[go: up one dir, main page]

CN106751604B - 一种形状记忆光子晶体材料及其制备方法 - Google Patents

一种形状记忆光子晶体材料及其制备方法 Download PDF

Info

Publication number
CN106751604B
CN106751604B CN201611031784.XA CN201611031784A CN106751604B CN 106751604 B CN106751604 B CN 106751604B CN 201611031784 A CN201611031784 A CN 201611031784A CN 106751604 B CN106751604 B CN 106751604B
Authority
CN
China
Prior art keywords
shape
memory
photon crystal
nano
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611031784.XA
Other languages
English (en)
Other versions
CN106751604A (zh
Inventor
杜学敏
王娟
崔欢庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201611031784.XA priority Critical patent/CN106751604B/zh
Publication of CN106751604A publication Critical patent/CN106751604A/zh
Application granted granted Critical
Publication of CN106751604B publication Critical patent/CN106751604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/044Elimination of an inorganic solid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/12Shape memory

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种形状记忆光子晶体材料,其包括:形状记忆材料以及分布在所述形状记忆材料中的光子晶体,所述形状记忆光子晶体材料在形状记忆材料的作用下能够发生由初始形状至临时形状以及由临时形状至初始形状的形状转换,且所述形状记忆光子晶体材料发生形状转换时发生颜色的改变。本发明还公开了形状记忆光子晶体材料的制备方法。本发明的形状记忆光子晶体材料既可以实现颜色的可逆显示,同时又具备长久的颜色记忆效应。

Description

一种形状记忆光子晶体材料及其制备方法
技术领域
本发明属于智能高分子材料领域,尤其涉及一种形状记忆光子晶体及其制备方法。
背景技术
近年来,随着仿生智能材料——光子晶体的深入研究,基于光子晶体的应用也越来越广泛,如光子晶体结构色隐形眼镜,光子晶体显示器件,光子晶体防伪标签等。而且,有些应用正慢慢走向市场,如结构色隐形眼镜,不仅解决了美瞳给佩戴者带来的各种隐患,同时其具备更多的功能,如负载药物或营养物质等。
然而,现有光子晶体材料由于无法长时间可逆记忆颜色,故严重制约了其在信息存储及显示领域方面的应用。虽然,通过外加场,如磁场、电场的长期作用,可以实现颜色的可逆记忆,但是该方法不仅极不便利,而且耗能,更为重要的是使用时间受到严重限制。
发明内容
一方面,本发明的目的在于克服上述现有技术的不足之处而提供一种既可以实现颜色的可逆显示,同时又具备长久的颜色记忆效应的形状记忆光子晶体材料。
本发明的形状记忆光子晶体材料,其包括:形状记忆材料以及分布在所述形状记忆材料中的光子晶体,所述形状记忆光子晶体材料在形状记忆材料的作用下能够发生由初始形状至临时形状以及由临时形状至初始形状的形状转换,且所述形状记忆光子晶体材料发生形状转换时发生颜色的改变。
“分布在所述形状记忆聚合物中”不限于分布在所述形状记忆聚合物内部,还可分布在所述形状记忆聚合物的表面。
优选地,所述光子晶体为规律地排布在二维或三维晶体结构中的多个单分散微球,所述多个单分散微球限定间隙并且所述形状记忆材料填充所述间隙;或
所述光子晶体为反蛋白石多孔结构,所述多孔限定间隙并且所述形状记忆材料填充所述间隙;或
所述光子晶体为周期性排布的微纳米级凸起阵列结构或凹坑阵列结构并且所述光子晶体排布在所述形状记忆材料表面。
更优选地,所述微纳米级凸起或凹坑结构的尺寸为50nm~500μm,相邻凸起或凹坑间距为1nm~100μm。
更优选地,所述单分散微球包括聚苯乙烯、聚甲基丙烯酸甲酯、二氧化硅、二氧化钛、氧化铁、四氧化三铁、金、银微球以及它们的改性微球、复合微球中的至少一种。此时形成的光子晶体为胶体光子晶体。
更优选地,所述单分散微球的粒径为10nm-10μm。
在上述技术方案中,晶体结构的周期性排布类型没有限制,只要其满足在至少两个方向上存在至少一个光子禁带的晶格即可。该晶体结构典型地具有六方密堆积或面心立方晶格、优选地面心立方晶格。
规律地排布在三维晶体结构中的多个单分散微球形成的光子晶体可以具有蛋白石结构,多个单分散微球在该晶体结构中是密集堆积的。规律地排布在三维晶体结构中的多个单分散球体在三个正交方向中在邻近球体之间限定了多个间隙。总体上所述间隙是呈连续接触的,形成包埋这些单分散球体的连续基质。
用具有不同于这些单分散球体的折射率的形状记忆材料来填充在该三维晶体结构中的间隙。
术语“单分散”在此用于是指这些球体的平均直径具有不超过5%的标准偏差,优选地它不超过3%。
所述形状记忆材料是呈现至少两种形位的材料,一种形位是永久形状,另一种形位是临时或固定形状,形状记忆材料在外界条件的作用下可发生从由初始形状至临时形状以及由临时形状至初始形状的形状转换。优选地,所述形状记忆材料包括形状记忆聚合物。相对于其他形状记忆材料,形状记忆聚合物具有成本低,可设计性强,加工批量生产容易,而且很多材料可以生物降解的优点。
优选地,所述形状记忆聚合物为聚氨酯(PU)、环氧树脂(EP)、乙烯-醋酸乙烯酯共聚物(EVA)、聚酰亚胺(PI)、纤维素、聚己内酯(PCL)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-羟基乙酸共聚物(PLGA)、聚乙烯醇(PVA)、聚乙二醇、聚吡咯烷酮、聚多巴胺、聚乙烯醇缩丁醛以及它们的衍生物、复合材料、改性材料中的至少一种。
更优选地,所述聚氨酯、环氧树脂、乙烯-醋酸乙烯酯共聚物、聚酰亚胺、纤维素、聚己内酯、聚乳酸、聚乙醇酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、聚乙二醇、聚吡咯烷酮、聚多巴胺、聚乙烯醇缩丁醛的改性材料通过物理混合改性或化学改性得到;所述物理混合改性包括熔融混合、溶液混合中的至少一种;所述化学改性为化学接枝改性,包括热聚合、辐照聚合、辐射聚合中的至少一种。改性材料可以根据实际应用和需求进行特定化的设计,以满足各种不同的需求。
更优选地,所述化学改性使用引发剂进行,所述引发剂包括偶氮异丁腈、偶氮异庚腈、过氧化苯甲酰及光引发剂中的至少一种;所述化学改性在溶剂中进行,所述溶剂为氯仿、二氯甲烷、四氯甲烷、甲苯、四氢呋喃、二甲基酰胺中的至少一种。
优选地,所述形状记忆材料中还分布有功能转换材料,所述功能转换材料为光热转换材料、电热转换材料、磁致热转换材料中的至少一种。功能转换材料的加入可通过光、电、磁实现形状记忆光子晶体材料的颜色远程动态调控记忆。
更优选地,所述光热转换材料包括无机光热转换材料和/或有机光热转换材料,所述无机光热转换材料包括纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯中的至少一种,或表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯中的至少一种,或纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、石墨烯的复合材料中的至少一种;所述有机光热转换材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体及它们相应的改性材料中的至少一种;所述电热转换材料包括炭黑、碳纳米管、石墨烯及它们相应的改性材料中的至少一种;所述磁致热转换材料为Fe2O3、Fe3O4、FeCo、NiFe、CoFeO、NiFeO、MnFeO及它们的复合材料中的至少一种。
优选地,所述表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯包括表面修饰有碳碳双键、氨基、羧基、羟基和巯基中的至少一种的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯。
具体地,表面功能化的纳米金可以是表面带巯基的金纳米颗粒,表面功能化的石墨烯可以是类弹性蛋白多肽衍生物V50GB功能化的还原氧化石墨烯,但不限于此。
所述纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、石墨烯的复合材料,可以为纳米钯与碳纳米管形成的复合材料,纳米铂、纳米金与石墨烯形成的复合材料,但不限于此。
所述聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体相应的改性材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体的衍生物或共聚物。
另一方面,本发明还提供了所述的形状记忆光子晶体材料的制备方法,所述方法包括如下步骤:
(1)提供形状记忆材料;
(2)在所述形状记忆材料表面形成周期性排布的微纳米级凸起阵列结构或凹坑阵列结构;或
(1')提供规律地排布在二维或三维晶体结构中的多个单分散微球,所述多个单分散微球限定间隙;
(2')用所述形状记忆材料渗入所述晶体结构以便填充所述单分散微球之间的间隙;或
(1”)提供规律地排布在三维晶体结构中的多个单分散微球,所述多个单分散微球限定间隙;
(2”)用所述形状记忆材料渗入所述晶体结构以便填充所述单分散微球之间的间隙;
(3”)部分或全部去除所述单分散微球。
在上述技术方案中,步骤1”~3”用于制备反蛋白石结构光子晶体。
优选地,所述步骤(1)中,所述形状记忆材料以膜的形式提供。
优选地,所述步骤(2)中,通过纳米压印或光刻法在所述形状记忆材料聚合物表面形成周期性排布的微纳米级凸起阵列结构或凹坑阵列结构。
更优选地,所述纳米压印为纳米热压印或紫外纳米压印。
优选地,所述步骤(2)具体为:利用所述光子晶体结构模板对形状记忆材料进行纳米压印,脱模后,即得所述形状记忆光子晶体材料。
更优选地,所述去除通过刻蚀进行,所述刻蚀为部分刻蚀或完全刻蚀。
更优选地,所述刻蚀通过刻蚀剂进行,所述刻蚀剂包括苯、甲苯、二甲苯、氯仿、二氯甲烷、四氢呋喃、氢氟酸、氢氧化钠、氢氧化钾、盐酸、醋酸中的至少一种。
相对于现有技术,本发明的有益效果为:
本发明的形状记忆光子晶体材料中的形状记忆材料响应外界环境发生形变后,使得形状记忆光子晶体材料中的光子晶体光子带隙发生变化,从而引起布拉格衍射峰发生位移,从而产生颜色的变化,当恢复初始形状后,恢复初始颜色,因此,本发明的形状记忆光子晶体材料中的形状记忆材料既可以实现颜色的可逆显示,同时又具备长久的颜色记忆效应,可广泛应用于信息存储及显示领域方面,可靠性高、安全性好、实用性好、适用性广。
说明书附图
图1为实施例2中形状记忆光子晶体材料的扫描电镜图片;
图2为实施例3中形状记忆光子晶体材料的扫描电镜图片;
图3为实施例4中形状记忆光子晶体材料的扫描电镜图片。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本发明形状记忆光子晶体材料的制备方法的一种实施例,本实施例所述形状记忆光子晶体材料采用以下方法制备而成:
将3g聚己内酯、1g聚乙二醇二丙烯酸酯分别加入装有60mL的氯仿溶液的三口烧瓶中,且在机械搅拌作用下通入氮气并升温至60℃,后向体系中加入过氧化苯甲酰(质量分数为1wt%),并反应8h后冷却至室温。将溶液流延成膜,于室温下干燥48h,后置于真空干燥箱中干燥24h,即获得形状记忆材料。其玻璃化转变温度为55℃。
将硅基光子晶体微柱模具(微柱尺寸为0.8微米,间距为3微米)与形状记忆聚己内酯薄膜复合材料于80℃下进行压印,后降温至室温后脱模,即获得形状记忆光子晶体材料。
实施例2
本发明形状记忆光子晶体材料的制备方法的一种实施例,本实施例所述形状记忆光子晶体材料采用以下方法制备而成:
将5g聚乳酸、1.5g聚乙二醇二丙烯酸酯分别溶于10ml的氯仿溶液中,后向体系中加入紫外光引发剂Darocur 1173(质量分数为1wt%),充分搅拌均匀后,得形状记忆材料的预聚溶液(即预固液),将预聚溶液倒入特定模具中。
将硅基光子晶体微柱模具(微柱尺寸为0.6微米,间距为0.5微米)与形状记忆预聚溶液于室温下进行纳米压印紫外固化,脱模即获得形状记忆光子晶体材料(如图1所示)。
实施例3
本发明形状记忆光子晶体材料的制备方法的一种实施例,本实施例所述形状记忆光子晶体材料采用以下方法制备而成:
将洁净后的玻片垂直置入10mL直径为180纳米的单分散二氧化硅微球(配置成质量浓度为10.0wt%)乳液中,于室温下自组装获得光子晶体薄膜。将质量分数为30%的聚乳酸的氯仿溶液浇注到光子晶体薄膜上,于室温固化48h,后置于真空干燥箱中干燥24h,即获得形状记忆光子晶体材料(如图2所示)。
实施例4
本发明形状记忆光子晶体材料的制备方法的一种实施例,本实施例所述形状记忆光子晶体材料采用以下方法制备而成:
将乙氧基化三羟甲基丙烷三丙烯酸酯0.5g,聚乙二醇二丙烯酸酯0.4g,紫外引发剂Darocur 1173(0.01g)分别溶于3mL的二氯甲烷中,搅拌溶解获得形状记忆材料的预聚液(即预固液)。
将洁净后的玻片垂直置入10mL直径为180纳米的单分散二氧化硅微球(配置成质量浓度为10.0wt%)乳液中,于室温下自组装获得光子晶体薄膜。
将上述预聚液浇注到光子晶体薄膜中,并与紫外下固化30min。将上述光子晶体薄膜浸泡于1%的氢氟酸溶液中移除二氧化硅纳米颗粒,获得形状记忆光子晶体材料,其为具有形状记忆效应的反蛋白石结构光子晶体材料(如图3所示)。
实施例5
本发明形状记忆光子晶体材料的制备方法的一种实施例,本实施例所述形状记忆光子晶体材料采用以下方法制备而成:
将乙氧基化三羟甲基丙烷三丙烯酸酯0.5g,聚乙二醇二丙烯酸酯0.4g,紫外引发剂Darocur 1173(0.01g),0.18g金纳米棒分别分散到3mL的二氯甲烷中,搅拌溶解获得预聚液。
将洁净后的玻片垂直置入10mL直径为180纳米的单分散二氧化硅微球(配置成质量浓度为10.0wt%)乳液中,于室温下自组装获得光子晶体薄膜。
将上述预聚液浇注到光子晶体薄膜中,并与紫外下固化30min,即获得形状记忆光子晶体材料。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (13)

1.一种形状记忆光子晶体材料,其特征在于,包括:形状记忆材料以及分布在所述形状记忆材料中的光子晶体,所述形状记忆光子晶体材料在形状记忆材料的作用下能够发生由初始形状至临时形状以及由临时形状至初始形状的形状转换,且所述形状记忆光子晶体材料发生形状转换时发生颜色的改变;所述光子晶体为反蛋白石多孔结构,所述多孔限定间隙并且所述形状记忆材料填充所述间隙;或
所述光子晶体为周期性排布的微纳米级凸起阵列结构或凹坑阵列结构并且所述光子晶体排布在所述形状记忆材料表面。
2.如权利要求1所述的形状记忆光子晶体材料,其特征在于,所述微纳米级凸起或凹坑结构的尺寸为50nm~500μm,相邻凸起或凹坑间距为0.001nm~100μm。
3.如权利要求1所述的形状记忆光子晶体材料,其特征在于,所述形状记忆材料包括形状记忆聚合物。
4.如权利要求3所述的形状记忆光子晶体材料,其特征在于,所述形状记忆聚合物为聚氨酯、环氧树脂、乙烯-醋酸乙烯酯共聚物、聚酰亚胺、纤维素、聚己内酯、聚乳酸、聚乙醇酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、聚乙二醇、聚吡咯烷酮、聚多巴胺、聚乙烯醇缩丁醛以及它们的复合材料、改性材料中的至少一种。
5.如权利要求4所述的形状记忆光子晶体材料,其特征在于,所述聚氨酯、环氧树脂、乙烯-醋酸乙烯酯共聚物、聚酰亚胺、纤维素、聚己内酯、聚乳酸、聚乙醇酸、聚乳酸-羟基乙酸共聚物、聚乙烯醇、聚乙二醇、聚吡咯烷酮、聚多巴胺、聚乙烯醇缩丁醛的改性材料通过物理混合改性或化学改性得到;所述物理混合改性包括熔融混合、溶液混合中的至少一种;所述化学改性包括热聚合、辐照聚合、辐射聚合中的至少一种。
6.如权利要求5所述的形状记忆光子晶体材料,其特征在于,所述化学改性使用引发剂进行,所述引发剂包括偶氮异丁腈、偶氮异庚腈、过氧化苯甲酰及光引发剂中的至少一种;所述化学改性在溶剂中进行,所述溶剂为氯仿、二氯甲烷、四氯甲烷、甲苯、四氢呋喃、二甲基酰胺中的至少一种。
7.如权利要求1~6任一所述的形状记忆光子晶体材料,其特征在于,所述形状记忆材料中还分布有功能转换材料,所述功能转换材料为光热转换材料、电热转换材料、磁致热转换材料中的至少一种。
8.如权利要求7所述的形状记忆光子晶体材料,其特征在于,所述光热转换材料包括无机光热转换材料和/或有机光热转换材料,所述无机光热转换材料包括纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯中的至少一种,或表面功能化的纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷和石墨烯中的至少一种,或纳米金、纳米银、纳米铜、纳米铂、纳米钯、纳米锗、碳纳米管、黑磷、硒化铋、石墨烯的复合材料中的至少一种;所述有机光热转换材料包括聚吡咯、聚苯胺、聚乙烯二氧噻吩、聚苯乙烯磺酸盐、吲哚菁绿和卟啉脂质体及它们相应的改性材料中的至少一种;所述电热转换材料包括炭黑、碳纳米管、石墨烯及它们相应的改性材料中的至少一种;所述磁致热转换材料为Fe2O3、Fe3O4、FeCo、NiFe、CoFeO、NiFeO、MnFeO及它们的复合材料中的至少一种。
9.一种如权利要求1~8任一项所述的形状记忆光子晶体材料的制备方法,其特征在于,所述方法包括如下步骤:
(1)提供形状记忆材料;
(2)在所述形状记忆材料表面形成周期性排布的微纳米级凸起阵列结构或凹坑阵列结构。
10.如权利要求9所述的方法,其特征在于,所述步骤(2)中,通过纳米压印或光刻法在所述形状记忆材料聚合物表面形成周期性排布的微纳米级凸起阵列结构或凹坑阵列结构。
11.权利要求10所述的方法,其特征在于,所述纳米压印为纳米热压印或紫外纳米压印。
12.如权利要求11所述的方法,其特征在于,所述去除通过刻蚀进行,所述刻蚀为部分刻蚀或完全刻蚀。
13.如权利要求12所述的方法,其特征在于,所述刻蚀通过刻蚀剂进行,所述刻蚀剂包括苯、甲苯、二甲苯、氯仿、二氯甲烷、四氢呋喃、柠檬烯、氢氟酸、氢氧化钠、氢氧化钾、盐酸、醋酸中的至少一种。
CN201611031784.XA 2016-11-18 2016-11-18 一种形状记忆光子晶体材料及其制备方法 Active CN106751604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611031784.XA CN106751604B (zh) 2016-11-18 2016-11-18 一种形状记忆光子晶体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611031784.XA CN106751604B (zh) 2016-11-18 2016-11-18 一种形状记忆光子晶体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106751604A CN106751604A (zh) 2017-05-31
CN106751604B true CN106751604B (zh) 2018-12-21

Family

ID=58970909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611031784.XA Active CN106751604B (zh) 2016-11-18 2016-11-18 一种形状记忆光子晶体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106751604B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109087984B (zh) * 2017-06-14 2020-04-14 逢甲大学 荧光增益胶膜及其制作方法
CN108298824A (zh) * 2017-08-18 2018-07-20 深圳先进技术研究院 一种新型隔热材料及其制备方法
CN107696372B (zh) * 2017-10-12 2018-08-03 华中科技大学 一种基于光子晶体高弹态法制备高质量透明制件的成形方法
CN108504057B (zh) * 2018-03-29 2020-07-17 北京大学深圳研究生院 一种形状记忆复合材料及其制备方法
CN110146976B (zh) * 2019-05-28 2020-06-19 西安交通大学 基于形状记忆合金聚合物驱动柔性光子晶体变色的方法
CN110908145B (zh) * 2019-12-13 2023-12-01 中国科学院深圳先进技术研究院 一种具有不可逆温度响应性的光子晶体材料及其制备方法
CN111621042A (zh) * 2020-04-28 2020-09-04 淮安市天达医疗器械有限公司 浸润性可调的石墨烯光子晶体薄膜的制备方法
CN114478935B (zh) * 2020-11-12 2024-06-28 中国石油化工股份有限公司 一种耐温抗盐形状记忆材料颗粒体系及其制备方法
CN112795043A (zh) * 2021-02-01 2021-05-14 湖州闪思新材料科技有限公司 基于纳米纤维素光子晶体碎片制备聚合物防伪膜的方法
CN113278176B (zh) * 2021-05-19 2022-07-26 青岛科技大学 一种反蛋白石型光子晶体可重复使用薄膜材料及其制备方法
CN113402763B (zh) * 2021-07-05 2022-04-08 吉林大学 一种自修复亲水多孔光热膜及其制备方法和应用
CN114839798B (zh) * 2022-04-11 2024-08-23 深圳先进技术研究院 基于薄膜光子晶体的结构色隐形眼镜及其制备方法
CN118374351A (zh) * 2024-04-19 2024-07-23 南京鼓楼医院 一种心肌细胞驱动的光子晶体微柱阵列及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074090B2 (en) * 2011-04-15 2015-07-07 GM Global Technology Operations LLC Shape memory polymer-based tunable photonic device
CN104558662B (zh) * 2014-12-31 2018-10-30 中国科学院深圳先进技术研究院 一种光子晶体纸及其制备方法
CN105116564A (zh) * 2015-08-19 2015-12-02 中国科学院深圳先进技术研究院 一种具有光子晶体结构色的隐形眼镜及其制备方法
CN105153864A (zh) * 2015-08-19 2015-12-16 中国科学院深圳先进技术研究院 一种光热致形状记忆复合材料及其制备方法
CN105504318B (zh) * 2015-12-04 2018-01-02 北京科技大学 一种具有光子能带结构的柔性智能薄膜材料及其制备方法

Also Published As

Publication number Publication date
CN106751604A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106751604B (zh) 一种形状记忆光子晶体材料及其制备方法
Qi et al. Stretchable electronics based on PDMS substrates
Ryan et al. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications
Zhang et al. Bioinspired bilayer structural color hydrogel actuator with multienvironment responsiveness and survivability
Kim et al. Photoswitchable surfactant-driven reversible shape-and color-changing block copolymer particles
Gao et al. Stimuli‐responsive photonic actuators for integrated biomimetic and intelligent systems
White Photomechanical materials, composites, and systems: wireless transduction of light into work
Chow et al. Smart polymer nanocomposites: A review.
Ai et al. Advanced colloidal lithography beyond surface patterning
Li et al. Functional PDMS elastomers: Bulk composites, surface engineering, and precision fabrication
Hsu et al. Stimuli-responsive, mechanically-adaptive polymer nanocomposites
Zhang et al. Patterning colloidal crystals and nanostructure arrays by soft lithography
JP4709322B2 (ja) 支持された、および独立した3次元のマイクロまたはナノ構造体のインプリント方法
CN102736272B (zh) 基于形状记忆聚合物的可调谐光子装置
US20150325329A1 (en) Nanoparticles Having Functional Additives for Self and Directed Assembly and Methods of Fabricating Same
CN111925723B (zh) 一种制备具有力致变色能力的结构色色彩涂层的方法
US20090266415A1 (en) Nanostructures and materials for photovoltaic devices
Xiao et al. Recent advances in the design, fabrication, actuation mechanisms and applications of liquid crystal elastomers
Li et al. Self-healing system of superhydrophobic surfaces inspired from and beyond nature
CN112812565B (zh) 用于3d打印的磁响应变色光子晶体墨水及其制备方法
Sun et al. Simple and affordable way to achieve polymeric superhydrophobic surfaces with biomimetic hierarchical roughness
Yu et al. Recent progress in light‐Scattering porous polymers and their applications
Liu et al. Functional Micro–Nano Structure with Variable Colour: Applications for Anti‐Counterfeiting
Xue et al. An Environmental Perception Self‐Adaptive Discolorable Hydrogel Film toward Sensing and Display
Song et al. Photocurable polymer nanocomposites for magnetic, optical, and biological applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20170718

Address after: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue

Applicant after: Shenzhen Advanced Technology Research Inst.

Address before: 1068 No. 518055 Guangdong city in Shenzhen Province, Nanshan District City Xili University School Avenue

Applicant before: Shenzhen Institutes of Advanced Technology, Chinese Academy of Science

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant