[go: up one dir, main page]

CN106754466A - It is a kind of for efficient exogenous protein expression and the bacillus subtilis of High Density Cultivation - Google Patents

It is a kind of for efficient exogenous protein expression and the bacillus subtilis of High Density Cultivation Download PDF

Info

Publication number
CN106754466A
CN106754466A CN201611025858.9A CN201611025858A CN106754466A CN 106754466 A CN106754466 A CN 106754466A CN 201611025858 A CN201611025858 A CN 201611025858A CN 106754466 A CN106754466 A CN 106754466A
Authority
CN
China
Prior art keywords
bacillus subtilis
cgtase
culture
subtilis
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611025858.9A
Other languages
Chinese (zh)
Inventor
吴敬
张康
宿玲恰
黄燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201611025858.9A priority Critical patent/CN106754466A/en
Publication of CN106754466A publication Critical patent/CN106754466A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1074Cyclomaltodextrin glucanotransferase (2.4.1.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2417Alpha-amylase (3.2.1.1.) from microbiological source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01019Cyclomaltodextrin glucanotransferase (2.4.1.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21062Subtilisin (3.4.21.62)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种用于高效外源蛋白表达和高密度培养的枯草芽孢杆菌,属于生物工程技术领域。本发明采用筛选分离的方法从土壤中获得一株蛋白表达量高的枯草芽孢杆菌,并敲除其六个基因srfC、spoIIAC、amyE、nprE、aprE和bamA,得到B.subtilis WS5,保藏号为CCTCC M 2016536。以枯草芽孢杆菌WS5为表达宿主,构建β‑CGTase基因工程菌。对β‑CGTase基因工程菌进行3L发酵罐培养,在发酵过程中产生的泡沫明显减少,镜鉴未检测到芽孢的产生,培养过程中胞外淀粉酶和蛋白酶几乎没有,发酵培养70h时β‑CGTase酶活达到270U/ml,DCW达到70g/L。The invention discloses a bacillus subtilis used for high-efficiency exogenous protein expression and high-density cultivation, and belongs to the technical field of bioengineering. The present invention adopts the method of screening and separation to obtain a strain of Bacillus subtilis with high protein expression from the soil, and knocks out its six genes srfC, spoIIAC, amyE, nprE, aprE and bamA to obtain B. subtilis WS5, and the preservation number is CCTCC M 2016536. Bacillus subtilis WS5 was used as the expression host to construct β‑CGTase genetically engineered bacteria. The β-CGTase genetically engineered bacteria were cultured in a 3L fermenter, the foam produced during the fermentation process was significantly reduced, no spores were detected in the microscope, and there were almost no extracellular amylases and proteases during the culture process. CGTase enzyme activity reached 270U/ml, DCW reached 70g/L.

Description

一种用于高效外源蛋白表达和高密度培养的枯草芽孢杆菌A Bacillus subtilis for high-efficiency foreign protein expression and high-density culture

技术领域technical field

本发明涉及一种用于高效外源蛋白表达和高密度培养的枯草芽孢杆菌,属于生物工程技术领域。The invention relates to a bacillus subtilis used for high-efficiency exogenous protein expression and high-density culture, and belongs to the technical field of bioengineering.

背景技术Background technique

枯草芽孢杆菌(Bacillus subtilis)属于革兰氏阳性菌,因其易于分离培养,具有较清晰的遗传背景和良好的分泌性,又无致病性等特点,已成为重要的工业菌种,被越来越多的用于生产抗生素、药物蛋白和工业酶制剂等。B.subtilis 168是一种实验室模式菌株,包含有许多突变。工业上使用的菌株如B.subtilis WB600和B.subtilis WB800都是来源于B.subtilis 168,而B.subtilis 168是通过一系列诱变筛选得到的,相比野生菌株在某些基因上存在突变。目前报道的上述模式菌株的发酵培养都不能达到较高菌体密度,并且模式菌株相对于某些野生菌株的外源蛋白表达量低一些。枯草芽孢杆菌在发酵过程中会产生表面活性素(surfactin),表面活性素是一种两性分子,它在液体表面的聚集会造成泡沫的产生。Bacillus subtilis (Bacillus subtilis) is a Gram-positive bacterium, because it is easy to isolate and culture, has a relatively clear genetic background, good secretion, and no pathogenicity, it has become an important industrial strain and is more and more popular. It is increasingly used in the production of antibiotics, pharmaceutical proteins and industrial enzyme preparations. B. subtilis 168 is a laboratory type strain containing many mutations. Industrially used strains such as B. subtilis WB600 and B. subtilis WB800 are all derived from B. subtilis 168, and B. subtilis 168 is obtained through a series of mutagenesis screening, and there are mutations in some genes compared to wild strains . The fermentation culture of the above-mentioned model strains reported so far cannot reach a higher cell density, and the expression of foreign proteins of the model strains is lower than that of some wild strains. Bacillus subtilis produces surfactin during the fermentation process. Surfactin is an amphiphilic molecule whose aggregation on the surface of the liquid causes foaming.

细菌长期生活在充满噬菌体或者其它病毒的自然环境中,进化出了多种防御系统,CRISPR/CAS系统就是其中之一,比较常见的是Ⅱ型CRISPR-CAS获得性免疫系统(Streptococcuspyogenes和S.thermophilus),当噬菌体入侵时,其基因组上的原间隔序列(postospacer)作为新的间隔序列插入到宿主细胞CRISPR序列的起始序列之后,作为第一个间隔序列;当该噬菌体再次入侵时,细菌的CRISPR序列转录产生一条长链RNA,即crRNA前体(pre-crRNA),随后Cas蛋白复合体在tracrRNA(trans-activating crRNA)的协助下剪切产生成熟体crRNAs,最后tracrRNA-crRNA-Cas9复合体识别并剪切与crRNA互补的位点。现在通常设计1个sgRNA(small guide RNA)来代替trancrRNA-crRNA引导Cas9蛋白。Bacteria live in a natural environment full of phages or other viruses for a long time, and have evolved a variety of defense systems, CRISPR/CAS system is one of them, the more common type II CRISPR-CAS acquired immune system (Streptococcuspyogenes and S.thermophilus ), when the phage invades, the original spacer sequence (postospacer) on its genome is inserted as a new spacer sequence after the initiation sequence of the host cell CRISPR sequence, as the first spacer sequence; when the phage invades again, the bacterial The CRISPR sequence is transcribed to produce a long chain of RNA, that is, the crRNA precursor (pre-crRNA), and then the Cas protein complex is cleaved with the assistance of tracrRNA (trans-activating crRNA) to produce mature crRNAs, and finally the tracrRNA-crRNA-Cas9 complex Recognizes and cleaves the site complementary to crRNA. Now usually design 1 sgRNA (small guide RNA) to replace trancrRNA-crRNA to guide Cas9 protein.

当把sgRNA和Cas9基因表达质粒转化枯草芽孢杆菌后,sgRNA通过靶序列与基因对应的互补序列配对,sgRNA中的其他序列则形成茎环结构,此结构能为Cas9所识别,然后在PAM(Protospacer-Adjacent Motif)序列上游2-3碱基间将靶基因的DNA双链切断。断裂的双链DNA在有同源修复模板的情况下可以通过HDR(homology-directed repair)途径进行准确的基因组重组。若断裂发生在编码区内,并且修复模板在断裂处插入几个碱基(非3的倍数),就会导致修复后的基因阅读框码组移动(frameshift),造成编码区提前出现终止密码子。When the sgRNA and the Cas9 gene expression plasmid are transformed into Bacillus subtilis, the sgRNA is paired with the complementary sequence corresponding to the gene through the target sequence, and other sequences in the sgRNA form a stem-loop structure, which can be recognized by Cas9, and then the PAM (Protospacer -Adjacent Motif) cuts the DNA double strand of the target gene between 2-3 bases upstream of the sequence. The broken double-strand DNA can undergo accurate genome recombination through the HDR (homology-directed repair) pathway when there is a homologous repair template. If the break occurs in the coding region, and the repair template inserts a few bases (not a multiple of 3) at the break, it will cause the frame shift of the repaired gene reading frame, resulting in the early appearance of a stop codon in the coding region .

发明内容Contents of the invention

本发明的目的首先在于提供一株可用于高效表达外源蛋白和高密度培养的枯草芽孢杆菌(Bacillus subtilis)WS5。The purpose of the present invention is firstly to provide a strain of Bacillus subtilis (Bacillus subtilis) WS5 which can be used for high-efficiency expression of foreign protein and high-density culture.

所述枯草芽孢杆菌WS5于2016年9月29日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 2016536,保藏地址为中国武汉武汉大学。The Bacillus subtilis WS5 was deposited in the China Center for Type Culture Collection on September 29, 2016, with the preservation number CCTCC NO:M 2016536, and the preservation address is Wuhan University, Wuhan, China.

所述枯草芽孢杆菌WS5是利用CRISPR/Cas9基因编辑系统敲除了枯草芽孢杆菌WS的srfC、spoIIAC、amyE、nprE、aprE和bamA这6个基因。减少了发酵过程泡沫、芽孢、胞外淀粉酶和蛋白酶的产生。The Bacillus subtilis WS5 uses the CRISPR/Cas9 gene editing system to knock out the six genes of srfC, spoIIAC, amyE, nprE, aprE and bamA of the Bacillus subtilis WS. The production of foam, spores, extracellular amylase and protease during fermentation is reduced.

所述枯草芽孢杆菌WS5的蛋白表达量高达0.8mg/ml的菌株,比现有模式菌株的0.2-0.5mg/ml的表达量高。对培养基利用率高,具有良好的蛋白分泌能力,可以进行高密度发酵培养。The Bacillus subtilis WS5 strain has a protein expression level as high as 0.8 mg/ml, which is higher than the 0.2-0.5 mg/ml expression level of the existing model strains. It has high utilization rate of the medium, has good protein secretion ability, and can carry out high-density fermentation culture.

本发明还提供一种重组表达β-CGTase的重组枯草芽孢杆菌,是将B.circulans来源的β-CGTase基因克隆到PHY300PLK载体,以B.subtilis WS5为表达宿主,实现了β-CGTase的高效表达。The present invention also provides a recombinant Bacillus subtilis for recombinantly expressing β-CGTase, in which the β-CGTase gene derived from B.circulans is cloned into the PHY300PLK vector, and B.subtilis WS5 is used as the expression host to realize high-efficiency expression of β-CGTase .

本发明还提供应用所述的重组枯草芽孢杆菌发酵生产β-CGTase的方法,是将种子培养液接入装液量为0.9L的3L发酵罐,以25%氨水控制pH 7,培养温度30℃,通过与搅拌转速偶联和调节通气量将溶氧维持在30%左右,当溶氧迅速上升,开始流加浓度为50%的葡萄糖补料液,当β-CGTase酶活下降时结束培养。The present invention also provides a method for fermenting and producing β-CGTase by using the recombinant Bacillus subtilis, which is to connect the seed culture solution into a 3L fermenter with a liquid volume of 0.9L, control the pH to 7 with 25% ammonia water, and cultivate at a temperature of 30°C , maintain the dissolved oxygen at about 30% by coupling with the stirring speed and adjusting the ventilation rate. When the dissolved oxygen rises rapidly, start to feed the glucose feed solution with a concentration of 50%, and end the culture when the β-CGTase enzyme activity decreases.

所述发酵培养基:硫酸钙0.939g/L,硫酸镁7.27g/L,氢氧化钾4.13g/L,硫酸钾18.2g/L,玉米浆30g/L,磷酸26.7ml/L,葡萄糖5g/L,金属离子PTM溶液5ml/L;金属离子PTM溶液的组成:CuSO4·5H2O 6g/L,KI 0.08g/L,MnSO4·H2O 0.5g/L,Na2MoO3·2H2O 0.2g/L,H3BO3 0.02g/L,CoCl2 0.5g/L,ZnCl2 20g/L,FeSO4·7H2O 65g/L,生物素0.2g/L,H2SO45.0g/L。Described fermentation medium: calcium sulfate 0.939g/L, magnesium sulfate 7.27g/L, potassium hydroxide 4.13g/L, potassium sulfate 18.2g/L, corn steep liquor 30g/L, phosphoric acid 26.7ml/L, glucose 5g/L L, metal ion PTM solution 5ml/L; composition of metal ion PTM solution: CuSO 4 ·5H 2 O 6g/L, KI 0.08g/L, MnSO 4 ·H 2 O 0.5g/L, Na 2 MoO 3 ·2H 2 O 0.2g/L, H 3 BO 3 0.02g/L, CoCl 2 0.5g/L, ZnCl 2 20g/L, FeSO 4 7H 2 O 65g/L, biotin 0.2g/L, H 2 SO 4 5.0g/L.

应用所述构建好的重组枯草芽孢杆菌进行3L发酵罐培养,在发酵过程中,以B.subtilis WS5为宿主的β-CGTase基因工程菌产生的泡沫明显减少了,在发酵后期菌体浓度很高并且营养缺乏的情况下镜鉴未检测到芽孢的产生。分别用淀粉酶筛选板和蛋白酶筛选板对发酵液上清中胞外淀粉酶和蛋白酶进行检测,培养24h所得平板几乎没有透明圈,证明B.subtilis WS5培养过程中胞外淀粉酶和蛋白酶几乎没有。发酵培养70h时β-CGTase酶活达到270U/ml(1.2mg/ml),DCW达到70g/L,表明B.subtilis WS5可以进行高密度培养并且高效地表达外源蛋白,具有很高的工业应用价值。Apply the constructed recombinant Bacillus subtilis to carry out 3L fermenter culture, during the fermentation process, the foam produced by the β-CGTase genetically engineered bacteria with B.subtilis WS5 as the host is significantly reduced, and the bacterial cell concentration is very high in the late stage of fermentation And in the case of nutrient deficiency, no spores were detected in the microscope. Use amylase screening plate and protease screening plate to detect extracellular amylase and protease in the supernatant of the fermentation broth, and there is almost no transparent circle on the plate obtained after culturing for 24 hours, which proves that there is almost no extracellular amylase and protease in the culture process of B. subtilis WS5 . β-CGTase activity reached 270U/ml (1.2mg/ml) and DCW reached 70g/L when fermented for 70 hours, indicating that B. subtilis WS5 can be cultured at high density and express foreign proteins efficiently, which has high industrial application value.

生物材料保藏biological material deposit

枯草芽孢杆菌(Bacillus subtilis)WS5,于2016年9月29日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 2016536,保藏地址为中国武汉武汉大学。Bacillus subtilis WS5 was deposited in the China Center for Type Culture Collection on September 29, 2016, with the preservation number CCTCC NO:M 2016536, and the preservation address is Wuhan University, Wuhan, China.

附图说明Description of drawings

图1:镜鉴检测芽孢,(a)未敲除spoIIAC,(b)敲除spoIIAC。Figure 1: Microscopic examination of spores, (a) without knockout of spoIIAC, (b) knockout of spoIIAC.

图2:淀粉酶和蛋白酶透明圈,(a)未敲除任何基因、敲除nprE、敲除nprE与aprE,(b)敲除amyE。Figure 2: Transparent circles of amylase and protease, (a) no gene knockout, nprE knockout, nprE and aprE knockout, (b) amyE knockout.

图3:β-CGTase基因工程菌培养70h SDS-PAGE图Figure 3: SDS-PAGE diagram of β-CGTase genetically engineered bacteria cultured for 70 hours

具体实施方式detailed description

SEQ ID NO:1:β-CGTase基因序列SEQ ID NO:1: β-CGTase gene sequence

实施例1:从采集的土样中筛选蛋白表达量高的菌株Example 1: Screening strains with high protein expression from collected soil samples

将从不同地区的不同地点(垃圾场,淀粉厂,菜市场,食品厂,粮食加工厂,酒店等地)采集的土壤,取2g土样与9ml无菌水混合,加玻璃珠振荡摇匀后静置片刻,取5ml上清液加入到LB培养基中,25℃-37℃、200r/min振荡培养2d-3d;二、取10ml培养液加到另一新鲜LB培养基中继续振荡培养,重复此操作两次后,涂布在LB固态平板上。25℃-37℃倒置培养2-3d,可观察到单个菌落并筛选生长状况良好的菌株;三、通过高通量将单个菌落挑选接种至装有LB种子培养基的浅孔板中,37℃、200r/min振荡培养过夜。然后按5%的接种量将液体菌种接入装有TB发酵培养基的深孔板中,置于26℃-33℃,200r/min振荡培养培养2-3d,然后在酶标板上利用考马斯亮蓝检测法测得发酵液上清中的蛋白含量,初步筛选到蛋白表达量高的菌株;四、将上述初筛所得蛋白表达量较高的菌株接种到装有10ml LB培养基的三角瓶中,37℃、200r/min振荡培养过夜,然后按5%的接种量将液体菌种接入装有50ml TB产酶培养基的三角瓶中,置于26℃-33℃,200r/min振荡培养培养2-3d,然后在15ml磨口试管中利用考马斯亮蓝检测法测得发酵液上清中的蛋白含量,复筛得到一株蛋白表达量高达0.8mg/ml的菌株,比现有模式菌株表达量高(0.2-0.5mg/ml),经形态学和16sRNA鉴定为枯草芽孢杆菌,分类命名为B.subtilis WS。Take soil collected from different locations in different regions (garbage dumps, starch factories, vegetable markets, food factories, grain processing factories, hotels, etc.), mix 2g of soil samples with 9ml of sterile water, add glass beads and shake well Stand still for a while, take 5ml of supernatant and add it to LB medium, 25°C-37°C, 200r/min shaking culture for 2d-3d; 2. Take 10ml of culture solution and add it to another fresh LB medium to continue shaking culture, After repeating this operation twice, it was coated on LB solid flat plate. Inverted culture at 25°C-37°C for 2-3 days, a single colony can be observed and strains with good growth conditions can be screened; 3. Select and inoculate a single colony into a shallow well plate containing LB seed medium through high-throughput, 37°C , 200r/min shaking culture overnight. Then, according to the inoculum amount of 5%, the liquid strains were inserted into the deep-well plate equipped with TB fermentation medium, placed at 26°C-33°C, 200r/min shaking culture for 2-3d, and then used on the enzyme label plate The protein content in the supernatant of the fermentation broth was measured by Coomassie Brilliant Blue detection method, and the strains with high protein expression were initially screened; 4. Inoculate the strains with high protein expression obtained by the above preliminary screening into triangles equipped with 10ml LB medium. Shake culture overnight at 37°C and 200r/min in the bottle, then transfer the liquid bacteria into a conical flask containing 50ml of TB enzyme production medium according to the inoculum amount of 5%, and place it at 26°C-33°C at 200r/min Shaking culture was cultivated for 2-3 days, and then the protein content in the supernatant of the fermentation broth was measured by the Coomassie brilliant blue detection method in a 15ml ground-mouth test tube, and a strain with a protein expression level of up to 0.8mg/ml was obtained by re-screening, which was higher than the existing strain. The expression level of the type strain is high (0.2-0.5mg/ml), identified as Bacillus subtilis by morphology and 16sRNA, and named as B.subtilis WS.

培养基配方:Medium formula:

(1)LB种子培养基:5g/L酵母粉,10g/L蛋白胨1%,10g/L氯化钠。(1) LB seed medium: 5g/L yeast powder, 10g/L peptone 1%, 10g/L sodium chloride.

(2)TB发酵培养基:24g/L酵母粉,12g/L蛋白胨,5g/L甘油,12.54g/L K2HPO4,2.31g/L KH2PO4(2) TB fermentation medium: 24g/L yeast powder, 12g/L peptone, 5g/L glycerol, 12.54g/L K 2 HPO 4 , 2.31g/L KH 2 PO 4 .

实施例2:敲除质粒的构建Embodiment 2: Construction of knockout plasmid

根据枯草芽孢杆菌的基因序列设计用于特异性靶向srfA、spoIIAC、amyE、nprE、aprE和bamA基因的sgRNA,从NCBI上查找PE194温度敏感的复制原点的基因序列(NCBIGenBank:M17811.1),然后化学合成sgRNA及PE194序列(Genbank登陆号JN798465.1:7790-9126),采用引物P1和P2,PCR获得载体骨架Frag1;以穿梭质粒pHY300PLK(Takara,Dalian,China)为模板,采用引物P3和P4,PCR获得氨苄青霉素筛选基因及大肠杆菌复制原点p15A(Genbank登陆号D90381.1:5993-6537),作为载体骨架Frag2;以穿梭质粒pHY300PLK为模板,采用引物P5和P6,PCR获得四环素筛选基因(Genbank登陆号FN806789.3:27499-28875),作为载体骨架Frag3;以质粒pwtcas9-bacterial(Addgene plasmid#44250)为模板,采用引物P7和P8,PCR获得Streptococcuspyogenes来源的cas9基因(Genbank登陆号AE004092.2:854751-858855),作为载体骨架Frag4。采用In-Fusion HD Cloning Plus kits连接四个片段Frag1、Frag2、Frag3和Frag4,得到质粒PHY300d。将带有XbaI酶切位点的同源修复臂片段连入相应酶切位点,得到敲除质粒PHY300dsrf、PHY300dspo、PHY300damy、PHY300dnpr、PHY300dapr和PHY300dbam。According to the gene sequence of Bacillus subtilis, the sgRNA used to specifically target the srfA, spoIIAC, amyE, nprE, aprE and bamA genes was designed, and the gene sequence of the temperature-sensitive replication origin of PE194 was found from NCBI (NCBIGenBank: M17811.1), Then chemically synthesized sgRNA and PE194 sequence (Genbank accession number JN798465.1: 7790-9126), using primers P1 and P2, PCR to obtain the vector backbone Frag1; using the shuttle plasmid pHY300PLK (Takara, Dalian, China) as a template, using primers P3 and P4, ampicillin screening gene and Escherichia coli replication origin p15A (Genbank accession number D90381.1: 5993-6537) were obtained by PCR, as the vector backbone Frag2; the shuttle plasmid pHY300PLK was used as a template, primers P5 and P6 were used, and tetracycline screening gene was obtained by PCR (Genbank accession number FN806789.3: 27499-28875), as the vector backbone Frag3; using the plasmid pwtcas9-bacterial (Addgene plasmid #44250) as a template, using primers P7 and P8, PCR obtained the cas9 gene from Streptococcuspyogenes (Genbank accession number AE004092 .2:854751-858855), as the vector backbone Frag4. The four fragments Frag1, Frag2, Frag3 and Frag4 were ligated using In-Fusion HD Cloning Plus kits to obtain plasmid PHY300d. The homologous repair arm fragments with XbaI restriction sites were ligated into corresponding restriction sites to obtain knockout plasmids PHY300dsrf, PHY300dspo, PHY300damy, PHY300dnpr, PHY300dapr and PHY300dbam.

表1 In-Fusion HD Cloning Plus kits连接体系如下:Table 1 The connection system of In-Fusion HD Cloning Plus kits is as follows:

线性化载体和纯化的PCR产物片段的摩尔比为1:2;用水补足10μl体系。50℃连接20min,冰浴5min,然后转化入E.coli JM109感受态细胞,涂布到LB固体培养基(含100μg/mL氨苄青霉素)上,37℃过夜培养。挑取阳性克隆,提取质粒,进行测序验证。The molar ratio of the linearized vector and the purified PCR product fragment is 1:2; make up 10 μl of the system with water. Ligate at 50°C for 20 minutes, ice-bath for 5 minutes, then transform into E.coli JM109 competent cells, apply to LB solid medium (containing 100 μg/mL ampicillin), and culture overnight at 37°C. Pick positive clones, extract plasmids, and perform sequencing verification.

表2 引物序列Table 2 Primer sequences

实施例3:枯草杆菌转化方法Embodiment 3: Bacillus subtilis transformation method

用接种环沾取冻存的枯草芽孢杆菌WS,然后在LB平板上划线,37℃培养过夜活化。挑取单菌落接种于5ml LB液体培养基中,37℃培养过夜培养18h。取一定量的过夜培养物到4.5ml的GMⅠ中,使OD600值到达0.1-0.2,留下4.5ml混合菌液。37℃200rpm振荡培养,每个20min测一次OD600,当OD600到达0.4-0.6(大约需要60-90min);继续振荡培养90min,吸取0.05ml菌液至存有0.45ml预热的GMⅡ的无菌试管中;37℃振荡90min,此时培养物中有很多感受态细胞形成;加1μg的质粒(15-20μl),37℃振荡培养30min;离心去除大部分的上清液,重悬细胞,涂在含有相应抗生素的筛选平板上,37℃培养过夜。Dip frozen Bacillus subtilis WS with an inoculation loop, then streak on LB plates, and culture overnight at 37°C for activation. Pick a single colony and inoculate it in 5ml LB liquid medium, culture overnight at 37°C for 18h. Take a certain amount of overnight culture into 4.5ml of GMI, so that the OD600 value reaches 0.1-0.2, leaving 4.5ml of mixed bacterial solution. Shake culture at 200 rpm at 37°C, measure OD600 every 20 minutes, when OD600 reaches 0.4-0.6 (about 60-90 minutes); continue shaking culture for 90 minutes, draw 0.05ml of bacterial liquid into a sterile test tube containing 0.45ml of preheated GMⅡ medium; shaking at 37°C for 90 minutes, at this time, many competent cells formed in the culture; add 1 μg of plasmid (15-20 μl), shake and culture at 37°C for 30 minutes; centrifuge to remove most of the supernatant, resuspend the cells, and spread on Incubate overnight at 37°C on a screening plate containing the corresponding antibiotic.

培养基配方:Medium formula:

(1)10×最低盐溶液:K2HPO414g(K2HPO4·3H2O 18.34g),KH2PO46g,(NH4)2SO42g,柠檬酸钠(Na3C6H5O7·2H2O)1g,MgSO4·7H2O 0.2g,在蒸馏水中依次溶解,加水至100ml。(1) 10× minimum salt solution: K 2 HPO 4 14g (K 2 HPO 4 ·3H 2 O 18.34g), KH 2 PO 4 6g, (NH 4 ) 2 SO 4 2g, sodium citrate (Na 3 C 6 H 5 O 7 ·2H 2 O) 1g, MgSO 4 ·7H 2 O 0.2g, dissolve in distilled water successively, add water to 100ml.

(2)L-trp溶液,2mg/ml,贮于棕色瓶内,113℃灭菌30min,用黑纸包裹。(2) L-trp solution, 2mg/ml, stored in a brown bottle, sterilized at 113°C for 30min, and wrapped in black paper.

(3)GMⅠ溶液:1×最低盐溶液95ml,50%葡萄糖1ml,5%水解酪蛋白0.4ml,10%酵母汁1ml,2mg/ml L-trp 2.5ml。(3) GMI solution: 95ml of 1× minimum salt solution, 1ml of 50% glucose, 0.4ml of 5% hydrolyzed casein, 1ml of 10% yeast juice, 2.5ml of 2mg/ml L-trp.

(4)GMⅡ溶液:1×最低盐溶液97.5ml,50%葡萄糖1ml,5%水解酪蛋白0.08ml,10%酵母汁0.04ml,0.5M MgCl20.5ml(2.5mM),0.1M CaCl20.5ml(0.5mM),2mg/ml L-trp0.5ml(5ug/ml)。(4) GMⅡ solution: 97.5ml of 1× minimum salt solution, 1ml of 50% glucose, 0.08ml of 5% hydrolyzed casein, 0.04ml of 10% yeast juice, 0.5ml of 0.5M MgCl 2 (2.5mM), 0.5ml of 0.1M CaCl 2 ml (0.5mM), 2mg/ml L-trp0.5ml (5ug/ml).

实施例4:B.subtilis WS基因敲除Example 4: B. subtilis WS gene knockout

分别用质粒PHY300dsrf、PHY300dspo、PHY300damy、PHY300dnpr、PHY300dapr和PHY300dbam敲除B.subtilis WS基因组中的srfC、spoIIAC、amyE、nprE、aprE和bamA基因。采用实施例3中的方法,将敲除质粒转化到枯草芽孢杆菌感受态细胞中,涂布到LB固体培养基(含20μg/mL四环素)上,37℃过夜培养。挑取阳性克隆,提取基因组,以基因组为模板菌落PCR扩增同源修复片段,然后在37℃进行XbaI酶切验证。由于敲除基因的菌株进行基因组同源修复时在基因断裂处插入了XbaI酶切位点,所以可以被XbaI内切酶切开,而野生型的则不会被切开,酶切验证正确的基因敲除菌在51℃进行敲除质粒的消除。依次敲除六个基因srfC、spoIIAC、amyE、nprE、aprE和bamA后得到基因敲除菌B.subtilis WS5。The srfC, spoIIAC, amyE, nprE, aprE and bamA genes in the B. subtilis WS genome were knocked out with plasmids PHY300dsrf, PHY300dspo, PHY300damy, PHY300dnpr, PHY300dapr and PHY300dbam, respectively. Using the method in Example 3, the knockout plasmid was transformed into Bacillus subtilis competent cells, spread on LB solid medium (containing 20 μg/mL tetracycline), and cultured overnight at 37°C. Pick positive clones, extract the genome, use the genome as a template colony PCR to amplify the homologous repair fragment, and then carry out XbaI enzyme digestion verification at 37°C. Since the gene knockout strain inserts the XbaI enzyme cutting site at the gene break when performing genome homology repair, it can be cut by XbaI endonuclease, while the wild type will not be cut, and the enzyme digestion is verified to be correct Knockout bacteria were carried out at 51°C to eliminate the knockout plasmid. After knocking out six genes srfC, spoIIAC, amyE, nprE, aprE and bamA in sequence, the gene knockout strain B. subtilis WS5 was obtained.

表3 XhoI酶切体系为:Table 3 The XhoI digestion system is:

37℃酶切反应2h。Enzyme digestion reaction at 37°C for 2h.

实施例5:β-CGTase基因工程菌的构建Embodiment 5: Construction of β-CGTase genetically engineered bacteria

在确保氨基酸序列不变的前提下,利用密码子使用频率分析软件并结合大肠杆菌密码子偏爱性、mRNA二级结构和GC含量等影响因素,对来源于B.circulans 251的天然CGTase的原始基因序列(Genbank登陆号X78145.1)进行密码子优化,用枯草芽孢杆菌中的偏爱密码子替代除信号肽以外的其余序列的稀有密码子,同时要兼顾mRNA二级结构的稳定性。化学合成得到CGTase的基因,并且通过NcoI和HindIII酶切位点连到pMD18-T(Takara,Dalian,China)载体上,得到质粒βcgt/pMD18-T。Under the premise of ensuring that the amino acid sequence remains unchanged, the original gene of natural CGTase derived from B.circulans 251 was analyzed by using codon usage frequency analysis software combined with factors such as E. coli codon bias, mRNA secondary structure and GC content. The sequence (Genbank accession number X78145.1) was codon-optimized, and the rare codons in the rest of the sequence except the signal peptide were replaced with the preferred codons in Bacillus subtilis, while taking into account the stability of the mRNA secondary structure. The CGTase gene was chemically synthesized, and connected to the pMD18-T (Takara, Dalian, China) vector through NcoI and HindIII restriction sites to obtain the plasmid βcgt/pMD18-T.

用于构建枯草芽孢杆菌表达载体的质粒是pHY300PLK,带有B.amyloliquefaciens来源amyQ启动子。分别以质粒pHY300PLK和质粒βcgt/pMD18-T为模板,用引物P1/P2和P3/P4PCR扩增出带有15bp同源序列的载体片段和基因片段,再用In-Fusion HD Cloning Pluskit连接酶连接,连接产物转化E.coli JM109感受态细胞,经37℃培养8h,挑转化子在含有100mg/L氨苄青霉素液体的LB中振荡培养,提取质粒,测序验证得到表达质粒βcgt/pHY300PLK。The plasmid used to construct the Bacillus subtilis expression vector is pHY300PLK with the amyQ promoter from B. amyloliquefaciens. Using plasmid pHY300PLK and plasmid βcgt/pMD18-T as templates respectively, primers P1/P2 and P3/P4 were used to PCR amplify the vector fragment and gene fragment with 15bp homologous sequence, and then ligated with In-Fusion HD Cloning Pluskit ligase , the ligation product was transformed into E.coli JM109 competent cells, cultured at 37°C for 8 hours, the picked transformants were shaken in LB containing 100 mg/L ampicillin liquid, the plasmid was extracted, and the expression plasmid βcgt/pHY300PLK was obtained by sequencing verification.

表4 PCR反应体系为:The PCR reaction system of table 4 is:

反应程序如下:94℃预变性4min;98℃10s,55℃10s,72℃1.5min,进行30个循环;72℃延伸10min,降温至4℃。The reaction procedure was as follows: pre-denaturation at 94°C for 4 min; 30 cycles of 98°C for 10 s, 55°C for 10 s, and 72°C for 1.5 min; extension at 72°C for 10 min, and cooling to 4°C.

表5 引物序列Table 5 Primer sequences

将质粒βcgt/PHY300PLK转化B.subtilis WS5宿主菌,涂布含四环素(20mg/L)的LB平板上,37℃培养8h。挑单菌落至液体LB中,37℃培养过夜,保存甘油管。The plasmid βcgt/PHY300PLK was transformed into B. subtilis WS5 host bacteria, spread on LB plates containing tetracycline (20mg/L), and incubated at 37°C for 8h. Pick a single colony into liquid LB, culture overnight at 37°C, and save the glycerol tube.

实施例6:β-CGTase基因工程菌3L发酵罐培养Embodiment 6: β-CGTase genetically engineered bacteria 3L fermentation tank culture

对上述实施例5中构建好的β-CGTase基因工程菌进行3L发酵罐培养,检验B.subtilis WS5外源蛋白表达情况,并检验其在发酵过程中泡沫、芽孢、胞外淀粉酶和蛋白酶的产生情况。培养过程如下:吸取200μl的甘油管菌液接种于装有100mL种子培养基的500mL三角瓶中,30℃,200r/min培养24h,将上述培养液接入装液量为0.9L的3L发酵罐,以25%氨水控制pH 7,培养温度30℃,通过与搅拌转速偶联和调节通气量将溶氧维持在30%左右,当溶氧迅速上升,表明培养基中的葡糖已经耗尽,开始流加体积比为50%葡萄糖补料液,当β-CGTase酶活下降时结束培养。The β-CGTase genetically engineered bacterium constructed in the above-mentioned embodiment 5 was carried out in a 3L fermenter, and the expression of B.subtilis WS5 foreign protein was checked, and the activity of foam, spores, extracellular amylase and protease in the fermentation process was checked. A situation arises. The cultivation process is as follows: inoculate 200 μl of glycerol tube bacterial liquid into a 500 mL Erlenmeyer flask containing 100 mL of seed medium, cultivate at 30°C and 200 r/min for 24 hours, and transfer the above culture liquid into a 3L fermenter with a liquid volume of 0.9L , use 25% ammonia water to control pH 7, culture temperature 30°C, maintain dissolved oxygen at about 30% by coupling with stirring speed and adjusting ventilation, when dissolved oxygen rises rapidly, it indicates that the glucose in the medium has been exhausted, The volume ratio of 50% glucose feed solution was added at the beginning, and the cultivation was terminated when the enzyme activity of β-CGTase decreased.

在发酵过程中,以B.subtilisWS5为宿主的β-CGTase基因工程菌产生的泡沫明显减少了,在生长对数期会产生一些泡沫,但是可以通过滴加极少量消泡剂来有效的控制泡沫的产生;在发酵后期菌体浓度很高并且营养缺乏的情况下镜鉴未检测到芽孢的产生(图1)。分别用的淀粉酶筛选板和蛋白酶筛选板对发酵液上清中胞外淀粉酶和蛋白酶进行检测,培养24h所得平板几乎没有透明圈(图2),表明B.subtilisWS5培养过程中胞外淀粉酶和蛋白酶几乎没有。发酵培养70h时β-CGTase酶活达到270U/ml(1.2mg/ml),是目前报道的B.circulans 251来源CGTase在枯草芽孢杆菌中的最高水平;DCW达到70g/L(图3),是目前报道的枯草芽孢杆菌发酵菌体密度较高的水平,表明B.subtilis WS5可以进行高密度培养并且高效地表达外源蛋白,具有很高的工业应用价值。During the fermentation process, the foam produced by the β-CGTase genetically engineered bacteria with B.subtilisWS5 as the host was significantly reduced, and some foam would be produced in the logarithmic phase of growth, but the foam could be effectively controlled by dropping a very small amount of antifoaming agent The production of spores; the production of spores was not detected in the microscope under the condition of high bacterial concentration and nutrient deficiency in the late stage of fermentation (Fig. 1). The amylase screening plate and protease screening plate were used to detect extracellular amylase and protease in the supernatant of the fermentation broth, and the plate obtained after culturing for 24 hours had almost no transparent circle (Figure 2), indicating that the extracellular amylase in the culture process of B. subtilisWS5 And almost no protease. The β-CGTase activity reached 270U/ml (1.2mg/ml) at 70 hours of fermentation culture, which is the highest level of CGTase from B.circulans 251 in Bacillus subtilis reported so far; DCW reached 70g/L (Figure 3), which is The high density of Bacillus subtilis fermentation cells reported so far indicates that B. subtilis WS5 can be cultured at high density and express foreign proteins efficiently, which has high industrial application value.

培养基配方:Medium formula:

(1)种子培养基:蛋白胨20g/L,酵母粉10g/L,葡萄糖20g/L。(1) Seed medium: peptone 20g/L, yeast powder 10g/L, glucose 20g/L.

(2)发酵培养基:硫酸钙0.939g/L,硫酸镁7.27g/L,氢氧化钾4.13g/L,硫酸钾18.2g/L,玉米浆30g/L,磷酸26.7ml/L,葡萄糖5g/L,金属离子PTM溶液5ml/L;金属离子PTM溶液的组成:CuSO4·5H2O 6g/L,KI 0.08g/L,MnSO4·H2O 0.5g/L,Na2MoO3·2H2O 0.2g/L,H3BO3 0.02g/L,CoCl2 0.5g/L,ZnCl2 20g/L,FeSO4·7H2O 65g/L,生物素0.2g/L,H2SO45.0g/L)。(2) Fermentation medium: calcium sulfate 0.939g/L, magnesium sulfate 7.27g/L, potassium hydroxide 4.13g/L, potassium sulfate 18.2g/L, corn steep liquor 30g/L, phosphoric acid 26.7ml/L, glucose 5g /L, metal ion PTM solution 5ml/L; composition of metal ion PTM solution: CuSO 4 ·5H 2 O 6g/L, KI 0.08g/L, MnSO 4 ·H 2 O 0.5g/L, Na 2 MoO 3 · 2H 2 O 0.2g/L, H 3 BO 3 0.02g/L, CoCl 2 0.5g/L, ZnCl 2 20g/L, FeSO 4 7H 2 O 65g/L, biotin 0.2g/L, H 2 SO 4 5.0g/L).

虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with this technology can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore The scope of protection of the present invention should be defined by the claims.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 江南大学<110> Jiangnan University

<120> 一种用于高效外源蛋白表达和高密度培养的枯草芽孢杆菌<120> A Bacillus subtilis for high-efficiency foreign protein expression and high-density culture

<160> 13<160> 13

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 2064<211> 2064

<212> DNA<212>DNA

<213> Bacillus circulans<213> Bacillus circulans

<400> 1<400> 1

atggcaccgg ataccagcgt tagcaacaag cagaatttca gcacggatgt gatctatcag 60atggcaccgg ataccagcgt tagcaacaag cagaatttca gcacggatgt gatctatcag 60

atcttcacgg accgcttcag cgatggtaac ccggcgaaca acccaacggg cgcagcattc 120atcttcacgg accgcttcag cgatggtaac ccggcgaaca acccaacggg cgcagcattc 120

gatggcacct gcaccaatct gcgtctgtac tgtggtggtg actggcaggg catcatcaac 180gatggcacct gcaccaatct gcgtctgtac tgtggtggtg actggcaggg catcatcaac 180

aagatcaacg atggttacct gaccggtatg ggtgttacgg caatctggat cagccaacca 240aagatcaacg atggttacct gaccggtatg ggtgttacgg caatctggat cagccaacca 240

gtggaaaata tctatagcat tatcaactac agcggtgtga ataatacggc ataccacggc 300gtggaaaata tctatagcat tatcaactac agcggtgtga ataatacggc ataccacggc 300

tattgggccc gtgatttcaa aaaaaccaat ccggcgtatg gcacgatcgc ggattttcag 360tattgggccc gtgatttcaa aaaaaccaat ccggcgtatg gcacgatcgc ggattttcag 360

aatctgattg cagcggcaca tgcaaaaaac attaaagtga ttatcgattt tgcgccgaat 420aatctgattg cagcggcaca tgcaaaaaac attaaagtga ttatcgattt tgcgccgaat 420

cacaccagcc cagcgagcag cgatcaaccg agcttcgcgg aaaacggtcg cctgtatgac 480cacaccagcc cagcgagcag cgatcaaccg agcttcgcgg aaaacggtcg cctgtatgac 480

aatggtaccc tgctgggcgg ttataccaat gacacccaaa atctgtttca tcacaacggt 540aatggtaccc tgctgggcgg ttataccaat gacacccaaa atctgtttca tcacaacggt 540

ggtaccgatt ttagcaccac cgagaatggt atttacaaga acctgtacga tctggcggat 600ggtaccgatt ttagcaccac cgagaatggt atttacaaga acctgtacga tctggcggat 600

ctgaaccata ataatagcac ggttgacgtt tatctgaaag atgcgattaa gatgtggctg 660ctgaaccata ataatagcac ggttgacgtt tatctgaaag atgcgattaa gatgtggctg 660

gatctgggca ttgacggcat tcgtatggat gcggttaaac acatgccatt cggttggcaa 720gatctgggca ttgacggcat tcgtatggat gcggttaaac acatgccatt cggttggcaa 720

aagagcttta tggccgcagt taacaattac aagccggttt tcacctttgg cgaatggttc 780aagagcttta tggccgcagt taacaattac aagccggttt tcacctttgg cgaatggttc 780

ctgggcgtga atgaagtgag cccggagaac cacaagtttg cgaatgagag cggtatgagc 840ctgggcgtga atgaagtgag cccggagaac cacaagtttg cgaatgagag cggtatgagc 840

ctgctggact tccgtttcgc gcagaaagtg cgtcaagttt ttcgtgataa cacggataat 900ctgctggact tccgtttcgc gcagaaagtg cgtcaagttt ttcgtgataa cacggataat 900

atgtatggcc tgaaggcgat gctggaaggt agcgccgcag actatgcgca agttgacgat 960atgtatggcc tgaaggcgat gctggaaggt agcgccgcag actatgcgca agttgacgat 960

caagtgacct tcattgacaa tcacgatatg gaacgcttcc atgcgagcaa cgcgaatcgt 1020caagtgacct tcattgacaa tcacgatatg gaacgcttcc atgcgagcaa cgcgaatcgt 1020

cgcaagctgg aacaagcgct ggcgtttacc ctgacgagcc gcggtgttcc ggcgatctac 1080cgcaagctgg aacaagcgct ggcgtttacc ctgacgagcc gcggtgttcc ggcgatctac 1080

tatggtacgg aacagtatat gagcggtggc accgacccgg acaatcgtgc gcgtatccca 1140tatggtacgg aacagtatat gagcggtggc accgacccgg acaatcgtgc gcgtatccca 1140

agttttagca cgagcacgac ggcctaccag gtgattcaga aactggcacc actgcgcaaa 1200agttttagca cgagcacgac ggcctaccag gtgattcaga aactggcacc actgcgcaaa 1200

tgtaacccag ccattgcgta cggtagcacg caagaacgtt ggattaacaa cgacgttctg 1260tgtaacccag ccattgcgta cggtagcacg caagaacgtt ggattaacaa cgacgttctg 1260

atctacgaac gtaaatttgg cagcaacgtt gccgttgttg cggtgaaccg taacctgaac 1320atctacgaac gtaaatttgg cagcaacgtt gccgttgttg cggtgaaccg taacctgaac 1320

gcaccggcaa gcatcagcgg cctggtgacc agcctgccac aaggcagcta taacgatgtt 1380gcaccggcaa gcatcagcgg cctggtgacc agcctgccac aaggcagcta taacgatgtt 1380

ctgggtggtc tgctgaacgg taacacgctg agcgttggta gcggcggtgc agcaagcaat 1440ctgggtggtc tgctgaacgg taacacgctg agcgttggta gcggcggtgc agcaagcaat 1440

tttacgctgg cagccggcgg cacggcagtt tggcaatata cggccgcaac cgcgacgccg 1500tttacgctgg cagccggcgg cacggcagtt tggcaatata cggccgcaac cgcgacgccg 1500

accattggcc atgtgggtcc aatgatggcg aagccaggtg tgaccattac gattgatggt 1560accattggcc atgtgggtcc aatgatggcg aagccaggtg tgaccattac gattgatggt 1560

cgcggcttcg gcagcagcaa aggcaccgtt tactttggta cgaccgccgt tagcggtgcg 1620cgcggcttcg gcagcagcaa aggcaccgtt tactttggta cgaccgccgt tagcggtgcg 1620

gatattacga gctgggagga tacccaaatc aaagttaaga tcccagccgt tgcgggtggc 1680gatattacga gctgggagga tacccaaatc aaagttaaga tcccagccgt tgcgggtggc 1680

aactataaca tcaaggttgc gaacgcggca ggtaccgcca gcaatgttta cgacaatttc 1740aactataaca tcaaggttgc gaacgcggca ggtaccgcca gcaatgttta cgacaatttc 1740

gaggttctga gcggcgacca agttagcgtg cgctttgtgg tgaacaatgc aaccacggcg 1800gaggttctga gcggcgacca agttagcgtg cgctttgtgg tgaacaatgc aaccacggcg 1800

ctgggtcaaa atgtgtatct gacgggcagc gtgagcgaac tgggtaattg ggacccggcc 1860ctgggtcaaa atgtgtatct gacgggcagc gtgagcgaac tgggtaattg ggacccggcc 1860

aaagcgatcg gcccgatgta caaccaagtg gtgtatcagt atccgaattg gtactatgat 1920aaagcgatcg gcccgatgta caaccaagtg gtgtatcagt atccgaattg gtactatgat 1920

gtgagcgtgc cagccggtaa aacgatcgag ttcaagttcc tgaagaaaca gggcagcacc 1980gtgagcgtgc cagccggtaa aacgatcgag ttcaagttcc tgaagaaaca gggcagcacc 1980

gtgacgtggg aaggtggtag caatcatacg tttacggccc caagcagcgg tacggccacg 2040gtgacgtggg aaggtggtag caatcatacg tttacggccc caagcagcgg tacggccacg 2040

attaacgtga attggcaacc gtaa 2064attaacgtga attggcaacc gtaa 2064

<210> 2<210> 2

<211> 38<211> 38

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 2<400> 2

ggaacgtaca gacgcatttt acatttttag aaatgggc 38ggaacgtaca gacgcatttt aatttttag aaatgggc 38

<210> 3<210> 3

<211> 33<211> 33

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 3<400> 3

cgtttgttga actacgcagt cggcttaaac cag 33cgtttgttga actacgcagt cggcttaaac cag 33

<210> 4<210> 4

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 4<400> 4

ggcaaccgta agcttggtaa t 21ggcaaccgta agcttggtaa t 21

<210> 5<210> 5

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 5<400> 5

gcgtctgtac gttccttaag g 21gcgtctgtac gttccttaag g 21

<210> 6<210> 6

<211> 32<211> 32

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 6<400> 6

tttcttatac aaattatatt ttacatatca at 32tttcttatac aaattatatt ttacatatca at 32

<210> 7<210> 7

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 7<400> 7

gtagttcaac aaacgggcc 19gtagttcaac aaacgggcc 19

<210> 8<210> 8

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 8<400> 8

aatttgtata agaaaatgga taagaaatac tcaataggct 40aatttgtata agaaaatgga taagaaatac tcaataggct 40

<210> 9<210> 9

<211> 37<211> 37

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 9<400> 9

aagcttacgg ttgccttagt cacctcctag ctgactc 37aagcttacgg ttgccttagt cacctcctag ctgactc 37

<210> 10<210> 10

<211> 26<211> 26

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 10<400> 10

aagcttggta ataaaaaaac acctcc 26aagcttggta ataaaaaaac acctcc 26

<210> 11<210> 11

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 11<400> 11

catggctacg gctgatgttt 20catggctacg gctgatgttt 20

<210> 12<210> 12

<211> 32<211> 32

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 12<400> 12

tcagccgtag ccatggcacc ggataccagc gt 32tcagccgtag ccatggcacc ggataccagc gt 32

<210> 13<210> 13

<211> 35<211> 35

<212> DNA<212>DNA

<213> 人工序列,用于PCR<213> artificial sequence for PCR

<400> 13<400> 13

tttattacca agcttttacg gttgccaatt cacgt 35tttattacca agcttttacg gttgccaatt cacgt 35

Claims (6)

1.一株枯草芽孢杆菌(Bacillus subtilis)WS5,于2016年9月29日保藏于中国典型培养物保藏中心,保藏编号为CCTCC NO:M 2016536,保藏地址为中国武汉武汉大学。1. A strain of Bacillus subtilis WS5 was deposited in the China Center for Type Culture Collection on September 29, 2016, with the preservation number CCTCC NO:M 2016536, and the preservation address is Wuhan University, Wuhan, China. 2.一株重组枯草芽孢杆菌,其特征在于,将B.circulans来源的β-CGTase基因克隆到PHY300PLK载体,然后转化权利要求1所述枯草芽孢杆菌WS5。2. A strain of recombinant Bacillus subtilis, characterized in that the β-CGTase gene derived from B.circulans is cloned into the PHY300PLK vector, and then transformed into Bacillus subtilis WS5 according to claim 1. 3.一种应用权利要求2所述的重组枯草芽孢杆菌发酵生产β-CGTase的方法,其特征在于,将种子培养液接入装液量为0.9L的3L发酵罐,以25%氨水控制pH 7,培养温度30℃,通过与搅拌转速偶联和调节通气量将溶氧维持在30%左右,当溶氧迅速上升,开始流加浓度为50%的葡萄糖补料液,当β-CGTase酶活下降时结束培养。3. a method for producing β-CGTase by recombinant bacillus subtilis fermentation according to claim 2, characterized in that, the seed culture solution is inserted into a 3L fermenter with a liquid filling capacity of 0.9L, and the pH is controlled with 25% ammoniacal liquor 7. The culture temperature is 30°C, and the dissolved oxygen is maintained at about 30% by coupling with the stirring speed and adjusting the ventilation rate. When the dissolved oxygen rises rapidly, start to feed the glucose feed solution with a concentration of 50%. The cultivation was terminated when the viability decreased. 4.根据权利要求3所述的方法,其特征在于,发酵培养基:硫酸钙0.939g/L,硫酸镁7.27g/L,氢氧化钾4.13g/L,硫酸钾18.2g/L,玉米浆30g/L,磷酸26.7ml/L,葡萄糖5g/L,金属离子PTM溶液5ml/L;金属离子PTM溶液的组成:CuSO4·5H2O 6g/L,KI 0.08g/L,MnSO4·H2O 0.5g/L,Na2MoO3·2H2O 0.2g/L,H3BO3 0.02g/L,CoCl2 0.5g/L,ZnCl2 20g/L,FeSO4·7H2O 65g/L,生物素0.2g/L,H2SO4 5.0g/L。4. The method according to claim 3, characterized in that, fermentation medium: calcium sulfate 0.939g/L, magnesium sulfate 7.27g/L, potassium hydroxide 4.13g/L, potassium sulfate 18.2g/L, corn steep liquor 30g/L, phosphoric acid 26.7ml/L, glucose 5g/L, metal ion PTM solution 5ml/L; composition of metal ion PTM solution: CuSO 4 ·5H 2 O 6g/L, KI 0.08g/L, MnSO 4 ·H 2 O 0.5g/L, Na 2 MoO 3 2H 2 O 0.2g/L, H 3 BO 3 0.02g/L, CoCl 2 0.5g/L, ZnCl 2 20g/L, FeSO 4 7H 2 O 65g/L L, biotin 0.2g/L, H 2 SO 4 5.0g/L. 5.权利要求1所述的枯草芽孢杆菌(Bacillus subtilis)WS5在发酵产酶中的应用。5. the application of the bacillus subtilis (Bacillus subtilis) WS5 described in claim 1 in fermenting and producing enzyme. 6.权利要求1所述的枯草芽孢杆菌(Bacillus subtilis)WS5在发酵产β-CGTase中的应用。6. The application of the Bacillus subtilis (Bacillus subtilis) WS5 described in claim 1 in producing β-CGTase by fermentation.
CN201611025858.9A 2016-11-22 2016-11-22 It is a kind of for efficient exogenous protein expression and the bacillus subtilis of High Density Cultivation Pending CN106754466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611025858.9A CN106754466A (en) 2016-11-22 2016-11-22 It is a kind of for efficient exogenous protein expression and the bacillus subtilis of High Density Cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611025858.9A CN106754466A (en) 2016-11-22 2016-11-22 It is a kind of for efficient exogenous protein expression and the bacillus subtilis of High Density Cultivation

Publications (1)

Publication Number Publication Date
CN106754466A true CN106754466A (en) 2017-05-31

Family

ID=58971238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611025858.9A Pending CN106754466A (en) 2016-11-22 2016-11-22 It is a kind of for efficient exogenous protein expression and the bacillus subtilis of High Density Cultivation

Country Status (1)

Country Link
CN (1) CN106754466A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058205A (en) * 2017-06-05 2017-08-18 江南大学 A kind of recombined bacillus subtilis for producing sucrose phosphorylase and its application
CN107236696A (en) * 2017-07-31 2017-10-10 江南大学 A kind of sucrose phosphorylase recombined bacillus subtilis in expression L. mesenteroides sources
CN108102995A (en) * 2018-02-12 2018-06-01 江南大学 A kind of D-Psicose 3- epimerases production bacterial strain and its process for fixation
CN108102997A (en) * 2017-10-25 2018-06-01 江南大学 A kind of bacillus subtilis for Pullulanase high efficient expression and High Density Cultivation
CN108384740A (en) * 2018-02-12 2018-08-10 江南大学 A kind of bacillus subtilis for high density fermentation
CN108384741A (en) * 2018-02-12 2018-08-10 江南大学 A kind of genetic engineering bacterium of high yield cyclodextrin glycosyltransferase
CN108570477A (en) * 2018-04-18 2018-09-25 横琴仲泰生物医药有限公司 A kind of construction method of alkaline protease gene and its recombined bacillus subtilis bacterial strain
CN108841772A (en) * 2018-07-16 2018-11-20 江南大学 A kind of bacillus subtilis engineering bacteria of high efficient expression alpha-amylase
CN109554321A (en) * 2018-12-03 2019-04-02 清华大学 A kind of genetic engineering bacterium of high yield lipopeptid and its application
CN110144320A (en) * 2019-05-16 2019-08-20 江南大学 A kind of genetically engineered bacteria producing maltotetraose amylase and its fermentation process
CN111607626A (en) * 2020-06-24 2020-09-01 江南大学 Application of a cyclodextrinase in the preparation of maltoheptaose

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARBE V等: "登录号:NC_000964.3", 《GENBANK》 *
K ZHANG等: "Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system", 《SCI REP》 *
陈臻: "细菌V型分泌系统中BamA POTRA3-5-BamB蛋白复合物结构和功能研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058205B (en) * 2017-06-05 2020-05-08 江南大学 Recombinant bacillus subtilis for producing sucrose phosphorylase and application thereof
CN107058205A (en) * 2017-06-05 2017-08-18 江南大学 A kind of recombined bacillus subtilis for producing sucrose phosphorylase and its application
CN107236696A (en) * 2017-07-31 2017-10-10 江南大学 A kind of sucrose phosphorylase recombined bacillus subtilis in expression L. mesenteroides sources
CN107236696B (en) * 2017-07-31 2019-11-26 江南大学 A kind of sucrose phosphorylase recombined bacillus subtilis for expressing the source L.mesenteroides
CN108102997A (en) * 2017-10-25 2018-06-01 江南大学 A kind of bacillus subtilis for Pullulanase high efficient expression and High Density Cultivation
CN108102995A (en) * 2018-02-12 2018-06-01 江南大学 A kind of D-Psicose 3- epimerases production bacterial strain and its process for fixation
CN108384740A (en) * 2018-02-12 2018-08-10 江南大学 A kind of bacillus subtilis for high density fermentation
CN108384741A (en) * 2018-02-12 2018-08-10 江南大学 A kind of genetic engineering bacterium of high yield cyclodextrin glycosyltransferase
CN108384740B (en) * 2018-02-12 2021-08-24 江南大学 A kind of Bacillus subtilis for high density fermentation
CN108102995B (en) * 2018-02-12 2020-12-01 江南大学 A kind of D-psicose 3-epimerase production strain and immobilization method thereof
CN108384741B (en) * 2018-02-12 2020-10-09 江南大学 Genetically engineered bacterium for high-yield cyclodextrin glucosyltransferase
CN108570477B (en) * 2018-04-18 2020-06-30 横琴仲泰生物医药有限公司 Alkaline protease gene and construction method of recombinant bacillus subtilis strain thereof
CN108570477A (en) * 2018-04-18 2018-09-25 横琴仲泰生物医药有限公司 A kind of construction method of alkaline protease gene and its recombined bacillus subtilis bacterial strain
CN108841772A (en) * 2018-07-16 2018-11-20 江南大学 A kind of bacillus subtilis engineering bacteria of high efficient expression alpha-amylase
CN108841772B (en) * 2018-07-16 2021-03-30 江南大学 A Bacillus subtilis engineering bacterium with high expression of α-amylase
CN109554321A (en) * 2018-12-03 2019-04-02 清华大学 A kind of genetic engineering bacterium of high yield lipopeptid and its application
CN109554321B (en) * 2018-12-03 2021-12-31 清华大学 Genetically engineered bacterium for high-yield lipopeptide and application thereof
CN110144320A (en) * 2019-05-16 2019-08-20 江南大学 A kind of genetically engineered bacteria producing maltotetraose amylase and its fermentation process
CN111607626A (en) * 2020-06-24 2020-09-01 江南大学 Application of a cyclodextrinase in the preparation of maltoheptaose

Similar Documents

Publication Publication Date Title
CN106754466A (en) It is a kind of for efficient exogenous protein expression and the bacillus subtilis of High Density Cultivation
CN105671070B (en) A kind of CRISPRCas9 system and its construction method for Bacillus subtilis genes group editor
WO2018129980A1 (en) Method for efficiently expressing pullulanase in bacillus subtilis and recombinant bacillus subtilis
CN107400677A (en) A kind of bacillus licheniformis genome editor&#39;s carrier based on CRISPR Cas9 systems and preparation method thereof
CN104212830B (en) A kind of bacillus subtilis Self-controlled expression system and construction method thereof and application
CN112522173B (en) Engineering bacterium for producing heterologous alkaline protease and construction method thereof
KR102246356B1 (en) Method and application to improve production of Bacillus licheniformis fermentation enzyme through spoⅡQ and pcf gene knockout
CN105861536B (en) The preparation method and application of self-induction enhanced type trehalose synthase synthesis engineering bacteria
CN113699128B (en) Method for producing nicotinamide phosphoribosyl transferase by fermentation
CN105802943B (en) A pullulanase chimera with improved performance and a Pichia pastoris mutant strain with high yield of the chimera
CN108034667A (en) A kind of red monascus alpha-amylase gene, its preparation method and application
CN107574173A (en) A kind of recombinant plasmid and its method for building High-productive Monascus Pigment Strain
CN110904174B (en) Application of bacillus licheniformis with deletion of leucine dehydrogenase gene in production of heterologous protein
CN114107146B (en) Construction method and application of resistance-marker-free auxotroph bacillus subtilis
BRPI0811501B1 (en) Expression system for producing one or more target polypeptide(s), their use, and method for producing an antibiotic-free target polypeptide
CN108220219A (en) A set of lactobacillus plantarum food-grade expression system and its application in heterologous protein expression
CN107384813B (en) Aspergillus niger strain for protein production and application thereof
CN105112348B (en) A kind of recombinant Bacillus pumilus with high production of pullulanase and its application
WO2003016525A9 (en) Process for producing alcohol from starch
CN111849790B (en) Recombinant Cephalosporium acremonium engineering bacteria and its construction method and application
CN110878293B (en) Application of bacillus licheniformis with deletion of yceD gene in production of heterologous protein
CN112239742B (en) A strain of Bacillus licheniformis producing alkaline protease and its application
AU2020204574B2 (en) B.licheniformis engineering bacteria for inhibiting bacterial autolysis, construction method and application thereof
CN104371964B (en) Strain capable of improving recombinant protein expression under aerobic condition
CN112239743B (en) Bacillus licheniformis host cell and genetic modification method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication