CN106757239B true CN106757239B (en) | 2018-10-23 |
Family
ID=58942002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710061198.8A Active CN106757239B (en) | 2017-01-25 | 2017-01-25 | A kind of method of silicon carbide fibre electroplating nickel on surface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106757239B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107541758A (en) * | 2017-08-01 | 2018-01-05 | 昆明理工大学 | A kind of method in carbon-based material surface Electrodeposition Bath of Iron nickel alloy coating |
CN107740266B (en) * | 2017-10-30 | 2019-05-17 | 厦门大学 | Continuous SiC fiber surface in situ C-SiO2Preparation method of composite coating |
CN108130573A (en) * | 2018-02-27 | 2018-06-08 | 深圳市深联发科技有限公司 | A kind of electroplating system of Kafra fiber |
CN108998817B (en) * | 2018-07-06 | 2021-04-16 | 鹤山市精工制版有限公司 | Additive for priming nickel plating solution and application thereof |
CN113321522B (en) * | 2021-06-29 | 2022-04-19 | 中南大学 | Preparation method and application of in-situ growth of SiC nanowires modified SiCf/SiC ceramic matrix composites |
CN114085089B (en) * | 2021-11-03 | 2022-09-02 | 福建立亚新材有限公司 | Preparation method of waste continuous silicon carbide fiber reinforced silicate ceramic |
CN115820039B (en) * | 2022-12-28 | 2024-08-06 | 厦门大学 | A porous conductive ink, preparation method and application thereof |
CN116496073B (en) * | 2023-05-16 | 2024-04-02 | 醴陵千汇实业有限公司 | Blank pug for extrusion molding of cup lugs |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101250728A (en) * | 2008-03-19 | 2008-08-27 | 中南大学 | A kind of preparation method of silicon carbide nanofiber/carbon fiber composite felt |
CN102276281A (en) * | 2011-05-19 | 2011-12-14 | 中南大学 | Method for preparing nano-SiC fiber reinforced carbon-carbon composite material |
CN103694951A (en) * | 2013-11-29 | 2014-04-02 | 中国人民武装警察部队工程大学 | CuO/Ni/carbon fiber composite absorbing material and preparation method thereof |
CN103981467A (en) * | 2014-05-22 | 2014-08-13 | 天津大学 | Method for preparing carbon/silicon carbide complex fiber-reinforced aluminum-based foam material |
CN105113217A (en) * | 2015-09-09 | 2015-12-02 | 卜庆革 | Composite fiber capable of simultaneously absorbing low-frequency and high-frequency electromagnetic waves and preparation method thereof |
-
2017
- 2017-01-25 CN CN201710061198.8A patent/CN106757239B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101250728A (en) * | 2008-03-19 | 2008-08-27 | 中南大学 | A kind of preparation method of silicon carbide nanofiber/carbon fiber composite felt |
CN102276281A (en) * | 2011-05-19 | 2011-12-14 | 中南大学 | Method for preparing nano-SiC fiber reinforced carbon-carbon composite material |
CN103694951A (en) * | 2013-11-29 | 2014-04-02 | 中国人民武装警察部队工程大学 | CuO/Ni/carbon fiber composite absorbing material and preparation method thereof |
CN103981467A (en) * | 2014-05-22 | 2014-08-13 | 天津大学 | Method for preparing carbon/silicon carbide complex fiber-reinforced aluminum-based foam material |
CN105113217A (en) * | 2015-09-09 | 2015-12-02 | 卜庆革 | Composite fiber capable of simultaneously absorbing low-frequency and high-frequency electromagnetic waves and preparation method thereof |
Non-Patent Citations (5)
Title |
---|
Effect of nickel on the interface and mechanical properties of SiCf/Cu composites;xian luo et.al;《Journal of Alloys and Compounds》;20080305;第237-243页 * |
SiC纤维表面电镀铜的研究;罗贤等;《金属热处理》;20090228;第34卷(第2期);第6-9页 * |
碳化硅纤维增强体钛铝基体的原位合成与控制及其动力学解析;曲海涛等;《稀有金属材料与工程》;20140228;第43卷(第2期);第351-355页 * |
连续SiC 纤维增强金属基复合材料研究进展;李佩桓等;《材料工程》;20160831;第44卷(第8期);第121-129页 * |
镀镍碳化硅纤维红外消光率研究;任慧等;《含能材料》;20070430;第15卷(第2期);第151-154页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106757239A (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106757239B (en) | A kind of method of silicon carbide fibre electroplating nickel on surface | |
CN102391015B (en) | SiC ceramic surface treatment method and application thereof | |
CN108193148A (en) | A kind of preparation method of Carbon Fibre Reinforced Metal Matrix Composites | |
CN105714360B (en) | Alkaline graphene nickel plating solution, its preparation method and application | |
US11753706B2 (en) | Graphene- and in-situ nanoparticle-reinforced aluminum-based composite material and preparation method | |
CN102773434A (en) | Nanocomposite electroplating layer copper plate of continuous casting crystallizer and preparation process of nanocomposite electroplating layer copper plate | |
CN110428939B (en) | Preparation method of high-conductivity graphene copper/aluminum composite wire | |
CN108998794B (en) | A kind of Re-Si co-modified aluminide coating and preparation method thereof | |
CN1528714A (en) | Connection method of carbon, ceramic non-metallic materials and metal materials | |
CN110102758A (en) | A kind of Cu-X/C composite material and preparation method | |
CN103667795A (en) | Active-element Sc-modified (Ni, Pt)Al high-temperature-oxidation-resisting bonding layer material and preparation method thereof | |
CN114561565B (en) | Preparation method of diamond particle reinforced high-entropy alloy composite material | |
CN112111665A (en) | Method for preparing carbon modified aluminum alloy composite material by vacuum pressure infiltration method | |
CN112048752A (en) | Preparation method and application of cBN/Ni-Mo titanium alloy blade tip protective coating | |
CN112322938B (en) | A kind of nickel-based composite material based on additive manufacturing, preparation method and forming method thereof | |
CN102643097A (en) | Preparation method of aluminum oxide coated SiC particle reinforced nickel-based composite material | |
CN110872692A (en) | Molybdenum-silver laminated composite material, and preparation method and application thereof | |
CN102002743A (en) | Preparation method for electroplating thick tungsten coating on pure copper or copper alloy substrate with molten salt | |
CN108165808A (en) | A kind of graphite-aluminium two-phase connection composite material and preparation method thereof | |
CN104988474A (en) | Chemical plating preparation method for composite gradient coatings | |
CN105385989B (en) | A kind of salt melting system, compound cocatalyst and the application of the binary permeation of molybdenum or molybdenum alloy | |
CN109695044B (en) | TiB with uniform and compact structure2Layered titanium-based cathode material and method for producing same | |
CN114875260B (en) | Preparation method of diamond composite material | |
WO2020038313A1 (en) | Metal-based carbon fiber composite material and method for preparing ceramic | |
CN117551909A (en) | Three-dimensional high-heat-conductivity carbon fiber reinforced copper-based composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |