[go: up one dir, main page]

CN106754769B - A kind of tomato Inappropriate ADH syndrome gene and application - Google Patents

A kind of tomato Inappropriate ADH syndrome gene and application Download PDF

Info

Publication number
CN106754769B
CN106754769B CN201611085754.7A CN201611085754A CN106754769B CN 106754769 B CN106754769 B CN 106754769B CN 201611085754 A CN201611085754 A CN 201611085754A CN 106754769 B CN106754769 B CN 106754769B
Authority
CN
China
Prior art keywords
gene
tomato
leu
slsld
phe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611085754.7A
Other languages
Chinese (zh)
Other versions
CN106754769A (en
Inventor
周瀛
杨子银
曾兰亭
蒋跃明
段学武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Botanical Garden of CAS
Original Assignee
South China Botanical Garden of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Botanical Garden of CAS filed Critical South China Botanical Garden of CAS
Priority to CN201611085754.7A priority Critical patent/CN106754769B/en
Publication of CN106754769A publication Critical patent/CN106754769A/en
Application granted granted Critical
Publication of CN106754769B publication Critical patent/CN106754769B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a kind of tomato Inappropriate ADH syndrome gene and applications.The present invention passes through virus induced gene silencing (Virus induced gene silencing, VIGS) scientific discovery a kind of new tomato Inappropriate ADH syndrome related gene SlSLD, the silencing of the gene can cause the low temperature tolerance ability of tomato plant to be substantially reduced.The albumen of the coded by said gene, which is a kind of △ 8- sphingomyelins dehydrogenase, to be proved to the amino acid sequence analysis of gene coding, related to neurolemma lipid-metabolism, which plays an important role in the reaction of plant resistant low temperature stress.This research provides the nucleic acid sequence and its amino acid sequence of this gene, also relates to the purposes that the gene is resisted cold in tomato in breeding.SlSLD gene can be applied to the freeze proof breeding of tomato, improves the adaptability of tomato excellent variety, expands its planting range, promote its stable yields and high yield.

Description

一种番茄抗冷害基因及应用A kind of tomato chilling damage resistance gene and its application

技术领域technical field

本发明属于植物生物技术领域,具体地说,涉及一种番茄抗冷害基因及应用。The invention belongs to the field of plant biotechnology, and in particular relates to a tomato chilling damage resistance gene and its application.

背景技术Background technique

神经鞘脂质(Sphingolipids)是一类含有脂肪酸和长链鞘氨醇骨架的复杂脂类总称。它是在内质网上由丝氨酸软脂酰辅酶A转移酶(Serine palmitoyltransferase,SPT)催化丝氨酸和棕榈酰辅酶A而从头合成的。该类脂质是植物细胞质膜,液泡膜和内膜系统的重要组成部分,约占膜上脂类的40%,主要存在于细胞膜的外叶。细胞膜的外叶会影响膜的完整性和离子的通透性,而细胞膜在低温条件下的生理状态是植物抗冷害能力的重要指标。此外,神经鞘脂质可以被还原生成一种含有不饱和烃基链的十八碳氨基醇,即鞘氨醇(Sphinganine)。它是一类长链基(Long chain base,LCB),可以被鞘磷脂脱氢酶(Sphingolipid desaturase,SLD)催化生成不饱和的鞘磷脂。大量的研究表明,不饱和鞘磷脂在耐寒型植物中大量存在,因为该物质含量的多少影响着植物耐寒能力的高低。在拟南芥中,葡糖苷酰鞘氨醇(d18:1c24:0)含量的上升可以增强植株的抗冻能力。也有实验进一步表明,AtSLD基因突变的拟南芥植株在低温环境下会出现萎黄病,植株不能正常生长。另外,研究发现,葡萄苷酰鞘氨醇在细胞膜和液泡膜上有相当高的含量,而高度羟基化的葡萄苷酰鞘氨醇对维持细胞膜和液泡膜的完整性非常重要。△8-鞘磷脂脱氢酶是催化鞘脂长链基C8位脱氢生成△8-不饱和鞘磷脂的关键酶。冷害处理可以促使大豆叶片中含葡萄苷酰鞘氨醇的△8-不饱和鞘磷脂含量增加,因此,可以认为△8-不饱和鞘磷脂及△8-鞘磷脂脱氢酶与大豆的抗寒性密切相关。从前人的研究中可以发现,神经鞘脂质及其不饱和鞘磷脂脱氢酶可能影响着植物的抗冷害能力。然而,关于该脱氢酶与抗寒关系的研究仍较少,特别是在经济作物方面,二者的联系还有待进一步的阐明。Sphingolipids is a general term for a class of complex lipids containing fatty acids and long-chain sphingosine skeletons. It is de novo synthesized on the endoplasmic reticulum by catalyzing serine and palmitoyl-CoA by serine palmitoyl-CoA transferase (SPT). This type of lipid is an important part of the plant cell plasma membrane, tonoplast membrane and inner membrane system, accounting for about 40% of the lipids on the membrane, and mainly exists in the outer leaflet of the cell membrane. The outer leaves of the cell membrane affect the integrity of the membrane and the permeability of ions, and the physiological state of the cell membrane under low temperature conditions is an important indicator of the plant's resistance to chilling damage. In addition, sphingolipids can be reduced to generate an octadecyl amino alcohol containing an unsaturated hydrocarbon chain, namely sphinganine. It is a type of long chain base (Long chain base, LCB), which can be catalyzed by sphingolipid desaturase (SLD) to generate unsaturated sphingomyelin. A large number of studies have shown that unsaturated sphingomyelin exists in large quantities in cold-resistant plants, because the content of this substance affects the level of plant cold resistance. In Arabidopsis, the increase of glucosylceramide (d18:1c24:0) content can enhance the frost resistance of plants. There are also experiments that further show that Arabidopsis plants with mutations in the AtSLD gene will develop chlorosis in low temperature environments, and the plants cannot grow normally. In addition, studies have found that glucosylceramide has a relatively high content in cell membranes and tonoplast membranes, and highly hydroxylated glucosylceramide is very important for maintaining the integrity of cell membranes and tonoplast membranes. △ 8 -sphingomyelin dehydrogenase is the key enzyme that catalyzes the dehydrogenation of C8 position of sphingolipid long chain base to generate △ 8 -unsaturated sphingomyelin. Chilling injury treatment can increase the content of △ 8 -unsaturated sphingomyelin containing glucosylceramide in soybean leaves. Therefore, it can be considered that △ 8 -unsaturated sphingomyelin and △ 8 -sphingomyelin dehydrogenase are related to cold resistance of soybean Sex is closely related. It can be found from previous studies that sphingolipids and their unsaturated sphingomyelin dehydrogenase may affect the ability of plants to resist chilling damage. However, there are still few studies on the relationship between the dehydrogenase and cold resistance, especially in economic crops, and the relationship between the two needs to be further elucidated.

番茄(Lycopersicon esculentum Mill)系茄科番茄属植物,是一种重要的经济作物,与国民的“菜篮子工程”息息相关。它是冷敏感型植物,低温冷害会给番茄的生产造成较大损失,是影响番茄周年生产量和市场供应的主要因素之一。多数番茄品种在温度低于10℃时生长发育容易受阻,当温度低于6℃时表现出明显的冷害症状,所以关于番茄对低温环境的适应性受到了学者们的广泛关注。为了改良番茄品种,提高番茄对低温的抵抗力,减少番茄受冷害的经济损失,目前研究者们已经在细胞膜结构、抗氧化性酶、细胞壁物质代谢等多方面对番茄抗冷害机制进行了探索。但是,还未有研究者探索过△8-鞘磷脂脱氢酶在番茄低温适应性中的作用。因此,本发明不仅从神经鞘脂质代谢这个全新的角度去挖掘番茄抗冷害的机制,同时也为培育耐低温番茄品种提供一定的理论依据,对提高番茄种植的适应性、扩大栽种面积、增加产量等方面具有重要的意义。Tomato (Lycopersicon esculentum Mill) is a plant of the genus Tomato in the family Solanaceae. It is an important economic crop and is closely related to the national "vegetable basket project". It is a cold-sensitive plant, and low-temperature chilling damage will cause great losses to tomato production, which is one of the main factors affecting tomato annual production and market supply. The growth and development of most tomato varieties are easily hindered when the temperature is lower than 10°C, and they show obvious symptoms of chilling injury when the temperature is lower than 6°C, so the adaptability of tomato to low temperature environments has attracted widespread attention from scholars. In order to improve tomato varieties, increase tomato resistance to low temperature, and reduce tomato economic losses from chilling damage, researchers have explored the mechanism of tomato resistance to chilling damage in terms of cell membrane structure, antioxidant enzymes, and cell wall substance metabolism. However, no researchers have explored the role of △ 8 -sphingomyelin dehydrogenase in tomato cold adaptation. Therefore, the present invention not only excavates the mechanism of tomato anti-chilling injury from the new angle of sphingolipid metabolism, but also provides a certain theoretical basis for cultivating low-temperature-resistant tomato varieties, which can improve the adaptability of tomato planting, expand the planting area, increase Yield and so on are of great significance.

发明内容Contents of the invention

本发明的目的在于提供一种番茄抗冷害基因SlSLD,该基因的沉默可以导致番茄耐低温能力降低。该基因可以应用于番茄抗冻育种,可以有效的提高番茄品种的抗冻性。The object of the present invention is to provide a tomato chilling damage resistance gene S1SLD, the silencing of the gene can lead to the reduction of tomato low temperature tolerance. The gene can be applied to tomato frost resistance breeding, and can effectively improve the frost resistance of tomato varieties.

本发明的另一个目的在于提供一种番茄抗冷害基因在番茄耐寒育种中的应用。通过提高植物体内SlSLD基因表达量来进行植物耐低温育种,以此来使植物的适宜种植范围扩大。Another object of the present invention is to provide an application of a tomato chilling damage resistance gene in tomato cold-resistant breeding. By increasing the expression level of the SlSLD gene in the plant, the low temperature tolerance breeding of the plant is carried out, so as to expand the suitable planting range of the plant.

一种番茄△8-鞘磷脂脱氢酶基因,其核苷酸序列如SEQ ID NO.1所示。A tomato Δ 8 -sphingomyelin dehydrogenase gene, the nucleotide sequence of which is shown in SEQ ID NO.1.

编码上述番茄△8-鞘磷脂脱氢酶基因的番茄△8-鞘磷脂脱氢酶,其氨基酸序列如SEQ ID NO.2所示。The amino acid sequence of tomato Δ 8 -sphingomyelin dehydrogenase encoding the above tomato Δ 8 -sphingomyelin dehydrogenase gene is shown in SEQ ID NO.2.

通过调节本发明所描述的SlSLD基因的表达,可以改变植物对冷的敏感性。By modulating the expression of the SlSLD gene described in the present invention, the sensitivity of plants to cold can be altered.

与现有技术相比,本发明具有如下有益效果:本发明通过病毒诱导的基因沉默(Virus induced gene silencing,VIGS)技术发现了一种新的番茄抗冷害相关基因SlSLD,该基因的沉默可以导致番茄植株的耐低温能力明显降低。对该基因编码的氨基酸序列分析证明该基因所编码的蛋白是一种△8-鞘磷脂脱氢酶,与神经鞘脂质代谢相关,该酶在植物抵抗低温胁迫的反应中起重要的作用。本研究提供了这个基因的核酸序列,及其氨基酸序列,同时还涉及该基因在番茄耐寒育种中的用途。SlSLD基因可以应用于番茄的抗冻育种,提高番茄优良品种的适应性,扩大其种植范围,促进其稳产和高产。Compared with the prior art, the present invention has the following beneficial effects: the present invention discovers a new tomato chilling resistance-related gene SlSLD through virus-induced gene silencing (VIGS) technology, and the silencing of this gene can lead to The low temperature tolerance of tomato plants was significantly reduced. Analysis of the amino acid sequence encoded by the gene proves that the protein encoded by the gene is a △ 8 -sphingomyelin dehydrogenase, which is related to the metabolism of nerve sphingolipids, and the enzyme plays an important role in the response of plants to resist low temperature stress. This study provides the nucleic acid sequence and amino acid sequence of this gene, and also involves the use of this gene in tomato cold-resistant breeding. The SlSLD gene can be used in tomato breeding for frost resistance, improve the adaptability of tomato elite varieties, expand its planting range, and promote its stable and high yield.

附图说明Description of drawings

图1为低温胁迫处理番茄植株后的表型图。Figure 1 is a phenotype diagram of tomato plants treated with low temperature stress.

具体实施方式Detailed ways

以下实施例是对本发明的进一步说明,而不是对本发明的限制。The following examples are to further illustrate the present invention, rather than limit the present invention.

实施例1:番茄的VIGS处理Example 1: VIGS processing of tomato

以下使用的LB固体培养基的配方为:10g/L胰蛋白胨(Tryptone),5g/L酵母提取物(Yeast extract),10g/L氯化钠(NaCl),15~20g/L琼脂粉,用10M NaOH调整pH值到7.4,余量为水;121℃,灭菌20min,温度降至55℃左右(不烫手)时,加入终浓度为30mg/L卡那霉素(Kanamycin,Kan),或者加入终浓度为30mg/L卡那霉素(Kanamycin,Kan),50mg/L利福平(Rifampicin,Rif),50mg/L庆大霉素(Gentamicin,Gen),倒平板,保存备用;LB液体培养基的配方为:10g/L胰蛋白胨(Tryptone),5g/L酵母提取物(Yeast extract),10g/L氯化钠(NaCl),用10M NaOH调整pH值到7.4,余量为水;121℃,灭菌20min,温度降至55℃左右(不烫手)或冷却后,加入终浓度为30mg/L卡那霉素(Kanamycin,Kan),或者加入终浓度为30mg/L卡那霉素(Kanamycin,Kan),50mg/L利福平(Rifampicin,Rif),50mg/L庆大霉素(Gentamicin,Gen)。The formula of LB solid medium used below is: 10g/L tryptone (Tryptone), 5g/L yeast extract (Yeast extract), 10g/L sodium chloride (NaCl), 15-20g/L agar powder, use Adjust the pH value to 7.4 with 10M NaOH, and the balance is water; sterilize at 121°C for 20 minutes, and when the temperature drops to about 55°C (not hot), add Kanamycin (Kanamycin, Kan) at a final concentration of 30mg/L, or Add final concentration of 30mg/L Kanamycin (Kanamycin, Kan), 50mg/L Rifampicin (Rifampicin, Rif), 50mg/L Gentamicin (Gentamicin, Gen), pour plate, save for later use; LB liquid The formula of the medium is: 10g/L tryptone (Tryptone), 5g/L yeast extract (Yeast extract), 10g/L sodium chloride (NaCl), adjust the pH value to 7.4 with 10M NaOH, and the balance is water; Sterilize at 121°C for 20 minutes, and after the temperature drops to about 55°C (not hot to the hands) or after cooling, add Kanamycin (Kanamycin, Kan) at a final concentration of 30mg/L, or add Kanamycin at a final concentration of 30mg/L (Kanamycin, Kan), 50mg/L rifampicin (Rifampicin, Rif), 50mg/L gentamicin (Gentamicin, Gen).

以下对实施例的具体步骤进行说明:The concrete steps of embodiment are described below:

1)番茄RNA的提取及cDNA的获得1) Extraction of tomato RNA and acquisition of cDNA

番茄RNA提取方法参考华越洋生物公司超快型植物RNA提取试剂盒使用说明。具体步骤如下:取0.1g用液氮磨碎的番茄叶片置于1.5mL离心管中,加入1mL细胞裂解液,充分混匀;加入300μL去蛋白液和200μL氯仿,盖好管盖,剧烈振荡混匀30s;室温12,000×g,离心10min,将上清(不多于700μL)转移至1.5mL RNase-free离心管中;加入等体积漂洗液,充分颠倒混匀,将混合物(不多于700μL)转移至离心吸附柱中,室温12,000×g,离心1min,弃穿透液;加入500μL洗柱液,室温12,000×g,离心1min,弃穿透液,重复一次。室温12,000×g,离心1min,以便去除残留的液体;将离心吸附柱转移到RNase-free离心管中,加入50μL RNA洗脱液,室温放置5min;室温12,000×g,离心1min,将含有番茄RNA的穿透液存于-80℃冰箱。For the extraction method of tomato RNA, please refer to the instructions of Huayueyang Biological Company Ultra-fast Plant RNA Extraction Kit. The specific steps are as follows: Take 0.1 g of tomato leaves ground with liquid nitrogen and place in a 1.5 mL centrifuge tube, add 1 mL of cell lysate, and mix well; Homogenize for 30 seconds; centrifuge at 12,000×g at room temperature for 10 minutes, transfer the supernatant (not more than 700 μL) to a 1.5 mL RNase-free centrifuge tube; Transfer to a centrifugal adsorption column, centrifuge at 12,000×g at room temperature for 1 min, discard the passthrough; add 500 μL of column wash solution, centrifuge at 12,000×g at room temperature for 1 min, discard the passthrough, and repeat once. Centrifuge at 12,000×g at room temperature for 1 min to remove residual liquid; transfer the centrifugal adsorption column to an RNase-free centrifuge tube, add 50 μL RNA eluent, and place at room temperature for 5 min; centrifuge at 12,000×g at room temperature for 1 min, and the The breakthrough solution was stored in a -80°C freezer.

将番茄RNA逆转录成cDNA,采用Takara公司的PrimeScriptTM RT reagent Kitwith gDNA Eraser(Perfect Real Time)试剂盒。取出-80℃冻存番茄RNA,待融化后,根据说明书加入DNA酶后,42℃消化DNA 2min,再加入反转录试剂,37℃15min,85℃5sec;得到逆转录的cDNA。Tomato RNA was reverse-transcribed into cDNA using the PrimeScript TM RT reagent Kit with gDNA Eraser (Perfect Real Time) kit from Takara. Remove the frozen tomato RNA at -80°C, after thawing, add DNase according to the instructions, digest the DNA at 42°C for 2 minutes, then add reverse transcription reagent, 37°C for 15 minutes, 85°C for 5 sec; reverse transcribed cDNA was obtained.

2)△8-鞘磷脂脱氢酶基因(SlSLD)的克隆2) Cloning of △ 8 -sphingomyelin dehydrogenase gene (SlSLD)

利用生物信息学分析方法,在番茄基因组数据库中搜索番茄△8-鞘磷脂脱氢酶基因(SlSLD),得到1条候选序列。根据该序列信息,设计用于扩增SlSLD基因全长序列的引物序列,上游引物SlSLDF:5’-GGATCCCAGGGTAAGGTGTATGATGT-3’和下游引物SlSLDR:5’-TCTAGAGCAATTCCCAGTAAGGAC-3’。The tomato △ 8 -sphingomyelin dehydrogenase gene (SlSLD) was searched in the tomato genome database by bioinformatics analysis method, and a candidate sequence was obtained. According to the sequence information, primer sequences for amplifying the full-length sequence of the SlSLD gene were designed, the upstream primer SlSLDF: 5'-GGATCCCAGGGTAAGGTGTATGATGT-3' and the downstream primer SlSLDR: 5'-TCTAGAGCAATTCCCAGTAAGGAC-3'.

反应体系参照说明书,PCR扩增用Takara的PrimeSTAR Max Premix(2×)10μL,10μM上游引物SlSLDF和10μM下游引物SlSLDR各0.5μL,逆转录的cDNA模板0.1μL,加双蒸水补足20μL。PCR扩增程序为98℃30sec,1个循环;98℃15sec,60℃15sec,72℃30sec,35个循环;72℃10min,1个循环。由此扩增得到△8-鞘磷脂脱氢酶基因(SlSLD1)的全长序列,全长序列经限制性内切酶BamH I和Xho I酶切后(37℃酶切反应2h),连接到表达载体pTRV2载体(37℃限制性内切酶BamH I和Xho I酶切2h)中,得到重组质粒pTRV2-SlSLD,送公司测序。△8-鞘磷脂脱氢酶基因(SlSLD)的核酸序列如SEQ ID NO.1所示,其编码的△8-鞘磷脂脱氢酶基因的氨基酸序列如SEQ ID NO.2所示。确认序列正确后,利用热激法(42℃热激90sec)将该重组质粒pTRV2-SlSLD转入大肠杆菌DH5α中,于37℃在含30mg/L卡那霉素(Kanamycin,Kan)LB固体培养基上培养1天,挑取阳性单克隆于1mL的含30mg/L卡那霉素(Kanamycin,Kan)LB液体培养基中,在37℃条件下,以200转/分钟培养1天,至OD600值为1.0左右,保存于15%的甘油,放于-80℃冰箱备用。Refer to the instruction manual for the reaction system, use 10 μL of Takara’s PrimeSTAR Max Premix (2×) for PCR amplification, 0.5 μL each of 10 μM upstream primer SlSLDF and 10 μM downstream primer S1SLDR, 0.1 μL of reverse-transcribed cDNA template, and add double distilled water to make up 20 μL. The PCR amplification program was 98°C for 30 sec, 1 cycle; 98°C for 15 sec, 60°C for 15 sec, 72°C for 30 sec, 35 cycles; 72°C for 10 min, 1 cycle. The full-length sequence of the △ 8 -sphingomyelin dehydrogenase gene (SlSLD1) was thus amplified. After the full-length sequence was digested with restriction endonucleases BamH I and Xho I (37°C digestion reaction for 2 h), it was connected to The recombinant plasmid pTRV2-SlSLD was obtained from the expression vector pTRV2 vector (digested with restriction enzymes BamH I and Xho I for 2 h at 37°C) and sent to the company for sequencing. The nucleic acid sequence of the Δ 8 -sphingomyelin dehydrogenase gene (SlSLD) is shown in SEQ ID NO.1, and the amino acid sequence of the encoded Δ 8 -sphingomyelin dehydrogenase gene is shown in SEQ ID NO.2. After confirming that the sequence is correct, transfer the recombinant plasmid pTRV2-SlSLD into Escherichia coli DH5α by heat shock method (heat shock at 42°C for 90 sec), and culture it on solid LB containing 30 mg/L Kanamycin (Kanamycin, Kan) at 37°C Cultured on medium for 1 day, picked positive single clones in 1 mL of LB liquid medium containing 30 mg/L Kanamycin (Kanamycin, Kan), and cultured for 1 day at 37°C at 200 rpm until OD The 600 value is about 1.0, stored in 15% glycerol, and stored in a -80°C refrigerator for later use.

3)农杆菌介导的△8-鞘磷脂脱氢酶基因(SlSLD)的VIGS3) VIGS of Agrobacterium-mediated Δ 8 -sphingomyelin dehydrogenase gene (SlSLD)

挑取2)中所存的菌种,置于含5mL LB液体培养基(含30mg/L卡那霉素(Kanamycin,Kan))中,在37℃条件下,以200转/分钟培养1天,至OD600值为1.2左右,然后用小提质粒试剂盒提取重组的质粒pTRV2-SlSLD。取1μL pTRV1质粒和pTRV2-SlSLD质粒,分别加入置已经在冰上解冻的30μL GV3101感受态细胞。将感受态细胞转移到2mm型的电机杯,通过电机方式进行转化,具体参数如:选择Pre-Set Protocols下的Bacterial下的A.tumefaciens,电压2400V,电容25μF,电阻200Ω,电击杯Cuvette为2mm。电击后,加入无抗性的LB液体培养基,颠倒混匀,转移到1.5mL离心管,于28℃条件下,以200转/分钟培养2h,再将该菌于30mg/L卡那霉素(Kanamycin,Kan),50mg/L利福平(Rifampicin,Rif),50mg/L庆大霉素(Gentamicin,Gen)的LB固体培养基上培养2-3天。Pick the strains stored in 2), place them in 5 mL of LB liquid medium (containing 30 mg/L Kanamycin (Kanamycin, Kan)), and culture them at 37°C at 200 rpm for 1 day, When the OD 600 value was about 1.2, the recombinant plasmid pTRV2-SlSLD was extracted with a small extraction plasmid kit. Take 1 μL of pTRV1 plasmid and pTRV2-SlSLD plasmid, and add them to 30 μL of GV3101 competent cells that have been thawed on ice. Transfer the competent cells to a 2mm type motor cup, and transform by motor. The specific parameters are as follows: select A.tumefaciens under Bacterial under Pre-Set Protocols, voltage 2400V, capacitance 25μF, resistance 200Ω, electric shock cup Cuvette is 2mm . After electric shock, add non-resistant LB liquid medium, mix it upside down, transfer it to a 1.5mL centrifuge tube, and culture it at 200 rpm for 2 hours at 28°C, then add the bacteria in 30mg/L kanamycin (Kanamycin, Kan), 50mg/L rifampicin (Rifampicin, Rif), and 50mg/L gentamicin (Gentamicin, Gen) were cultured on LB solid medium for 2-3 days.

挑取阳性单克隆于1mL的含30mg/L卡那霉素(Kanamycin,Kan),50mg/L利福平(Rifampicin,Rif),50mg/L庆大霉素(Gentamicin,Gen)LB液体培养基中,在28℃条件下,以200转/分钟培养1天,至OD600值为1.0左右。在4000×g下,离心15min,收集沉淀,加入含30mg/L卡那霉素(Kanamycin,Kan),50mg/L利福平(Rifampicin,Rif),50mg/L庆大霉素(Gentamicin,Gen)LB液体培养基,使得pTRV1/GV3101菌液的OD600值为0.4,pTRV2-SlSLD/GV3101菌液的OD600值为0.4。再将二者菌液以1:1的比例混合,并于室温静置3~6h。通过真空注射的方法侵染刚长出第一片真叶的番茄幼苗,以pTRV2/GV3101为对照,同时进行侵染。侵染后的幼苗置于21℃,16:8(白天:黑夜)条件下,培养30d。用荧光定量PCR分析的方法来鉴定基因被抑制的程度,具体结果如表1所示。Pick positive single clones in 1 mL of LB liquid medium containing 30 mg/L Kanamycin (Kanamycin, Kan), 50 mg/L Rifampicin (Rifampicin, Rif), 50 mg/L Gentamicin (Gentamicin, Gen) , cultured at 200 rpm for 1 day at 28°C until the OD 600 value was about 1.0. Centrifuge at 4000×g for 15 min, collect the precipitate, add 30 mg/L kanamycin (Kanamycin, Kan), 50 mg/L rifampicin (Rifampicin, Rif), 50 mg/L gentamicin (Gentamicin, Gen ) LB liquid medium, so that the OD 600 value of the pTRV1/GV3101 bacterial solution is 0.4, and the OD 600 value of the pTRV2-SlSLD/GV3101 bacterial solution is 0.4. Then mix the two bacterial solutions at a ratio of 1:1, and let stand at room temperature for 3-6 hours. The tomato seedlings that had just grown the first true leaf were infected by vacuum injection, and the infection was carried out simultaneously with pTRV2/GV3101 as a control. The infected seedlings were placed at 21° C. under the condition of 16:8 (day:night) and cultured for 30 days. The degree of gene suppression was identified by the method of fluorescent quantitative PCR analysis, and the specific results are shown in Table 1.

表1VIGS后番茄植株中SlSLD基因的表达量Expression of SlSLD gene in tomato plants after table 1 VIGS

植株plant SlSLD基因的表达量<sup>*</sup>Expression of SlSLD gene<sup>*</sup> 植株1plant 1 0.00640.0064 植株2plant 2 0.00360.0036 植株3plant 3 0.00480.0048 植株4plant 4 0.00320.0032 植株5plant 5 0.00310.0031

注:*以对照组基因的表达量为1.Note: *The expression level of the gene in the control group was taken as 1.

实施例2:SlSLD基因沉默的植株(处理组)与对照组的低温胁迫试验Embodiment 2: the low temperature stress test of the plants (treatment group) and control group of SlSLD gene silencing

将SlSLD基因沉默的(处理组)和对照组的植株于4℃条件下胁迫处理,并拍照记录植株在低温环境中的表型变化。从图1可以看出,SlSLD基因沉默的和对照组的植株在低温处理6h时,叶片边缘都出现了卷曲,其中处理组的变化更为明显;在24h时,对照组仍保持6h时的状态,叶片出现轻微的卷曲,而处理组的植株整体都出现萎蔫,已经不能正常生长。The plants of the SlSLD gene silenced (treatment group) and the control group were subjected to stress treatment at 4°C, and the phenotypic changes of the plants in the low temperature environment were recorded by taking pictures. As can be seen from Figure 1, when the plants of the SlSLD gene silencer and the control group were treated at low temperature for 6 hours, curling appeared at the edge of the leaves, and the change in the treatment group was more obvious; at 24 hours, the control group still maintained the state at 6 hours , the leaves were slightly curled, while the whole plants of the treatment group were wilting and could not grow normally.

实施例3:低温胁迫试验后植株的生理指标测定Embodiment 3: Determination of physiological indexes of plants after low temperature stress test

测定经低温处理6h番茄叶片的生理指标,主要包括电导率、丙二醛含量可溶性多糖含量、超氧化物歧化酶活性、过氧化物酶活性和叶绿素含量。具体操作如下所示:The physiological indexes of tomato leaves treated with low temperature for 6 hours mainly included electrical conductivity, malondialdehyde content, soluble polysaccharide content, superoxide dismutase activity, peroxidase activity and chlorophyll content. The specific operation is as follows:

制备上清液制备,称取0.1g番茄叶片,加入2.5mL预冷的50mM磷酸缓冲盐溶液(pH7.0),于冰上研磨,匀浆液在4℃、4,000×g条件下离心10min,收集上清液,置于4℃冰箱,用于下面第2-5项指标的测定。Preparation of supernatant: Weigh 0.1 g of tomato leaves, add 2.5 mL of pre-cooled 50 mM phosphate buffered saline (pH 7.0), grind on ice, centrifuge the homogenate at 4°C, 4,000×g for 10 min, collect The supernatant was placed in a 4°C refrigerator for the determination of the following items 2-5.

1)电导率(Relative electrolytic leakage,REL)的测定1) Determination of conductivity (Relative electrolytic leakage, REL)

取0.05g经低温处理后对照组和处理组番茄的叶片,用双蒸水清洗叶片表面的电解质。将叶片置于含10mL双蒸水的离心管中,在室温浸泡22h,然后用导电率计(JingkeDDS-307A)测定,所得值为R1。将含番茄叶片的离心管于沸水中处理30min,然后等其降到室温后,用导电率计重新测定,所得值为R2。计算公式:电导率(REL)=R/R2×100%。Take 0.05 g of low-temperature-treated tomato leaves of the control group and the treatment group, and wash the electrolyte on the surface of the leaves with double distilled water. The leaves were placed in a centrifuge tube containing 10 mL of double-distilled water, soaked at room temperature for 22 hours, and then measured with a conductivity meter (JingkeDDS-307A), and the obtained value was R1. Treat the centrifuge tube containing the tomato leaves in boiling water for 30 minutes, then wait for it to drop to room temperature, and measure it again with a conductivity meter, and the obtained value is R2. Calculation formula: conductivity (REL) = R/R2 × 100%.

2)丙二醛(Malondialdehyde,MDA)含量的测定2) Determination of malondialdehyde (Malondialdehyde, MDA) content

采用硫代巴比妥法测定叶片中MDA的含量。取200μL的上清液置于1.5mL离心管,加入等体积的0.6%硫代巴比妥酸溶液,将混合物进行沸水浴30min。冷却后,于波长532nm、600nm和450nm下测吸光值。计算公式:MDA浓度(μmol/L)=6.45×(OD532-OD600)-0.56×OD450The content of MDA in the leaves was determined by the thiobarbital method. Take 200 μL of the supernatant and place it in a 1.5 mL centrifuge tube, add an equal volume of 0.6% thiobarbituric acid solution, and place the mixture in a boiling water bath for 30 min. After cooling, measure the absorbance at wavelengths of 532nm, 600nm and 450nm. Calculation formula: MDA concentration (μmol/L)=6.45×(OD 532 −OD 600 )−0.56×OD 450 .

3)可溶性多糖含量的测定3) Determination of soluble polysaccharide content

采用蒽酮比色法测定叶片中可溶性多糖的含量。取100μL的上清液置于1.5mL离心管,加入400μL含0.2%蒽酮的硫酸溶液。将混合物进行沸水浴5min。冷却后,于波长630nm下测吸光值,以葡萄糖绘制标准曲线。The content of soluble polysaccharides in leaves was determined by anthrone colorimetry. Take 100 μL of the supernatant and place it in a 1.5 mL centrifuge tube, add 400 μL of sulfuric acid solution containing 0.2% anthrone. The mixture was placed in a boiling water bath for 5min. After cooling, measure the absorbance at a wavelength of 630nm, and draw a standard curve with glucose.

4)超氧化物歧化酶(Superoxide dismutase,SOD)活性的测定4) Determination of superoxide dismutase (Superoxide dismutase, SOD) activity

采用碧云天WST-8试剂盒测定SOD的活性,具体操作步骤参照试剂盒所提供的说明书。Biyuntian WST-8 kit was used to measure the activity of SOD, and the specific operation steps refer to the instructions provided by the kit.

5)过氧化物酶(POD)活性的测定5) Determination of peroxidase (POD) activity

采用愈创木酚比色法测定POD的活性。取10μL上清液,加入190μL含0.12%H2O2和0.56%愈创木酚的混合液,于波长470nm下测吸光值,每隔1min读数一次,直至反应终止,以每分钟吸光值变化1为1个酶活性单位(U)。POD活性的单位是U/mg蛋白。The activity of POD was determined by guaiacol colorimetric method. Take 10 μL of supernatant, add 190 μL of a mixture containing 0.12% H 2 O 2 and 0.56% guaiacol, measure the absorbance at a wavelength of 470 nm, and read once every 1 min until the reaction is terminated, and the change in absorbance per minute 1 is 1 enzyme activity unit (U). The unit of POD activity is U/mg protein.

6)叶绿素含量的测定6) Determination of chlorophyll content

称取0.02g番茄叶片,用2mL 80%的丙酮于黑暗处过夜浸泡,在8,000×g条件下离心10min,收集上清液。于波长647nm和665nm下测吸光值。计算公式:叶绿素浓度(mg/g)=(17.90×OD647+8.08×OD665)×浸泡液体积(ml)/1000/鲜重(g)。Weigh 0.02 g of tomato leaves, soak them in 2 mL of 80% acetone overnight in the dark, centrifuge at 8,000×g for 10 min, and collect the supernatant. Absorbance was measured at wavelengths of 647nm and 665nm. Calculation formula: chlorophyll concentration (mg/g)=(17.90×OD 647 +8.08×OD 665 )×volume of soaking solution (ml)/1000/fresh weight (g).

从表2可以看出,相比于对照组的植株,SlSLD基因沉默的植株抗冷能力明显减弱。处理组的电导率高于对照组,说明该基因表达量的抑制会导致番茄植株在低温条件下受胁迫的程度加重。丙二醛的含量也是处理组高于对照组,而超氧化物歧化酶和过氧化物酶的活性确是对照组更高。另外,番茄叶片的叶绿素含量是SlSLD基因沉默的植株低于对照组。因此,通过冷胁迫实验表明,SlSLD基因的沉默会减弱番茄的抗冷害能力。It can be seen from Table 2 that compared with the plants of the control group, the cold resistance ability of the plants silenced by the SlSLD gene was significantly weakened. The electrical conductivity of the treatment group was higher than that of the control group, indicating that the suppression of the expression of this gene would lead to aggravation of the stress of tomato plants under low temperature conditions. The content of malondialdehyde was also higher in the treatment group than in the control group, while the activities of superoxide dismutase and peroxidase were indeed higher in the control group. In addition, the chlorophyll content of tomato leaves was lower than that of the control group in the SlSLD gene silenced plants. Therefore, cold stress experiments showed that the silencing of SlSLD gene would weaken the ability of tomato to resist cold stress.

表2低温胁迫后番茄叶片的生理指标Table 2 Physiological indicators of tomato leaves after low temperature stress

生理指标Physiological indicators 对照组control group 处理组treatment group 电导率(%)Conductivity (%) 45.64±5.55<sup>*</sup>45.64±5.55<sup>*</sup> 71.47±4.0971.47±4.09 丙二醛浓度(μmol/g鲜重)MDA concentration (μmol/g fresh weight) 6.23±0.31<sup>*</sup>6.23±0.31<sup>*</sup> 7.41±0.337.41±0.33 可溶性多糖含量(mg/0.1g鲜重)Soluble polysaccharide content (mg/0.1g fresh weight) 3.24±0.28<sup>*</sup>3.24±0.28<sup>*</sup> 2.28±0.262.28±0.26 超氧化物歧化酶活性(U/mg蛋白)SOD activity (U/mg protein) 0.30±0.06<sup>*</sup>0.30±0.06<sup>*</sup> 0.20±0.060.20±0.06 过氧化物酶活性(U/mg蛋白)Peroxidase activity (U/mg protein) 2.51±0.41<sup>*</sup>2.51±0.41<sup>*</sup> 1.12±0.281.12±0.28 叶绿素(mg/g鲜重)Chlorophyll (mg/g fresh weight) 3.18±0.20<sup>*</sup>3.18±0.20<sup>*</sup> 2.24±0.312.24±0.31

注:*表示对照组与处理组有显著性的差异,p≤0.05。Note: * indicates that there is a significant difference between the control group and the treatment group, p≤0.05.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 中国科学院华南植物园<110> South China Botanical Garden, Chinese Academy of Sciences

<120> 一种番茄抗冷害基因及应用<120> A Tomato Chilling Damage Resistance Gene and Its Application

<130><130>

<160> 2<160> 2

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1344<211> 1344

<212> DNA<212> DNA

<213> 番茄(Solanum lycopersicum cv. Micro-Tom)<213> Tomato (Solanum lycopersicum cv. Micro-Tom)

<400> 1<400> 1

atggcagatt caagaaagta catttctagt gaggaactga agaatcacaa caaaccaggg 60atggcagatt caagaaagta catttctagt gaggaactga agaatcacaa caaaccaggg 60

gatctgtgga tatccattca gggtaaggtg tatgatgtat cagattgggt gaaggaacat 120gatctgtgga tatccattca gggtaaggtg tatgatgtat cagattgggt gaaggaacat 120

cctggtggtg atttcccact gttaaatctt gctggacagg atgttactga tgcatttgtt 180cctggtggtg atttcccact gttaaatctt gctggacagg atgttactga tgcatttgtt 180

gcatttcatc ctgctactgc ttggaagtat cttgacaagt tctttaaggg gttttacctc 240gcatttcatc ctgctactgc ttggaagtat cttgacaagt tctttaaggg gttttacctc 240

aaggattatt ctgtttctga ggtatctacg gattatagaa ggcttgtgtc tgagttcact 300aaggattatt ctgtttctga ggtatctacg gattatagaa ggcttgtgtc tgagttcact 300

aaaatggggt tgtttgaaaa gaaaggccat gtttgtttat tcaccatgtt cttaatgaca 360aaaatggggt tgtttgaaaa gaaaggccat gtttgtttat tcaccatgtt cttaatgaca 360

atgttgtttt ccttaagtgt ttatggaatc ttgtattgtc atggtgtgtt ggcacatttg 420atgttgtttt ccttaagtgt ttatggaatc ttgtattgtc atggtgtgtt ggcacatttg 420

ataagtggtg ccttgatggg gtgtctttgg attcagagtg ggtggattgg tcatgattca 480ataagtggtg ccttgatggg gtgtctttgg attcagagtg ggtggattgg tcatgattca 480

gggcattatc aggtgatgag cactcgcgga ttcaacagat ttgctcaagt ccttactggg 540gggcattatc aggtgatgag cactcgcgga ttcaacagat ttgctcaagt ccttactggg 540

aattgccttg ctggaatcag cattgcttgg tggaagtgga accacaatgc tcaccacatt 600aattgccttg ctggaatcag cattgcttgg tggaagtgga accacaatgc tcaccacatt 600

gcctgcaaca gtcttgaata tgaccctgat cttcaacaca tgccattctt tgtggtatct 660gcctgcaaca gtcttgaata tgaccctgat cttcaacaca tgccattctt tgtggtatct 660

tccaagtttt tcgactcact cacttcttat ttttacgata ggaagatgaa ttttgattct 720tccaagtttt tcgactcact cacttcttat ttttacgata ggaagatgaa ttttgattct 720

tttactagat tcttggttag tcatcaacat tggacatttt atcctgttat gtgttttgct 780tttactagat tcttggttag tcatcaacat tggacatttt atcctgttat gtgttttgct 780

agaatcaatt tgtttgctca gtcattcata ttgttgttat ccaacaaaaa tgtgccccat 840agaatcaatt tgtttgctca gtcattcata ttgttgttat ccaacaaaaa tgtgccccat 840

cgagttcagg agcttttggg ggtggtttct ttctggattt ggtatccgtt gcttgtttct 900cgagttcagg agcttttggg ggtggtttct ttctggattt ggtatccgtt gcttgtttct 900

ttcttgccaa actggggcga aagaattata tttgttcttg ctagtttcac agtgactgga 960ttcttgccaa actggggcga aagaattata tttgttcttg ctagtttcac agtgactgga 960

attcagcatg ttcaattctg tttaaaccat ttctcatctg aaatttatgt tgcaccacct 1020attcagcatg ttcaattctg tttaaaccat ttctcatctg aaatttatgt tgcaccacct 1020

aaaggaaatg attggtttga gaagcaaact aatggctctc tcgacatatc atgccctagt 1080aaaggaaatg attggtttga gaagcaaact aatggctctc tcgacatatc atgccctagt 1080

tggatggatt ggtttcatgg tggattgcag tttcagattg agcatcattt gtttcctaga 1140tggatggatt ggtttcatgg tggattgcag tttcagattg agcatcattt gtttcctaga 1140

ttaccaagat gccaactgag gaaagtctct ccctttgtga aagacctctg taaaaagcat 1200ttaccaagat gccaactgag gaaagtctct ccctttgtga aagacctctg taaaaagcat 1200

ggtttgcctt acagttgtgt ctccttctgg aagtctaatg ttttgaccat cagcaccctc 1260ggtttgcctt acagttgtgt ctccttctgg aagtctaatg ttttgaccat cagcaccctc 1260

agagctgcag ctttgcaggc tcgggattta actaagcctg ttccaaaaaa tctagtttgg 1320agagctgcag ctttgcaggc tcgggatta actaagcctg ttccaaaaaa tctagtttgg 1320

gaagccgtca acactcacgg ttga 1344gaagccgtca acactcacgg ttga 1344

<210> 2<210> 2

<211> 447<211> 447

<212> PRT<212> PRT

<213> 番茄(Solanum lycopersicum cv. Micro-Tom)<213> Tomato (Solanum lycopersicum cv. Micro-Tom)

<400> 2<400> 2

Met Ala Asp Ser Arg Lys Tyr Ile Ser Ser Glu Glu Leu Lys Asn HisMet Ala Asp Ser Arg Lys Tyr Ile Ser Ser Glu Glu Leu Lys Asn His

1 5 10 151 5 10 15

Asn Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Val Tyr AspAsn Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Val Tyr Asp

20 25 30 20 25 30

Val Ser Asp Trp Val Lys Glu His Pro Gly Gly Asp Phe Pro Leu LeuVal Ser Asp Trp Val Lys Glu His Pro Gly Gly Asp Phe Pro Leu Leu

35 40 45 35 40 45

Asn Leu Ala Gly Gln Asp Val Thr Asp Ala Phe Val Ala Phe His ProAsn Leu Ala Gly Gln Asp Val Thr Asp Ala Phe Val Ala Phe His Pro

50 55 60 50 55 60

Ala Thr Ala Trp Lys Tyr Leu Asp Lys Phe Phe Lys Gly Phe Tyr LeuAla Thr Ala Trp Lys Tyr Leu Asp Lys Phe Phe Lys Gly Phe Tyr Leu

65 70 75 8065 70 75 80

Lys Asp Tyr Ser Val Ser Glu Val Ser Thr Asp Tyr Arg Arg Leu ValLys Asp Tyr Ser Val Ser Glu Val Ser Thr Asp Tyr Arg Arg Leu Val

85 90 95 85 90 95

Ser Glu Phe Thr Lys Met Gly Leu Phe Glu Lys Lys Gly His Val CysSer Glu Phe Thr Lys Met Gly Leu Phe Glu Lys Lys Gly His Val Cys

100 105 110 100 105 110

Leu Phe Thr Met Phe Leu Met Thr Met Leu Phe Ser Leu Ser Val TyrLeu Phe Thr Met Phe Leu Met Thr Met Leu Phe Ser Leu Ser Val Tyr

115 120 125 115 120 125

Gly Ile Leu Tyr Cys His Gly Val Leu Ala His Leu Ile Ser Gly AlaGly Ile Leu Tyr Cys His Gly Val Leu Ala His Leu Ile Ser Gly Ala

130 135 140 130 135 140

Leu Met Gly Cys Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp SerLeu Met Gly Cys Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp Ser

145 150 155 160145 150 155 160

Gly His Tyr Gln Val Met Ser Thr Arg Gly Phe Asn Arg Phe Ala GlnGly His Tyr Gln Val Met Ser Thr Arg Gly Phe Asn Arg Phe Ala Gln

165 170 175 165 170 175

Val Leu Thr Gly Asn Cys Leu Ala Gly Ile Ser Ile Ala Trp Trp LysVal Leu Thr Gly Asn Cys Leu Ala Gly Ile Ser Ile Ala Trp Trp Lys

180 185 190 180 185 190

Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr AspTrp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr Asp

195 200 205 195 200 205

Pro Asp Leu Gln His Met Pro Phe Phe Val Val Ser Ser Lys Phe PhePro Asp Leu Gln His Met Pro Phe Phe Val Val Ser Ser Lys Phe Phe

210 215 220 210 215 220

Asp Ser Leu Thr Ser Tyr Phe Tyr Asp Arg Lys Met Asn Phe Asp SerAsp Ser Leu Thr Ser Tyr Phe Tyr Asp Arg Lys Met Asn Phe Asp Ser

225 230 235 240225 230 235 240

Phe Thr Arg Phe Leu Val Ser His Gln His Trp Thr Phe Tyr Pro ValPhe Thr Arg Phe Leu Val Ser His Gln His Trp Thr Phe Tyr Pro Val

245 250 255 245 250 255

Met Cys Phe Ala Arg Ile Asn Leu Phe Ala Gln Ser Phe Ile Leu LeuMet Cys Phe Ala Arg Ile Asn Leu Phe Ala Gln Ser Phe Ile Leu Leu

260 265 270 260 265 270

Leu Ser Asn Lys Asn Val Pro His Arg Val Gln Glu Leu Leu Gly ValLeu Ser Asn Lys Asn Val Pro His Arg Val Gln Glu Leu Leu Gly Val

275 280 285 275 280 285

Val Ser Phe Trp Ile Trp Tyr Pro Leu Leu Val Ser Phe Leu Pro AsnVal Ser Phe Trp Ile Trp Tyr Pro Leu Leu Val Ser Phe Leu Pro Asn

290 295 300 290 295 300

Trp Gly Glu Arg Ile Ile Phe Val Leu Ala Ser Phe Thr Val Thr GlyTrp Gly Glu Arg Ile Ile Phe Val Leu Ala Ser Phe Thr Val Thr Gly

305 310 315 320305 310 315 320

Ile Gln His Val Gln Phe Cys Leu Asn His Phe Ser Ser Glu Ile TyrIle Gln His Val Gln Phe Cys Leu Asn His Phe Ser Ser Glu Ile Tyr

325 330 335 325 330 335

Val Ala Pro Pro Lys Gly Asn Asp Trp Phe Glu Lys Gln Thr Asn GlyVal Ala Pro Pro Lys Gly Asn Asp Trp Phe Glu Lys Gln Thr Asn Gly

340 345 350 340 345 350

Ser Leu Asp Ile Ser Cys Pro Ser Trp Met Asp Trp Phe His Gly GlySer Leu Asp Ile Ser Cys Pro Ser Trp Met Asp Trp Phe His Gly Gly

355 360 365 355 360 365

Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Arg Leu Pro Arg CysLeu Gln Phe Gln Ile Glu His His Leu Phe Pro Arg Leu Pro Arg Cys

370 375 380 370 375 380

Gln Leu Arg Lys Val Ser Pro Phe Val Lys Asp Leu Cys Lys Lys HisGln Leu Arg Lys Val Ser Pro Phe Val Lys Asp Leu Cys Lys Lys Lys His

385 390 395 400385 390 395 400

Gly Leu Pro Tyr Ser Cys Val Ser Phe Trp Lys Ser Asn Val Leu ThrGly Leu Pro Tyr Ser Cys Val Ser Phe Trp Lys Ser Asn Val Leu Thr

405 410 415 405 410 415

Ile Ser Thr Leu Arg Ala Ala Ala Leu Gln Ala Arg Asp Leu Thr LysIle Ser Thr Leu Arg Ala Ala Ala Leu Gln Ala Arg Asp Leu Thr Lys

420 425 430 420 425 430

Pro Val Pro Lys Asn Leu Val Trp Glu Ala Val Asn Thr His GlyPro Val Pro Lys Asn Leu Val Trp Glu Ala Val Asn Thr His Gly

435 440 445 435 440 445

Claims (1)

1. tomato △8Application of the sphingomyelins dehydrogenase gene in cold-resistant tomato plant breeding, the tomato △8Sphingomyelins is de- The nucleotide sequence of hydrogenase gene is as shown in SEQ ID NO.1.
CN201611085754.7A 2016-12-01 2016-12-01 A kind of tomato Inappropriate ADH syndrome gene and application Active CN106754769B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611085754.7A CN106754769B (en) 2016-12-01 2016-12-01 A kind of tomato Inappropriate ADH syndrome gene and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611085754.7A CN106754769B (en) 2016-12-01 2016-12-01 A kind of tomato Inappropriate ADH syndrome gene and application

Publications (2)

Publication Number Publication Date
CN106754769A CN106754769A (en) 2017-05-31
CN106754769B true CN106754769B (en) 2019-08-23

Family

ID=58914082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611085754.7A Active CN106754769B (en) 2016-12-01 2016-12-01 A kind of tomato Inappropriate ADH syndrome gene and application

Country Status (1)

Country Link
CN (1) CN106754769B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504686B (en) * 2018-11-19 2020-04-14 浙江大学 Application of tomato SlCaM6 gene in improving low temperature resistance
CN113151299B (en) * 2021-04-22 2022-05-24 沈阳农业大学 A gene for improving low temperature tolerance of tomato plants and its application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000593A3 (en) * 1998-06-27 2000-08-10 Gvs Ges Fuer Erwerb Und Verwer Sphingolipid-desaturase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000593A3 (en) * 1998-06-27 2000-08-10 Gvs Ges Fuer Erwerb Und Verwer Sphingolipid-desaturase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Three homologous genes encoding functional D8-sphingolipid desaturase in Populus tomentosa;Shu-Fen Li等;《Genes Genom》;20140101;第36卷;第293-301页 *
登录号:XM_004245045.3;佚名;《Genbank》;20161122;第245-1588位 *

Also Published As

Publication number Publication date
CN106754769A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN109652392B (en) A kind of ferulic acid esterase and its preparation method and application
Han et al. Molecular cloning and functional analysis of MbWRKY3 involved in improved drought tolerance in transformed tobacco
CN101633916A (en) Superoxide dismutase and preparation method thereof
CN111748562B (en) A gene encoding protein of rice sheath blight Atg 22 and its target fragment Rsatg22 and its application
CN114921474B (en) A BpbHLH10 gene and its encoded protein that improve the salt tolerance of birch
CN108165515A (en) A kind of blue multicopper oxidase recombinase of degradable biological amine
CN105861517A (en) Panax notoginseng antimicrobial peptide gene PnSN1 and application thereof
CN109957555A (en) A glycosyltransferase mutant and its application in catalyzing the biosynthesis of gastrodin
CN106754769B (en) A kind of tomato Inappropriate ADH syndrome gene and application
Shao et al. Isolation and expression studies of the ERD15 gene involved in drought-stressed responses
CN103898130A (en) Cloning of mulberry resveratrol synthase gene and construction of plant expression vector
CN116410283A (en) Application of plum PsERF1B protein and its coding gene in regulating plant anthocyanin synthesis
CN116286864A (en) Cadmium-resistant gene IlDTX49 of Iris irica, and encoding protein and application thereof
CN111454972A (en) The cold resistance gene PtrBADH of Citrus aurantium and its application in genetic improvement of plant cold resistance
CN105925593B (en) A kind of tonoplast hydrogen ion pyrophosphatase gene AlVP1, its encoded protein and its application
CN104450632A (en) Amino acid sequence capable of improving heat-resistance temperature and heat stability of SOD and application thereof
CN1328383C (en) Wild rice drought-resisting gene and its coded protein and application
CN117645658A (en) Birch BpMYB86 protein, and coding gene and application thereof
CN115073573B (en) Sweet potato stress resistance related protein IbNAC087 and its coding gene and application
CN114369616B (en) Application of tomato SISPS gene in improving high temperature resistance of plants
Pi et al. Allene oxide cyclase from Camptotheca acuminata improves tolerance against low temperature and salt stress in tobacco and bacteria
CN117384264A (en) Application of a grape transcription factor VvMYB108, its encoding gene and recombinant vector in improving plant cold resistance
CN115125257A (en) Application of rice A9IP2 gene in improving rice blast resistance
CN103421749A (en) cotton polyamine oxidase GhPAO2 gene and application thereof
CN114507674A (en) Application of tea tree circadian rhythm gene LUX in improving cold resistance of plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant