CN106737855B - A Robot Accuracy Compensation Method Combining Pose Error Model and Stiffness Compensation - Google Patents
A Robot Accuracy Compensation Method Combining Pose Error Model and Stiffness Compensation Download PDFInfo
- Publication number
- CN106737855B CN106737855B CN201610700370.5A CN201610700370A CN106737855B CN 106737855 B CN106737855 B CN 106737855B CN 201610700370 A CN201610700370 A CN 201610700370A CN 106737855 B CN106737855 B CN 106737855B
- Authority
- CN
- China
- Prior art keywords
- robot
- error
- coordinate system
- compensation
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims description 33
- 230000009466 transformation Effects 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 238000009795 derivation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Landscapes
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种综合位姿误差模型与刚度补偿的机器人精度补偿方法,包括以下步骤:步骤1、根据机器人的结构参数建立机器人运动模型;步骤2、建立机器人误差模型;步骤3、在机器人工作空间内,随意给定目标位姿点,当机器人末端移动到指定点时,记录此时的关节角度;步骤4、利用位置测量仪器测量给定目标位姿点的实际坐标Pa;步骤5、利用最小二乘法对误差参数进行辨识;步骤6、在机器人末端施加载荷,测量其变形量,之后返回步骤3将重新辨识后的结构误差再次补偿给运动模型,从而消除载荷引起的变形导致的末端位姿误差,同时将载荷引起的变形量数据存入数据库,用于后期的精度补偿。本发明可以显著提高机器人的绝对定位精度,简单,高效。
The invention discloses a method for compensating robot accuracy by synthesizing a pose error model and stiffness compensation, comprising the following steps: step 1, establishing a robot motion model according to structural parameters of the robot; In the workspace, the target pose point is randomly given, and when the end of the robot moves to the designated point, the joint angle at this time is recorded; Step 4, use the position measuring instrument to measure the actual coordinates Pa of the given target pose point; Step 5, Use the least squares method to identify the error parameters; step 6, apply a load to the end of the robot, measure its deformation, and then return to step 3 to compensate the re-identified structural error to the motion model again, so as to eliminate the end caused by the deformation caused by the load. At the same time, the deformation data caused by the load is stored in the database for later precision compensation. The invention can significantly improve the absolute positioning accuracy of the robot, and is simple and efficient.
Description
技术领域technical field
本发明属于机器人标定技术领域,特别是一种综合位姿误差模型与刚度补偿的机器人精度补偿方法。The invention belongs to the technical field of robot calibration, in particular to a robot precision compensation method integrating a pose error model and stiffness compensation.
背景技术Background technique
随着《中国制造2025纲要》的颁布,工业机器人将在我国掀起又一次发展热潮。精度作为衡量工业机器人性能的重要指标包括重复定位精度与绝对定位精度。现在的工业机器人重复定位精度高,而绝对定位精度低,不利于离线编程以及高精度加工。而机器人运动学标定是提高机器人定位精度的有效手段,主要包括建模、测量、辨识、补偿四个阶段。With the promulgation of the "Made in China 2025 Outline", industrial robots will set off another development boom in my country. Accuracy, as an important index to measure the performance of industrial robots, includes repeated positioning accuracy and absolute positioning accuracy. Today's industrial robots have high repetitive positioning accuracy and low absolute positioning accuracy, which is not conducive to off-line programming and high-precision machining. The robot kinematics calibration is an effective means to improve the positioning accuracy of the robot, which mainly includes four stages: modeling, measurement, identification and compensation.
传统的方法进行机器人标定,仅是针对运动学模型参数引起误差进行补偿,而没有考虑载荷引起的变形量,没有进行综合补偿。而传统刚度补偿方面,需要进行大量的公式推导,求解机器人各关节挠度以及臂杆挠度,建立刚度模型。过程复杂,效率较低。The traditional method for robot calibration only compensates for the errors caused by the kinematic model parameters, but does not consider the deformation caused by the load, and does not perform comprehensive compensation. In traditional stiffness compensation, a lot of formula derivation is needed to solve the deflection of each joint and the deflection of the arm, and establish a stiffness model. The process is complicated and the efficiency is low.
发明内容SUMMARY OF THE INVENTION
本发明所解决的技术问题在于提供一种综合位姿误差模型与刚度补偿的机器人精度补偿方法。The technical problem solved by the present invention is to provide a robot precision compensation method that integrates a pose error model and stiffness compensation.
实现本发明目的的技术解决方案为:一种综合位姿误差模型与刚度补偿的机器人精度补偿方法,包括以下步骤:The technical solution for realizing the purpose of the present invention is: a robot precision compensation method integrating a pose error model and stiffness compensation, comprising the following steps:
步骤1、根据机器人的结构参数建立机器人运动模型;具体为:Step 1. Establish a robot motion model according to the structural parameters of the robot; specifically:
步骤1-1、根据DH法建立机器人相邻关节间的齐次变换矩阵,该矩阵为:Step 1-1. According to the DH method, establish a homogeneous transformation matrix between adjacent joints of the robot. The matrix is:
上式中,ai为连杆长度,αi为关节扭角,di为连杆偏距,θi为关节转角,x为连杆坐标系X轴坐标,z为连杆坐标系Z轴坐标;In the above formula, a i is the length of the connecting rod, α i is the torsion angle of the joint, d i is the offset distance of the connecting rod, θ i is the rotation angle of the joint, x is the X-axis coordinate of the connecting rod coordinate system, and z is the Z-axis of the connecting rod coordinate system. coordinate;
步骤1-2、对步骤1-1中建立的齐次变换矩阵引入绕y轴的旋转Rot(y,β),消除中间连杆之间因为轴平行或近乎平行时产生的奇异,相邻关节间的齐次变换矩阵修正为:Step 1-2. Introduce the rotation Rot(y, β) around the y-axis to the homogeneous transformation matrix established in step 1-1 to eliminate the singularity between the intermediate links because the axes are parallel or nearly parallel, and the adjacent joints The homogeneous transformation matrix between is modified as:
上式中,βi表示机器人第i杆坐标系绕y轴的旋转角度,y为连杆坐标系Y轴坐标,c为cos,s为sin;In the above formula, β i represents the rotation angle of the i-th rod coordinate system of the robot around the y-axis, y is the Y-axis coordinate of the connecting rod coordinate system, c is cos, and s is sin;
步骤1-3、增加一个额外参数zn,描述工具坐标系沿末端连杆坐标系z轴的平移,建立工具坐标系相对于末端连杆坐标系的变换矩阵为:Step 1-3, add an extra parameter z n to describe the translation of the tool coordinate system along the z-axis of the end link coordinate system, and establish the transformation matrix of the tool coordinate system relative to the end link coordinate system as:
步骤1-4、对于N关节机器人,根据上述步骤得到机器人工具坐标系与基座标系之间的运动学关系为:Steps 1-4. For an N-joint robot, the kinematic relationship between the robot tool coordinate system and the base coordinate system obtained according to the above steps is:
T=0A1×1A2×2A3×3A4×4A5×5A6×···×n-1An T = 0 A 1 × 1 A 2 × 2 A 3 × 3 A 4 × 4 A 5 × 5 A 6 ×... × n-1 A n
n的取值为1...N,N≥1该运动学关系即为机器人运动模型。The value of n is 1...N, and N≥1, the kinematic relationship is the robot motion model.
步骤2、根据步骤1建立的机器人运动模型来建立机器人误差模型;具体为:Step 2. Establish a robot error model according to the robot motion model established in Step 1; specifically:
步骤2-1、由微分变换原理得到中间连杆实际转换矩阵与名义转换矩阵误差dAi为:Step 2-1. The error dA i between the actual conversion matrix of the intermediate link and the nominal conversion matrix is obtained by the differential transformation principle:
且 and
Ai为中间连杆转换矩阵;A i is the intermediate link conversion matrix;
步骤2-2、由微分变换原理得到工具坐标系相对于末端连杆坐标系转换矩阵误差:Step 2-2. Obtain the transformation matrix error of the tool coordinate system relative to the end link coordinate system by the differential transformation principle:
An为工具坐标系与末端连杆坐标系转换矩阵;An is the transformation matrix between the tool coordinate system and the end link coordinate system;
步骤2-3、对于N关节机器人,其最终的误差模型为中间连杆误差加上工具坐标系相对于末端连杆变换的误差,求全微分后得到下式:Step 2-3. For the N-joint robot, the final error model is the error of the intermediate link plus the error of the tool coordinate system relative to the transformation of the end link. After the total differential, the following formula is obtained:
其中p为末端位置坐标;where p is the end position coordinate;
将其写作:Write it as:
Δp=JδΔXΔp=J δ ΔX
其中ΔX=(Δθ1...Δθn,Δα1...Δαn,Δa1...Δan,Δd1...Δdn,Δβ1...Δβn,Δzn)T表示机器人各连杆结构误差Jδ是辨识雅可比矩阵。where ΔX=(Δθ 1 ... Δθ n , Δα 1 ... Δα n , Δa 1 ... Δa n , Δd 1 ... Δd n , Δβ 1 ... Δβ n , Δz n ) T represents the robot The structural error J δ of each connecting rod is the identification Jacobian matrix.
步骤3、在机器人工作空间内,随意给定目标位姿点,其名义坐标为Pn,当机器人末端移动到指定点时,记录此时的关节角度;Step 3. In the working space of the robot, the target pose point is freely given, and its nominal coordinate is Pn. When the end of the robot moves to the specified point, the joint angle at this time is recorded;
步骤4、利用位置测量仪器测量给定目标位姿点的实际坐标Pa;Step 4. Use a position measuring instrument to measure the actual coordinates Pa of the given target pose point;
步骤5、利用最小二乘法对误差参数进行辨识,将辨识出的结构误差补偿给机器人运动模型名义参数,验证是否满足要求,如果满足要求则执行下一步,否则返回步骤3;Step 5. Use the least squares method to identify the error parameters, and compensate the identified structural errors to the nominal parameters of the robot motion model to verify whether the requirements are met. If the requirements are met, perform the next step, otherwise return to step 3;
将辨识出的结构误差补偿给运动模型名义参数具体是将结构参数加上辨识出的误差参数;Compensating the identified structural errors to the nominal parameters of the motion model is to add the structural parameters to the identified error parameters;
验证是否满足要求具体是指:测量实际坐标,与补偿前的数据进行比较,是否满足公差范围±0.2mm,如果在公差范围内,则满足要求,否则不满足要求。Verifying whether the requirements are met specifically refers to: measuring the actual coordinates, comparing with the data before compensation, whether the tolerance range is ±0.2mm, if it is within the tolerance range, it meets the requirements, otherwise it does not meet the requirements.
步骤6、在机器人末端施加载荷,测量其变形量,之后返回步骤3将重新辨识后的结构误差再次补偿给机器人运动模型,从而消除载荷引起的变形导致的末端位姿误差,同时将载荷引起的变形量数据存入数据库,用于后期的精度补偿。在机器人末端施加载荷,测量其变形量具体为:Step 6. Apply a load at the end of the robot, measure its deformation, and then go back to step 3 to compensate the re-identified structural error to the robot motion model again, so as to eliminate the end pose error caused by the deformation caused by the load, and at the same time, reduce the deformation caused by the load. The deformation data is stored in the database for later precision compensation. Apply a load at the end of the robot, and measure its deformation as follows:
步骤6-1、在额定载荷范围内,向机器人末端施加不同质量载荷,利用应力应变仪测量机器人各部件变形量,并利用仪器测量此时机器人到达指定点的实际坐标;Step 6-1. Within the rated load range, apply different mass loads to the end of the robot, use the stress-strain gauge to measure the deformation of each part of the robot, and use the instrument to measure the actual coordinates of the robot reaching the designated point at this time;
步骤6-2、对测量结果进行处理,获取机器人各部件变形量随载荷变化的曲线,获取机器人末端位置误差随载荷变化的曲线。Step 6-2: Process the measurement results, obtain the curve of the deformation amount of each part of the robot changing with the load, and obtain the curve of the robot end position error changing with the load.
本发明与现有技术相比,其显著优点为:(1)本发明使用的运动学模型在MDH法的基础上增加了工具坐标系,构成6参数模型,使得运动模型更加完备,能够更好地描述机器人模型。(2)本发明的方法对机器人结构误差识别采用最小二乘法,运用matlab等软件可以快速得到结构误差辨识结果。(3)本发明的方法根据位姿误差模型进行补偿之后,针对机器人末端载荷引起的变形量进行了二次补偿,同时不需要再对机器人建立刚度模型,省去了复杂的运算推导过程。(4)本发明的方法获取机器人本体变形量对载荷的变化曲线,使得机器人在遇到类似工况时调取离线结果,提高机器人在线工作效率。Compared with the prior art, the present invention has the following significant advantages: (1) The kinematics model used in the present invention adds a tool coordinate system on the basis of the MDH method to form a 6-parameter model, so that the motion model is more complete and can be better describe the robot model. (2) The method of the present invention adopts the least square method for the identification of the structural error of the robot, and can quickly obtain the identification result of the structural error by using software such as matlab. (3) After the method of the present invention performs compensation according to the pose error model, the deformation amount caused by the end load of the robot is compensated twice, and at the same time, there is no need to establish a stiffness model for the robot, and the complex calculation and derivation process is omitted. (4) The method of the present invention obtains the change curve of the deformation amount of the robot body against the load, so that the robot can retrieve offline results when encountering similar working conditions, and improve the online work efficiency of the robot.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below with reference to the accompanying drawings.
附图说明Description of drawings
图1为本发明的一种综合位姿误差模型与刚度补偿的机器人精度补偿方法流程图。FIG. 1 is a flow chart of a method for compensating robot accuracy by combining a pose error model and stiffness compensation according to the present invention.
图2为由机器人末端施加载荷引起的各臂杆末端变形,其中图(a)为臂杆受力弯曲变形图,图(b)为臂杆受力拉伸变形图,图(c)为臂杆受力扭转变形图。Figure 2 shows the deformation of the end of each arm caused by the load applied to the end of the robot. Figure (a) is the bending deformation diagram of the arm, Figure (b) is the stretching deformation of the arm, and Figure (c) is the arm. Torsional deformation diagram of the rod.
具体实施方式Detailed ways
结合图1、图2,本发明的一种综合位姿误差模型与刚度补偿的机器人精度补偿方法,包括以下步骤:With reference to Fig. 1 and Fig. 2, a robot precision compensation method for comprehensive pose error model and stiffness compensation of the present invention includes the following steps:
步骤1、根据机器人的结构参数建立机器人运动模型;具体为:Step 1. Establish a robot motion model according to the structural parameters of the robot; specifically:
步骤1-1、根据DH法建立机器人相邻关节间的齐次变换矩阵,该矩阵为:Step 1-1. According to the DH method, establish a homogeneous transformation matrix between adjacent joints of the robot. The matrix is:
上式中,ai为连杆长度,αi为关节扭角,di为连杆偏距,θi为关节转角,X为连杆坐标系X轴,Z为连杆坐标系Z轴。In the above formula, a i is the length of the connecting rod, α i is the joint torsion angle, d i is the connecting rod offset distance, θ i is the joint rotation angle, X is the X axis of the connecting rod coordinate system, and Z is the Z axis of the connecting rod coordinate system.
步骤1-2、对步骤1-1中建立的齐次变换矩阵引入绕y轴的旋转Rot(y,β),消除中间连杆之间因为轴平行或近乎平行时产生的奇异,相邻关节间的齐次变换矩阵修正为:Step 1-2. Introduce the rotation Rot(y, β) around the y-axis to the homogeneous transformation matrix established in step 1-1 to eliminate the singularity between the intermediate links because the axes are parallel or nearly parallel, and the adjacent joints The homogeneous transformation matrix between is modified as:
上式中,βi表示机器人第i杆坐标系绕y轴的旋转角度,y为连杆坐标系Y轴,c为cos,s为sin;In the above formula, β i represents the rotation angle of the i-th rod coordinate system of the robot around the y-axis, y is the Y-axis of the connecting rod coordinate system, c is cos, and s is sin;
步骤1-3、增加一个额外参数zn,描述工具坐标系沿末端连杆坐标系z轴的平移,建立工具坐标系相对于末端连杆坐标系的变换矩阵为:Step 1-3, add an extra parameter z n to describe the translation of the tool coordinate system along the z-axis of the end link coordinate system, and establish the transformation matrix of the tool coordinate system relative to the end link coordinate system as:
步骤1-4、对于N关节机器人,根据上述步骤得到机器人工具坐标系与基座标系之间的运动学关系为:Steps 1-4. For an N-joint robot, the kinematic relationship between the robot tool coordinate system and the base coordinate system obtained according to the above steps is:
T=0A1×1A2×2A3×3A4×4A5×5A6×···×n-1An T = 0 A 1 × 1 A 2 × 2 A 3 × 3 A 4 × 4 A 5 × 5 A 6 ×... × n-1 A n
n的取值为1...N,N≥1,该运动学关系即为机器人运动模型。The value of n is 1...N, N≥1, and the kinematic relationship is the robot motion model.
步骤2、根据步骤1建立的机器人运动模型来建立机器人误差模型;具体为:Step 2. Establish a robot error model according to the robot motion model established in Step 1; specifically:
步骤2-1、由微分变换原理得到中间连杆实际转换矩阵与名义转换矩阵误差dAi为:Step 2-1. The error dA i between the actual conversion matrix of the intermediate link and the nominal conversion matrix is obtained by the differential transformation principle:
且 and
Ai为中间连杆转换矩阵。A i is the intermediate link transformation matrix.
步骤2-2、由微分变换原理得到工具坐标系相对于末端连杆坐标系转换矩阵误差:Step 2-2. Obtain the transformation matrix error of the tool coordinate system relative to the end link coordinate system by the differential transformation principle:
An为工具坐标系与末端连杆坐标系转换矩阵。An is the transformation matrix between the tool coordinate system and the end link coordinate system.
步骤2-3、对于N关节机器人,其最终的误差模型为中间连杆误差加上工具坐标系相对于末端连杆变换的误差,求全微分后得到下式:Step 2-3. For the N-joint robot, the final error model is the error of the intermediate link plus the error of the tool coordinate system relative to the transformation of the end link. After the total differential, the following formula is obtained:
其中p为末端位置坐标。where p is the end position coordinate.
将其写作:Write it as:
Δp=JδΔXΔp=J δ ΔX
其中ΔX=(Δθ1...Δθn,Δα1...Δαn,Δa1...Δan,Δd1...Δdn,Δβ1...Δβn,Δzn)T表示机器人各连杆结构误差Jδ是辨识雅可比矩阵。where ΔX=(Δθ 1 ... Δθ n , Δα 1 ... Δα n , Δa 1 ... Δa n , Δd 1 ... Δd n , Δβ 1 ... Δβ n , Δz n ) T represents the robot The structural error J δ of each connecting rod is the identification Jacobian matrix.
步骤3、在机器人工作空间内,随意给定目标位姿点,其名义坐标为Pn,当机器人末端移动到指定点时,记录此时的关节角度;Step 3. In the working space of the robot, the target pose point is freely given, and its nominal coordinate is Pn. When the end of the robot moves to the specified point, the joint angle at this time is recorded;
步骤4、利用位置测量仪器测量给定目标位姿点的实际坐标Pa;Step 4. Use a position measuring instrument to measure the actual coordinates Pa of the given target pose point;
步骤5、利用最小二乘法对误差参数进行辨识,将辨识出的结构误差补偿给机器人运动模型名义参数,验证是否满足要求,如果满足要求则执行下一步,否则返回步骤3;Step 5. Use the least squares method to identify the error parameters, and compensate the identified structural errors to the nominal parameters of the robot motion model to verify whether the requirements are met. If the requirements are met, perform the next step, otherwise return to step 3;
将辨识出的结构误差补偿给运动模型名义参数具体是将结构参数加上辨识出的误差参数;Compensating the identified structural errors to the nominal parameters of the motion model is to add the structural parameters to the identified error parameters;
验证是否满足要求具体是指:测量实际坐标,与补偿前的数据进行比较,是否满足公差范围±0.2mm,如果在公差范围内,则满足要求,否则不满足要求。Verifying whether the requirements are met specifically refers to: measuring the actual coordinates, comparing with the data before compensation, whether the tolerance range is ±0.2mm, if it is within the tolerance range, it meets the requirements, otherwise it does not meet the requirements.
步骤6、参照图2所示,在机器人末端施加载荷会引起臂杆的变形,导致机器人末端定位误差。在机器人末端施加载荷,测量其变形量,之后返回步骤3将重新辨识后的结构误差再次补偿给机器人运动模型,从而消除载荷引起的变形导致的末端位姿误差,同时将载荷引起的变形量数据存入数据库,用于后期的精度补偿。具体为:Step 6. Referring to Figure 2, applying a load to the end of the robot will cause deformation of the arm, resulting in a positioning error of the end of the robot. Apply a load at the end of the robot, measure its deformation, and then return to step 3 to compensate the re-identified structural error to the robot motion model again, so as to eliminate the end pose error caused by the deformation caused by the load, and at the same time, the deformation data caused by the load will be Stored in the database for later precision compensation. Specifically:
步骤6-1、在额定载荷范围内,向机器人末端施加不同质量载荷,利用应力应变仪测量机器人各部件变形量,并利用仪器测量此时机器人到达指定点的实际坐标;Step 6-1. Within the rated load range, apply different mass loads to the end of the robot, use the stress-strain gauge to measure the deformation of each part of the robot, and use the instrument to measure the actual coordinates of the robot reaching the designated point at this time;
步骤6-2、对测量结果进行处理,获取机器人各部件变形量随载荷变化的曲线,获取机器人末端位置误差随载荷变化的曲线。Step 6-2: Process the measurement results, obtain the curve of the deformation amount of each part of the robot changing with the load, and obtain the curve of the robot end position error changing with the load.
综上所述,本发明公开的一种综合位姿误差模型与刚度补偿的机器人精度补偿方法,在机器人工作空间内随机给定目标位姿记录名义坐标以及关节角度,测量给定点实际位姿,建立机器人误差模型,通过最小二乘法对误差进行辨识,并将辨识出的误差补偿给运动模型名义参数,然后在机器人末端施加载荷,测量变形量,进行二次补偿。实现机器人绝对定位精度的补偿。本发明可以显著提高机器人的绝对定位精度,简单,高效。To sum up, the present invention discloses a method for compensating robot accuracy by integrating a pose error model and stiffness compensation. A target pose is randomly given in the robot workspace to record nominal coordinates and joint angles, and the actual pose of a given point is measured. The robot error model is established, the error is identified by the least square method, and the identified error is compensated to the nominal parameters of the motion model, and then a load is applied to the end of the robot, the deformation is measured, and the secondary compensation is performed. Realize the compensation of the absolute positioning accuracy of the robot. The invention can significantly improve the absolute positioning accuracy of the robot, and is simple and efficient.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610700370.5A CN106737855B (en) | 2016-08-22 | 2016-08-22 | A Robot Accuracy Compensation Method Combining Pose Error Model and Stiffness Compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610700370.5A CN106737855B (en) | 2016-08-22 | 2016-08-22 | A Robot Accuracy Compensation Method Combining Pose Error Model and Stiffness Compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106737855A CN106737855A (en) | 2017-05-31 |
CN106737855B true CN106737855B (en) | 2019-07-02 |
Family
ID=58972047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610700370.5A Active CN106737855B (en) | 2016-08-22 | 2016-08-22 | A Robot Accuracy Compensation Method Combining Pose Error Model and Stiffness Compensation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106737855B (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107607918B (en) * | 2017-08-24 | 2020-07-21 | 北京航空航天大学 | A robot-based approach to feed positioning and defocusing of cylindrical near-field measurement |
CN107443382B (en) * | 2017-09-12 | 2020-09-22 | 清华大学 | Structural parameter error identification and compensation method of industrial robot |
CN108044651A (en) * | 2017-10-19 | 2018-05-18 | 北京航空航天大学 | A kind of space manipulator kinematics parameters on-orbit calibration method based on binocular vision |
CN108453727B (en) * | 2018-01-11 | 2020-08-25 | 中国人民解放军63920部队 | Method and system for correcting pose error of tail end of mechanical arm based on elliptical characteristics |
CN108225239B (en) * | 2018-01-25 | 2019-10-22 | 哈尔滨工业大学 | A Calculation Method of the Static Error Domain of the End of the Extended Arm of the Spaceborne Antenna |
CN108393928B (en) * | 2018-01-26 | 2020-06-30 | 南京理工大学 | Multi-rigid body-finite element hybrid analysis method for contact collision of flexible robot manipulators |
CN108406768B (en) * | 2018-03-09 | 2021-11-19 | 汇川技术(东莞)有限公司 | Robot calibration method and system based on self-weight and load deformation compensation |
CN108608462B (en) * | 2018-05-07 | 2021-04-27 | 苏州尚贤医疗机器人技术股份有限公司 | Quadruple precision compensation method for large heavy-duty mechanical arm |
CN108748162B (en) * | 2018-07-09 | 2021-05-25 | 五邑大学 | Mechanical arm control method based on least square method for robot experiment teaching |
JP6823024B2 (en) * | 2018-09-11 | 2021-01-27 | ファナック株式会社 | Robot calibration system and calibration method |
CN109623810B (en) * | 2018-11-26 | 2022-04-22 | 南京航空航天大学 | Method for planning smooth time optimal trajectory of robot |
CN109465829B (en) * | 2018-12-12 | 2021-05-04 | 南京工程学院 | A Geometric Parameter Identification Method of Industrial Robot Based on Transformation Matrix Error Model |
CN109773786B (en) * | 2018-12-29 | 2022-04-19 | 南京埃斯顿机器人工程有限公司 | Industrial robot plane precision calibration method |
CN110053050A (en) * | 2019-04-22 | 2019-07-26 | 珠海格力智能装备有限公司 | Robot track precision compensation method and device, storage medium and processor |
CN110193829B (en) * | 2019-04-24 | 2020-04-07 | 南京航空航天大学 | Robot precision control method for coupling kinematics and rigidity parameter identification |
CN110161850B (en) * | 2019-04-24 | 2020-04-07 | 南京航空航天大学 | Variable parameter rigidity identification and modeling method for industrial robot |
CN110053051B (en) * | 2019-04-30 | 2020-08-21 | 杭州亿恒科技有限公司 | Industrial series robot joint stiffness coefficient identification method |
CN111055273B (en) * | 2019-05-16 | 2022-10-11 | 广西大学 | Two-step error compensation method for robot |
CN110152211A (en) * | 2019-06-12 | 2019-08-23 | 兰州理工大学 | A patient-carrying medical manipulator error compensation system and method |
JP7396829B2 (en) * | 2019-07-31 | 2023-12-12 | ファナック株式会社 | Device, robot control device, robot system, and method for setting robot coordinate system |
CN110421566B (en) * | 2019-08-08 | 2020-10-27 | 华东交通大学 | A Robot Accuracy Compensation Method Based on Approximation Weighted Average Interpolation |
CN110977940B (en) * | 2019-11-28 | 2021-04-23 | 清华大学 | Geometric error modeling method and device for parallel-series robot |
CN110962124B (en) * | 2019-12-05 | 2022-12-27 | 齐鲁工业大学 | Method for compensating static errors and correcting dynamic stiffness model of cutting machining robot |
CN111007804B (en) * | 2019-12-05 | 2023-06-02 | 齐鲁工业大学 | Dynamic error compensation and control method for cutting machining robot |
CN111390914B (en) * | 2020-04-17 | 2023-02-28 | 上海智殷自动化科技有限公司 | Robot zero position and tool coordinate calibration method |
CN111590581B (en) * | 2020-05-26 | 2021-10-22 | 珠海格力智能装备有限公司 | Positioning compensation method and device for robot |
CN112873199B (en) * | 2021-01-08 | 2022-07-19 | 西北工业大学 | Robot absolute positioning precision calibration method based on kinematics and spatial interpolation |
CN112861317B (en) * | 2021-01-11 | 2022-09-30 | 合肥工业大学 | Kinematics Modeling Method of Articulated Coordinate Measuring Machine for Compensating Rotation Axis Tilt Error |
CN112894814B (en) * | 2021-01-25 | 2023-06-30 | 江苏集萃智能制造技术研究所有限公司 | Mechanical arm DH parameter identification method based on least square method |
CN113146630B (en) * | 2021-04-19 | 2023-10-20 | 华南理工大学 | Industrial robot milling error compensation method, system, device and medium |
CN113927594B (en) * | 2021-09-26 | 2023-07-14 | 珠海格力智能装备有限公司 | Robot joint rotation angle compensation method and device |
CN114135224B (en) * | 2021-11-30 | 2024-02-02 | 江苏徐工工程机械研究院有限公司 | Geotechnical engineering machine and working arm deflection compensation method thereof |
CN115179289B (en) * | 2022-07-18 | 2024-09-20 | 天津大学 | Digital twinning-oriented robot calibration method |
CN115091464B (en) * | 2022-07-22 | 2024-10-01 | 西安理工大学 | Identification method of joint stiffness parameters of robotic arm |
CN115042189B (en) * | 2022-07-22 | 2024-10-01 | 西安理工大学 | Robotic arm parameter error identification and compensation method |
CN115055984B (en) | 2022-08-16 | 2022-11-25 | 山东大学 | Electro-hydraulic micro-displacement platform, micro-displacement system, precision compensation system and method |
CN115416018B (en) * | 2022-08-17 | 2024-03-15 | 雅客智慧(北京)科技有限公司 | End effector deformation compensation method, device, electronic equipment and storage medium |
CN115431302B (en) * | 2022-11-09 | 2023-03-24 | 广东隆崎机器人有限公司 | Robot joint idle stroke measuring method and device, electronic equipment and storage medium |
CN115816458A (en) * | 2022-12-13 | 2023-03-21 | 清华大学 | Robot kinematics parameter and gravity integrated calibration and compensation method and device |
CN117301082B (en) * | 2023-11-28 | 2024-01-23 | 佛山华数机器人有限公司 | Joint flexibility compensation method for heavy-load robot |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10120939A1 (en) * | 2001-04-20 | 2002-10-24 | Schunk Gmbh & Co Kg | Gripper for manipulators has electric drive for actuator part with drive shaft coupled to actuator part via spindle drive in the form of a trapezoidal or conical threaded drive |
CN101231749A (en) * | 2007-12-20 | 2008-07-30 | 昆山华恒工程技术中心有限公司 | Method for calibrating industry robot |
CN102679925A (en) * | 2012-05-24 | 2012-09-19 | 上海飞机制造有限公司 | Method for measuring positioning error of robot |
CN103231375A (en) * | 2013-04-28 | 2013-08-07 | 苏州大学 | Industrial robot calibration method based on distance error models |
CN104408299A (en) * | 2014-11-17 | 2015-03-11 | 广东产品质量监督检验研究院 | Position error compensation method for distance recognition superfluous kinematics parameter-based robot |
-
2016
- 2016-08-22 CN CN201610700370.5A patent/CN106737855B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10120939A1 (en) * | 2001-04-20 | 2002-10-24 | Schunk Gmbh & Co Kg | Gripper for manipulators has electric drive for actuator part with drive shaft coupled to actuator part via spindle drive in the form of a trapezoidal or conical threaded drive |
CN101231749A (en) * | 2007-12-20 | 2008-07-30 | 昆山华恒工程技术中心有限公司 | Method for calibrating industry robot |
CN102679925A (en) * | 2012-05-24 | 2012-09-19 | 上海飞机制造有限公司 | Method for measuring positioning error of robot |
CN103231375A (en) * | 2013-04-28 | 2013-08-07 | 苏州大学 | Industrial robot calibration method based on distance error models |
CN104408299A (en) * | 2014-11-17 | 2015-03-11 | 广东产品质量监督检验研究院 | Position error compensation method for distance recognition superfluous kinematics parameter-based robot |
Non-Patent Citations (1)
Title |
---|
面向测量的关节运动机构误差模型及标定技术研究;王一;《中国优秀博士学位论文全文数据库 信息科技辑》;20101215(第12期);正文第2-5章 |
Also Published As
Publication number | Publication date |
---|---|
CN106737855A (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106737855B (en) | A Robot Accuracy Compensation Method Combining Pose Error Model and Stiffness Compensation | |
CN109773786B (en) | Industrial robot plane precision calibration method | |
CN104608129B (en) | Robot Calibration Method Based on Plane Constraints | |
CN110193829B (en) | Robot precision control method for coupling kinematics and rigidity parameter identification | |
CN112873199B (en) | Robot absolute positioning precision calibration method based on kinematics and spatial interpolation | |
CN104596418B (en) | A kind of Multi-arm robots coordinate system is demarcated and precision compensation method | |
CN106338990B (en) | Industrial robot DH parameter calibration and Zero positioning method based on laser tracker | |
CN102825602B (en) | PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device | |
CN108015808B (en) | A Kinematic Calibration Method for Hybrid Robots | |
CN104390612B (en) | Six-degree-of-freedom parallel robot benchmark pose scaling method for Stewart platform configuration | |
CN109746920B (en) | Industrial robot geometric parameter error calibration method based on two-step method | |
CN113400088B (en) | Modeling and identification method of position-independent geometric error of AC double-turntable five-axis machine tool | |
CN110202582A (en) | A kind of robot calibration method based on three coordinates platforms | |
CN107471257B (en) | Robot Geometry Calibration Method Based on Single Cable Encoder | |
CN111055273A (en) | A Two-step Error Compensation Method for Robots | |
CN103231375A (en) | Industrial robot calibration method based on distance error models | |
Li et al. | Kinematic calibration of serial robot using dual quaternions | |
CN106289708A (en) | Pose scaling method for the motion of captive trajectory wind tunnel test | |
CN103144109B (en) | Substation type precision compensation for robot system with additional external shaft | |
Guo et al. | A measurement method for calibrating kinematic parameters of industrial robots with point constraint by a laser displacement sensor | |
Shimojima et al. | The estimation method of uncertainty of articulated coordinate measuring machine | |
CN108827210A (en) | A kind of articulated coordinate machine scaling method of combining with digital control lathe | |
CN115042189A (en) | Mechanical arm parameter error identification and compensation method | |
CN112894814B (en) | Mechanical arm DH parameter identification method based on least square method | |
CN107717988A (en) | A kind of industrial machinery arm precision calibration method based on general Ke Lijin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |