CN106731900A - In-situ sol-gel high-strength polyvinylidene fluoride milipore filter and preparation method - Google Patents
In-situ sol-gel high-strength polyvinylidene fluoride milipore filter and preparation method Download PDFInfo
- Publication number
- CN106731900A CN106731900A CN201710019973.3A CN201710019973A CN106731900A CN 106731900 A CN106731900 A CN 106731900A CN 201710019973 A CN201710019973 A CN 201710019973A CN 106731900 A CN106731900 A CN 106731900A
- Authority
- CN
- China
- Prior art keywords
- polyvinylidene fluoride
- sol
- preparation
- situ
- ultrafiltration membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002033 PVDF binder Substances 0.000 title claims abstract description 66
- 229920002981 polyvinylidene fluoride Polymers 0.000 title claims abstract description 66
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 238000011065 in-situ storage Methods 0.000 title abstract description 4
- 239000012528 membrane Substances 0.000 claims abstract description 70
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 43
- 239000011148 porous material Substances 0.000 claims abstract description 16
- 238000003980 solgel method Methods 0.000 claims abstract description 16
- 239000002904 solvent Substances 0.000 claims abstract description 16
- 238000003756 stirring Methods 0.000 claims description 49
- 239000000243 solution Substances 0.000 claims description 45
- 238000005266 casting Methods 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000011521 glass Substances 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 18
- 239000008367 deionised water Substances 0.000 claims description 17
- 229910021641 deionized water Inorganic materials 0.000 claims description 17
- 239000003153 chemical reaction reagent Substances 0.000 claims description 16
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- 239000000178 monomer Substances 0.000 claims description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- 239000012046 mixed solvent Substances 0.000 claims description 9
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000009775 high-speed stirring Methods 0.000 claims description 2
- 239000012948 isocyanate Substances 0.000 claims description 2
- 150000002513 isocyanates Chemical class 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- -1 dimethyl formazan Amide Chemical class 0.000 claims 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 19
- 230000008569 process Effects 0.000 abstract description 8
- 238000005191 phase separation Methods 0.000 abstract description 7
- 238000009826 distribution Methods 0.000 abstract description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 3
- 238000002425 crystallisation Methods 0.000 abstract description 2
- 230000008025 crystallization Effects 0.000 abstract description 2
- 239000003921 oil Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002464 physical blending Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920006126 semicrystalline polymer Polymers 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0011—Casting solutions therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/021—Pore shapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明提供了一种原位‑溶胶凝胶法聚偏氟乙烯超滤膜及制备方法,利用原位溶胶凝胶技术制备纳米二氧化硅增强聚偏氟乙烯超滤膜,制备得到的超滤膜的孔径在0.3~0.8μm。制备出的超滤膜与常规超滤膜相比,原位‑溶胶凝胶加速相分离过程,促进蜂窝状孔的生成,限定了指状孔的增长,孔径分布更为均一。本发明将原位‑溶胶凝胶与非溶剂致相分离制膜法相结合,简化了反应流程。成膜过程中加速了聚偏氟乙烯的结晶,增加了膜的β晶型的含量,聚偏氟乙烯膜的力学性能得到了进一步提高。
The invention provides an in-situ-sol-gel method polyvinylidene fluoride ultrafiltration membrane and a preparation method thereof. The nano-silica-reinforced polyvinylidene fluoride ultrafiltration membrane is prepared by using the in-situ sol-gel technology, and the prepared ultrafiltration The pore size of the membrane is 0.3-0.8 μm. Compared with the conventional ultrafiltration membrane, the prepared ultrafiltration membrane accelerates the phase separation process in situ-sol-gel, promotes the formation of honeycomb pores, limits the growth of finger-shaped pores, and has a more uniform pore size distribution. The present invention combines in-situ sol-gel with non-solvent-induced phase separation membrane-making method, which simplifies the reaction process. The crystallization of polyvinylidene fluoride is accelerated during the film forming process, the content of β-crystal form of the film is increased, and the mechanical properties of the polyvinylidene fluoride film are further improved.
Description
技术领域technical field
本发明属于膜分离技术领域,涉及一种原位-溶胶凝胶法高强度聚偏氟乙烯超滤膜的制备方法。The invention belongs to the technical field of membrane separation, and relates to a preparation method of a high-strength polyvinylidene fluoride ultrafiltration membrane by an in-situ-sol-gel method.
背景技术Background technique
聚偏氟乙烯是偏氟乙烯的均聚物,是一种疏水性的线型半结晶性聚合物,结晶度50%-80%,具有好的耐气候性和化学稳定性,是一种综合性能优良的膜材料。目前,PVDF膜广泛应用于膜蒸馏、水处理、气体净化、酒类过滤方面,在膜分离领域具有很好应用前景。由于聚偏氟乙烯的抗氧化性能优异,在其膜过程应用中可以进行化学清洗,且所使用的氧化剂不会腐蚀膜产品,聚偏氟乙烯膜在膜生物反应器中的到较好应用(实用新型专利CN205099452U,一种超滤膜生物反应器)。膜生物反应器对膜的性能要求较高,制备的超滤膜在有高通量的同时需要保证高强度,避免其在污水处理中的长期受压而变形、破孔甚至断丝。非溶剂致相分离(NIPS)法是制备PVDF超滤膜的常用方法,然而,其指状孔的形成大大降低了膜强度。为了解决指状孔所造成的膜强度降低问题,国内外研究人员对NIPS过程做了大量研究,其中主要的改进工艺是通过引入添加剂、改变铸膜液溶剂与凝固浴非溶剂的种类以及调节凝固浴温度。Polyvinylidene fluoride is a homopolymer of vinylidene fluoride. It is a hydrophobic linear semi-crystalline polymer with a crystallinity of 50%-80%. It has good weather resistance and chemical stability. It is a comprehensive Membrane material with excellent performance. At present, PVDF membranes are widely used in membrane distillation, water treatment, gas purification, and wine filtration, and have a good application prospect in the field of membrane separation. Due to the excellent oxidation resistance of polyvinylidene fluoride, chemical cleaning can be carried out in the application of its membrane process, and the oxidant used will not corrode the membrane product, so the polyvinylidene fluoride membrane is better applied in the membrane bioreactor ( Utility model patent CN205099452U, an ultrafiltration membrane bioreactor). Membrane bioreactors have high requirements on the performance of the membrane. The prepared ultrafiltration membrane needs to ensure high strength while having high flux, so as to avoid deformation, perforation or even broken wire due to long-term pressure in sewage treatment. The nonsolvent-induced phase separation (NIPS) method is a common method for preparing PVDF ultrafiltration membranes, however, the formation of finger-like pores greatly reduces the membrane strength. In order to solve the problem of film strength reduction caused by finger-shaped holes, researchers at home and abroad have done a lot of research on the NIPS process. The main improvement process is to introduce additives, change the types of casting solution solvent and coagulation bath non-solvent, and adjust the coagulation process. bath temperature.
目前,纳米无机粒子的掺杂是解决上述问题比较有效的方法,尤其是金属氧化物和氧化硅材料。中国专利CN1724586A《纳米氧化铝改性聚偏氟乙烯膜及其制备方法和应用》通过物理共混得到铸膜溶液,通过非溶剂致相分离(NIPS)法制备了PVDF超滤膜。该法可以抑制大孔的形成,提高了膜的强度。中国专利CN103861476A《一种聚偏氟乙烯复合介孔膜的制备方法》直接在铸膜液中加入介孔二氧化硅,通过非溶剂致相分离(NIPS)法制备了PVDF共混膜。但直接引入无机纳米颗粒的方法最大的问题是纳米颗粒的团聚,这会抑制纳米颗粒在膜基体中的增强作用。At present, the doping of nano-inorganic particles is an effective method to solve the above problems, especially metal oxide and silicon oxide materials. Chinese patent CN1724586A "Nano-Alumina Modified Polyvinylidene Fluoride Membrane and Its Preparation Method and Application" obtains a casting membrane solution through physical blending, and prepares a PVDF ultrafiltration membrane through a non-solvent-induced phase separation (NIPS) method. This method can inhibit the formation of macropores and improve the strength of the membrane. Chinese patent CN103861476A "Preparation Method of Polyvinylidene Fluoride Composite Mesoporous Membrane" directly adds mesoporous silica into the casting liquid, and prepares PVDF blend membrane by non-solvent-induced phase separation (NIPS) method. But the biggest problem with the method of directly introducing inorganic nanoparticles is the agglomeration of nanoparticles, which will inhibit the reinforcing effect of nanoparticles in the membrane matrix.
因此,采用原位-溶胶凝胶法制备聚偏氟乙烯超滤膜的方法可以有效解决上述问题。Therefore, the method of preparing polyvinylidene fluoride ultrafiltration membrane by in-situ-sol-gel method can effectively solve the above problems.
发明内容Contents of the invention
本发明专利提供了一种原位-溶胶凝胶法聚偏氟乙烯超滤膜及制备方法,利用原位溶胶凝胶技术制备纳米二氧化硅增强聚偏氟乙烯超滤膜,制备得到的超滤膜的孔径在0.3~0.81μm。The patent of the present invention provides an in-situ-sol-gel polyvinylidene fluoride ultrafiltration membrane and its preparation method. The in-situ sol-gel technology is used to prepare nano-silica reinforced polyvinylidene fluoride ultrafiltration membrane. The prepared ultrafiltration The pore size of the filter membrane is 0.3-0.81 μm.
为完成以上发明,按以下步骤进行:For completing above invention, carry out as follows:
(1)溶胶制备:将溶剂1和单体按体积比配置混合溶液,再加入去离子水,搅拌至均匀后,用酸滴定得到稳定透明的溶胶,即得溶胶。(1) Preparation of sol: Mix solvent 1 and monomer according to the volume ratio, then add deionized water, stir until uniform, and titrate with acid to obtain a stable and transparent sol, that is, the sol.
上述的溶剂1为:N,N二甲基甲酰胺、N,N二甲基乙酰胺、丙酮、γ丁内酯、乙酸乙酯、邻苯二甲酸二丁酯、二甲基亚砜、四氢呋喃、N-甲基吡咯烷酮、磷酸三乙酯中的一种或两种混合溶剂(其中混合溶剂的体积比为任意比例);上述的单体为:四乙氧基硅烷、乙二醇、三甲氧基硅烷、异氰酸酯、三乙氧基硅烷中的一种或两种单体混合(其中混合单体的体积比为任意比例)。The above solvent 1 is: N,N dimethylformamide, N,N dimethylacetamide, acetone, γ-butyrolactone, ethyl acetate, dibutyl phthalate, dimethyl sulfoxide, tetrahydrofuran , N-methylpyrrolidone, one or two mixed solvents in triethyl phosphate (wherein the volume ratio of the mixed solvent is any ratio); the above-mentioned monomers are: tetraethoxysilane, ethylene glycol, trimethoxy One or two monomers in base silane, isocyanate and triethoxy silane are mixed (wherein the volume ratio of the mixed monomers is in any proportion).
(2)铸膜液的制备:将步骤(1)制得的溶胶以滴加方式滴加在聚偏氟乙烯溶液中,放入试剂瓶内,搭载搅拌装置,将试剂瓶放入油浴锅内,升温至60-90℃,充分搅拌24~36h,保持温度恒定,搅拌速率800~1000r/min,待搅拌结束时减慢搅拌速率至50~100r/min,利于气泡排出。(2) Preparation of casting solution: Add the sol prepared in step (1) dropwise into the polyvinylidene fluoride solution, put it into the reagent bottle, equip the stirring device, put the reagent bottle into the oil bath Inside, heat up to 60-90°C, fully stir for 24-36 hours, keep the temperature constant, stir at a rate of 800-1000r/min, slow down the rate of stirring to 50-100r/min at the end of the stirring, to facilitate the discharge of air bubbles.
聚偏氟乙烯溶液采用的溶剂2为:N,N二甲基甲酰胺、N,N二甲基乙酰胺、丙酮、γ丁内酯、乙酸乙酯、领苯二甲酸二丁酯、二甲基亚砜、四氢呋喃、N-甲基吡咯烷酮、磷酸三乙酯中的一种或两种溶剂混合(其中混合溶剂的体积比为任意比例)。The solvent 2 used in the polyvinylidene fluoride solution is: N,N dimethylformamide, N,N dimethylacetamide, acetone, γ-butyrolactone, ethyl acetate, dibutyl phthalate, dimethyl One or two solvents in sulfoxide, tetrahydrofuran, N-methylpyrrolidone, and triethyl phosphate are mixed (wherein the volume ratio of the mixed solvent is in any proportion).
(3)将步骤(2)制得的铸膜液在60-90℃温度下,静置至铸膜液中无气泡,在洁净的玻璃板刮制一层0.2~0.3mm厚度的液膜,将液膜连同玻璃板迅速浸入到温度为10-30℃的去离子水中,膜固化并自动剥离玻璃板,充分与水置换,制得聚偏氟乙烯超滤膜。(3) leave the casting solution prepared in step (2) at a temperature of 60-90° C. until there are no bubbles in the casting solution, and scrape a layer of liquid film with a thickness of 0.2 to 0.3 mm on a clean glass plate. Quickly immerse the liquid membrane together with the glass plate in deionized water at a temperature of 10-30°C, the film solidifies and automatically peels off the glass plate, and fully replaces it with water to obtain a polyvinylidene fluoride ultrafiltration membrane.
其中步骤(1)中,所用的酸为盐酸或稀硫酸;pH=1.0~1.5。Wherein in step (1), the acid used is hydrochloric acid or dilute sulfuric acid; pH=1.0~1.5.
其中步骤(1)中,所用的溶剂1和单体的体积比为1:0.8-1:1.5。Wherein in step (1), the volume ratio of solvent 1 and monomer used is 1:0.8-1:1.5.
其中步骤(1)中,所述混合溶液与去离子水的体积比为:100:1-5。Wherein in step (1), the volume ratio of the mixed solution to deionized water is: 100:1-5.
其中步骤(1)中,搅拌指在20-45℃下高速搅拌1-3h。Wherein in step (1), stirring refers to high-speed stirring at 20-45° C. for 1-3 hours.
其中步骤(2)其中所用的溶胶的加入量为聚偏氟乙烯溶液质量的1-5wt.%。The amount of the sol used in the step (2) is 1-5 wt.% of the mass of the polyvinylidene fluoride solution.
其中步骤(2)中所用的聚偏氟乙烯溶液的浓度为10-25wt.%。Wherein the concentration of the polyvinylidene fluoride solution used in the step (2) is 10-25wt.%.
本发明专利相对于目前专利和文章所公开的聚偏氟乙烯微孔膜相比,具有以下技术优点:Compared with the polyvinylidene fluoride microporous membrane disclosed in current patents and articles, the patent of the present invention has the following technical advantages:
(1)本发明利用原位-溶胶凝胶法制备高强度聚偏氟乙烯超滤膜,制备出的超滤膜与常规超滤膜相比,原位-溶胶凝胶加速相分离过程,促进蜂窝状孔的生成,限定了指状孔的增长,孔径分布更为均一。(1) The present invention utilizes the in-situ-sol-gel method to prepare high-strength polyvinylidene fluoride ultrafiltration membranes. Compared with conventional ultrafiltration membranes, the in-situ-sol-gel accelerated phase separation process of the prepared ultrafiltration membranes promotes The formation of honeycomb pores limits the growth of finger-shaped pores, and the pore size distribution is more uniform.
(2)原位-溶胶凝胶法,反应条件温和(室温或稍高于室温和常压),体系从溶液开始,各种组分的比例控制容易,可以制备纳米二氧化硅分散性能良好的聚偏氟乙烯超滤膜。(2) In-situ-sol-gel method, the reaction conditions are mild (room temperature or slightly higher than room temperature and normal pressure), the system starts from a solution, the ratio of various components is easy to control, and nano-silica with good dispersion performance can be prepared. Polyvinylidene fluoride ultrafiltration membrane.
(3)本发明将原位-溶胶凝胶与非溶剂致相分离制膜法相结合,简化了反应流程。成膜过程中加速了聚偏氟乙烯的结晶,增加了膜的β晶型的含量,聚偏氟乙烯膜的力学性能得到了进一步提高。(3) The present invention combines the in-situ-sol-gel and non-solvent-induced phase separation membrane-making method, which simplifies the reaction process. The crystallization of polyvinylidene fluoride is accelerated during the film forming process, the content of β-crystal form of the film is increased, and the mechanical properties of the polyvinylidene fluoride film are further improved.
附图说明Description of drawings
图1是实施例3制备的超滤膜膜和聚偏氟乙烯超滤膜对比样的傅里叶变换衰减全反射红外光谱图。Fig. 1 is the Fourier transform attenuated total reflection infrared spectrogram of the ultrafiltration membrane prepared in Example 3 and the polyvinylidene fluoride ultrafiltration membrane comparison sample.
图2是实施例3制备的超滤膜的上表面结构扫描电镜图(10000倍)Fig. 2 is the upper surface structure scanning electron microscope picture (10000 times) of the ultrafiltration membrane that embodiment 3 prepares
图3是实施例3制备的超滤膜的断面结构扫描电镜图(5000倍)Fig. 3 is the cross-sectional structure scanning electron microscope picture (5000 times) of the ultrafiltration membrane that embodiment 3 prepares
图4是实施例3制备的超滤膜的断面孔径分布图Fig. 4 is the cross-section pore size distribution diagram of the ultrafiltration membrane prepared in embodiment 3
表1是具体实施1-5与对比样的孔径、孔径分布以及机械性能数据Table 1 is the pore size, pore size distribution and mechanical property data of concrete implementation 1-5 and comparative sample
具体实施方式detailed description
本发明中所使用的术语,除非有另外说明,一般具有本学科领域普通技术人员通常理解的含义。The terms used in the present invention, unless otherwise stated, generally have the meanings commonly understood by those skilled in the art.
下面结合具体的实施例子,进一步详细描述本发明。应理解,这些实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。The present invention will be further described in detail below in conjunction with specific implementation examples. It should be understood that these examples are only for illustration of the present invention, but not to limit the scope of the present invention in any way.
孔径测试:采用日本产的扫描电镜HITACHIS4700观察聚偏氟乙烯微孔膜的表面和断面形态。为观察膜的断面结构,将微孔膜在液氮中冷冻脆断,并用双面胶将脆断面垂直向上固定于样品台上。样品在E1020镀金仪中镀上厚度为20-30nm的金,然后在场发射扫描电镜S4700下观察PVDF杂化膜的表面和断面的形态及结构。Pore size test: The surface and cross-sectional morphology of the polyvinylidene fluoride microporous membrane were observed with a scanning electron microscope HITACHIS4700 produced in Japan. In order to observe the cross-sectional structure of the membrane, the microporous membrane was frozen and brittle in liquid nitrogen, and the brittle section was fixed vertically upward on the sample stage with double-sided tape. samples in Gold with a thickness of 20-30nm is plated in the E1020 gold plating instrument, and then the morphology and structure of the surface and section of the PVDF hybrid film are observed under the field emission scanning electron microscope S4700.
红外测试:采用中红外光谱仪BRUKER-VerEX70进行红外研究,通过比较膜和各个纯组分红外光谱,确定聚偏氟乙烯膜晶型及含量变化。Infrared test: The mid-infrared spectrometer BRUKER-VerEX70 is used for infrared research. By comparing the infrared spectra of the film and each pure component, the polyvinylidene fluoride film crystal form and content changes are determined.
力学性能测试:采用ISO 527-3:1995《塑料薄膜拉伸性能试验方法》测定PVDF超滤膜的拉伸强度以及断裂伸长率。测试条件:拉伸速度是10mm/min,室温。Mechanical properties test: ISO 527-3:1995 "Test Method for Tensile Properties of Plastic Films" was used to measure the tensile strength and elongation at break of PVDF ultrafiltration membrane. Test conditions: tensile speed is 10mm/min, room temperature.
实施例1Example 1
(1)溶胶制备:将N-N二甲基甲酰胺和四乙氧基硅烷按体积比1:0.8配置100ml混合溶液,再加入1mL去离子水,在20℃下高速搅拌1h。充分搅拌均匀后,用pH=1.0盐酸滴定得到稳定透明的溶胶,即得溶胶。(1) Preparation of sol: N-N dimethylformamide and tetraethoxysilane were prepared into 100ml mixed solution at a volume ratio of 1:0.8, then 1mL of deionized water was added, and stirred at 20°C for 1h at high speed. After fully stirring evenly, titrate with hydrochloric acid with pH=1.0 to obtain a stable and transparent sol, that is, the sol.
(2)铸膜液的制备:将步骤(1)制得的溶胶以滴加方式添加在质量分数10wt.%聚偏氟乙烯的溶液中(采用体积比为1:1的邻苯二甲酸二丁酯和N-N二甲基甲酰胺的混合溶剂),溶胶加入量为聚偏氟乙烯溶液质量的1%,放入试剂瓶内,搭载搅拌装置,将试剂瓶放入油浴锅内,升温至60℃,充分搅拌24个小时,保持温度恒定,搅拌速率800r/min,待搅拌结束时减慢搅拌速率至100r/min,利于气泡排出。(2) Preparation of film-casting solution: Add the sol prepared in step (1) dropwise to a solution with a mass fraction of 10wt.% polyvinylidene fluoride (using phthalate di butyl ester and N-N dimethylformamide), the amount of sol added is 1% of the quality of the polyvinylidene fluoride solution, put it into the reagent bottle, equipped with a stirring device, put the reagent bottle into the oil bath, and heat up to 60°C, stir fully for 24 hours, keep the temperature constant, stir at a rate of 800r/min, and slow down to 100r/min at the end of the stirring to facilitate the discharge of air bubbles.
(3)将步骤(2)制得的铸膜液在60℃温度下,静置至铸膜液中无气泡,在洁净的玻璃板刮制一层0.2mm厚度的液膜,将液膜连同玻璃板迅速浸入到温度为10℃的去离子水中,膜固化并自动剥离玻璃板,充分与水置换,制得聚偏氟乙烯超滤膜。(3) Put the casting solution prepared in step (2) at a temperature of 60°C until there are no bubbles in the casting solution, scrape a layer of liquid film with a thickness of 0.2mm on a clean glass plate, and place the liquid film together with The glass plate is quickly immersed in deionized water at a temperature of 10°C, the membrane is cured and the glass plate is automatically peeled off, fully replaced with water, and the polyvinylidene fluoride ultrafiltration membrane is obtained.
实施例2Example 2
(1)溶胶制备:将N-N二甲基乙酰胺和四乙氧基硅烷按体积比1:1.0配置100ml混合溶液,再加入2mL去离子水,在25℃下高速搅拌2h。充分搅拌均匀后,用pH=1.0盐酸滴定得到稳定透明的溶胶,即得溶胶。(1) Sol preparation: N-N dimethylacetamide and tetraethoxysilane were prepared into 100ml mixed solution at a volume ratio of 1:1.0, then 2mL of deionized water was added, and stirred at 25°C for 2h at high speed. After fully stirring evenly, titrate with hydrochloric acid with pH=1.0 to obtain a stable and transparent sol, that is, the sol.
(2)铸膜液的制备:将步骤(1)制得的溶胶以滴加方式添加在质量分数10wt.%聚偏氟乙烯的溶液中(采用体积比为1:1的邻苯二甲酸二丁酯和N-N二甲基甲酰胺的混合溶剂),加入量为聚偏氟乙烯的N-N二甲基乙酰胺溶液质量的1%,放入试剂瓶内,搭载搅拌装置,将试剂瓶放入油浴锅内,升温至70℃,充分搅拌24个小时,保持温度恒定,搅拌速率800r/min,待搅拌结束时减慢搅拌速率至100r/min,利于气泡排出。(2) Preparation of film-casting solution: Add the sol prepared in step (1) dropwise to a solution with a mass fraction of 10wt.% polyvinylidene fluoride (using phthalate di butyl ester and N-N dimethylformamide), the addition amount is 1% of the N-N dimethylacetamide solution quality of polyvinylidene fluoride, put it into the reagent bottle, equip the stirring device, put the reagent bottle into the oil In the bath, heat up to 70°C, stir fully for 24 hours, keep the temperature constant, and stir at a rate of 800r/min. When the stirring is over, slow down the stirring rate to 100r/min to facilitate the discharge of air bubbles.
(3)将步骤(2)制得的铸膜液在70℃温度下,静置至铸膜液中无气泡,在洁净的玻璃板刮制一层0.2mm厚度的液膜,将液膜连同玻璃板迅速浸入到温度为20℃的去离子水中,膜固化并自动剥离玻璃板,充分与水置换,制得聚偏氟乙烯超滤膜。(3) Put the casting solution prepared in step (2) at a temperature of 70°C until there are no bubbles in the casting solution, scrape a layer of liquid film with a thickness of 0.2mm on a clean glass plate, and place the liquid film together with The glass plate is quickly immersed in deionized water at a temperature of 20°C, the membrane is cured and the glass plate is automatically peeled off, fully replaced with water, and the polyvinylidene fluoride ultrafiltration membrane is obtained.
实施例3Example 3
(1)溶胶制备:将N-N二甲基甲酰胺、四乙氧基硅烷和三乙氧基硅烷按体积比1:1.2:0.3配置100ml混合溶液,再加入2mL去离子水,在30℃下高速搅拌2h,充分搅拌均匀后,用pH=1.0盐酸滴定得到稳定透明的溶胶,即得溶胶。(1) Preparation of sol: N-N dimethylformamide, tetraethoxysilane and triethoxysilane are prepared in 100ml mixed solution at a volume ratio of 1:1.2:0.3, then 2mL of deionized water is added, and the Stir for 2 hours, and after fully stirring evenly, titrate with pH=1.0 hydrochloric acid to obtain a stable and transparent sol, that is, the sol.
(2)铸膜液的制备:将步骤(1)制得的溶胶以滴加方式添加在质量分数15wt.%聚偏氟乙烯的N-N二甲基乙酰胺溶液(采用体积比为1:1的邻苯二甲酸二丁酯和N-N二甲基甲酰胺的混合溶剂)中,加入量为聚偏氟乙烯的溶液质量的3%,放入试剂瓶内,搭载搅拌装置,将试剂瓶放入油浴锅内,升温至70℃,充分搅拌24个小时,保持温度恒定,搅拌速率800r/min,待搅拌结束时减慢搅拌速率至100r/min,利于气泡排出。(2) Preparation of film-casting solution: Add the sol prepared in step (1) dropwise to N-N dimethylacetamide solution with a mass fraction of 15wt.% polyvinylidene fluoride (using a volume ratio of 1:1 In the mixed solvent of dibutyl phthalate and N-N dimethylformamide), the addition amount is 3% of the solution quality of polyvinylidene fluoride, put into the reagent bottle, equipped with stirring device, put the reagent bottle into the oil In the bath, heat up to 70°C, stir fully for 24 hours, keep the temperature constant, and stir at a rate of 800r/min. When the stirring is over, slow down the stirring rate to 100r/min to facilitate the discharge of air bubbles.
(3)将步骤(2)制得的铸膜液在70℃温度下,静置至铸膜液中无气泡,在洁净的玻璃板刮制一层0.2mm厚度的液膜,将液膜连同玻璃板迅速浸入到温度为20℃的去离子水中,膜固化并自动剥离玻璃板,充分与水置换,制得聚偏氟乙烯超滤膜。(3) Put the casting solution prepared in step (2) at a temperature of 70°C until there are no bubbles in the casting solution, scrape a layer of liquid film with a thickness of 0.2mm on a clean glass plate, and place the liquid film together with The glass plate is quickly immersed in deionized water at a temperature of 20°C, the membrane is cured and the glass plate is automatically peeled off, fully replaced with water, and the polyvinylidene fluoride ultrafiltration membrane is obtained.
实施例4Example 4
(1)溶胶制备:将N-N二甲基甲酰胺和四乙氧基硅烷按体积比1:1.3配置100ml混合溶液,再加入3mL去离子水,在35℃下高速搅拌3h,充分搅拌均匀后,用pH=1.0硫酸滴定得到稳定透明的溶胶,即得四乙氧基硅烷溶胶。(1) Preparation of sol: Prepare 100ml mixed solution of N-N dimethylformamide and tetraethoxysilane at a volume ratio of 1:1.3, then add 3mL of deionized water, stir at 35°C for 3 hours at high speed, and stir well, Titrate with sulfuric acid at pH=1.0 to obtain a stable and transparent sol, that is, tetraethoxysilane sol.
(2)铸膜液的制备:将步骤(1)制得的溶胶以滴加方式添加在质量分数20wt.%聚偏氟乙烯的溶液中(采用体积比为1:3的邻苯二甲酸二丁酯和N-N二甲基甲酰胺混合溶剂),加入量为聚偏氟乙烯的溶液质量的4%,放入试剂瓶内,搭载搅拌装置,将试剂瓶放入油浴锅内,升温至80℃,充分搅拌24个小时,保持温度恒定,搅拌速率800r/min,待搅拌结束时减慢搅拌速率至100r/min,利于气泡排出。(2) Preparation of casting solution: Add the sol prepared in step (1) dropwise to a solution with a mass fraction of 20wt.% polyvinylidene fluoride (using phthalate di butyl ester and N-N dimethylformamide mixed solvent), the addition is 4% of the solution quality of polyvinylidene fluoride, put into the reagent bottle, equipped with a stirring device, put the reagent bottle into the oil bath, and heat up to 80 ℃, fully stirred for 24 hours, kept the temperature constant, and the stirring rate was 800r/min. When the stirring was completed, the stirring rate was slowed down to 100r/min, which was beneficial to the discharge of air bubbles.
(3)将步骤(2)制得的铸膜液在80℃温度下,静置至铸膜液中无气泡,在洁净的玻璃板刮制一层0.2mm厚度的液膜,将液膜连同玻璃板迅速浸入到温度为25℃的去离子水中,膜固化并自动剥离玻璃板,充分与水置换,制得聚偏氟乙烯超滤膜。(3) Put the casting solution prepared in step (2) at a temperature of 80°C until there are no bubbles in the casting solution, scrape a layer of liquid film with a thickness of 0.2mm on a clean glass plate, and place the liquid film together with The glass plate is quickly immersed in deionized water at a temperature of 25°C, the membrane is cured and the glass plate is automatically peeled off, fully replaced with water, and the polyvinylidene fluoride ultrafiltration membrane is obtained.
实施例5Example 5
(1)溶胶制备:将N-N二甲基甲酰胺和四乙氧基硅烷按体积比1:1.5配置100ml混合溶液,再加入5mL去离子水,在45℃下高速搅拌3h,充分搅拌均匀后,用pH=1.0硫酸滴定得到稳定透明的溶胶,即得溶胶。(1) Preparation of sol: Prepare 100ml mixed solution of N-N dimethylformamide and tetraethoxysilane at a volume ratio of 1:1.5, then add 5mL deionized water, stir at 45°C for 3 hours at high speed, and stir well, Titrate with sulfuric acid at pH=1.0 to obtain a stable and transparent sol, that is, the sol.
(2)铸膜液的制备:将步骤(1)制得的溶胶以滴加方式添加在质量分数25wt.%聚偏氟乙烯溶液中(采用体积比为1:1的邻苯二甲酸二丁酯和N-N二甲基甲酰胺混合溶剂),加入量为聚偏氟乙烯溶液质量的5%,放入试剂瓶内,搭载搅拌装置,将试剂瓶放入油浴锅内,升温至90℃,充分搅拌24个小时,保持温度恒定,搅拌速率800r/min,待搅拌结束时减慢搅拌速率至100r/min,利于气泡排出。(2) Preparation of film-casting solution: Add the sol prepared in step (1) dropwise to a mass fraction of 25wt.% polyvinylidene fluoride solution (dibutyl phthalate with a volume ratio of 1:1 ester and N-N dimethylformamide mixed solvent), the addition amount is 5% of the mass of the polyvinylidene fluoride solution, put it into the reagent bottle, equipped with a stirring device, put the reagent bottle into the oil bath, and heat up to 90 °C, Fully stir for 24 hours, keep the temperature constant, and stir at a rate of 800r/min. When the stirring is completed, slow down the rate of stirring to 100r/min to facilitate the discharge of air bubbles.
(3)将步骤(2)制得的铸膜液在90℃温度下,静置至铸膜液中无气泡,在洁净的玻璃板刮制一层0.2mm厚度的液膜,将液膜连同玻璃板迅速浸入到温度为30℃的去离子水中,膜固化并自动剥离玻璃板,充分与水置换,制得聚偏氟乙烯超滤膜。(3) Put the casting solution prepared in step (2) at a temperature of 90°C until there are no bubbles in the casting solution, scrape a layer of liquid film with a thickness of 0.2mm on a clean glass plate, and place the liquid film together with The glass plate is quickly immersed in deionized water at a temperature of 30°C, the membrane is cured and the glass plate is automatically peeled off, fully replaced with water, and the polyvinylidene fluoride ultrafiltration membrane is obtained.
对比例comparative example
(1)铸膜液的制备:试剂瓶内,将质量分数25wt.%聚偏氟乙烯溶于N-N二甲基甲酰胺中,搭载搅拌装置,将试剂瓶放入油浴锅内,升温至60℃,充分搅拌24个小时,保持温度恒定,搅拌速率800r/min,待搅拌结束时减慢搅拌速率至100r/min,利于气泡排出。(1) Preparation of film casting solution: in the reagent bottle, dissolve 25wt.% polyvinylidene fluoride in N-N dimethylformamide, equip a stirring device, put the reagent bottle into the oil bath, and heat up to 60 ℃, fully stirred for 24 hours, kept the temperature constant, and the stirring rate was 800r/min. When the stirring was completed, the stirring rate was slowed down to 100r/min, which was beneficial to the discharge of air bubbles.
(2)将步骤(1)制得的铸膜液在60℃温度下,静置至铸膜液中无气泡,在洁净的玻璃板刮制一层0.2mm厚度的液膜,将液膜连同玻璃板迅速浸入到温度为30℃的去离子水中,膜固化并自动剥离玻璃板,充分与水置换,制得聚偏氟乙烯超滤膜对比样。(2) Put the casting solution prepared in step (1) at a temperature of 60°C until there are no bubbles in the casting solution, scrape a layer of liquid film with a thickness of 0.2mm on a clean glass plate, and place the liquid film together with The glass plate was quickly immersed in deionized water at a temperature of 30°C, the membrane solidified and the glass plate was automatically peeled off, fully replaced with water, and a polyvinylidene fluoride ultrafiltration membrane comparison sample was prepared.
表1具体实施1-5与对比样的孔径、孔径分布以及机械性能数据Table 1 concrete implementation 1-5 and the pore size, pore size distribution and mechanical performance data of comparative sample
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710019973.3A CN106731900A (en) | 2017-01-12 | 2017-01-12 | In-situ sol-gel high-strength polyvinylidene fluoride milipore filter and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710019973.3A CN106731900A (en) | 2017-01-12 | 2017-01-12 | In-situ sol-gel high-strength polyvinylidene fluoride milipore filter and preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106731900A true CN106731900A (en) | 2017-05-31 |
Family
ID=58949204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710019973.3A Pending CN106731900A (en) | 2017-01-12 | 2017-01-12 | In-situ sol-gel high-strength polyvinylidene fluoride milipore filter and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106731900A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109320882A (en) * | 2018-11-05 | 2019-02-12 | 天津摩根坤德高新科技发展有限公司 | Silica-modified PVDF aerogel, preparation method and aerogel product including the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0407900B1 (en) * | 1989-07-13 | 1995-04-05 | Akzo Nobel N.V. | Flat or capillary membrane manufactured from a mixture of polyvinylidene fluoride and a second by chemical reaction hydrophilable polymer |
CN1844001A (en) * | 2006-04-26 | 2006-10-11 | 同济大学 | A TiO2/PI hybrid film with photocatalytic self-cleaning function and its preparation method |
CN101157764A (en) * | 2007-09-26 | 2008-04-09 | 天津工业大学 | A preparation method of inorganic micropowder hybridized polyvinylidene fluoride film |
CN101703896A (en) * | 2009-12-02 | 2010-05-12 | 天津大学 | Polyvinylidene fluoride microporous filtering film with high flux and preparation method thereof |
CN102430343A (en) * | 2011-11-07 | 2012-05-02 | 上海同纳环保科技有限公司 | Preparation method of polyvinylidene fluoride flat microfiltration membrane |
CN102688705A (en) * | 2011-03-22 | 2012-09-26 | 中国科学院生态环境研究中心 | A method of using nano TiO2 sol to hydrophilize PVDF ultrafiltration membrane |
CN104289118A (en) * | 2013-07-15 | 2015-01-21 | 华东理工大学 | In situ polymerization method for controlling polyvinylidene fluoride ultrafiltration membrane structure |
KR20160051340A (en) * | 2014-11-03 | 2016-05-11 | 롯데케미칼 주식회사 | Manufactured method of polymer resin composition having increasing hydrophilicity and mechanical strength for preparing of filter membrane |
CN106178987A (en) * | 2016-07-26 | 2016-12-07 | 东华大学 | A kind of Kynoar/nano silicon dioxide hybridization film and preparation method thereof |
-
2017
- 2017-01-12 CN CN201710019973.3A patent/CN106731900A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0407900B1 (en) * | 1989-07-13 | 1995-04-05 | Akzo Nobel N.V. | Flat or capillary membrane manufactured from a mixture of polyvinylidene fluoride and a second by chemical reaction hydrophilable polymer |
CN1844001A (en) * | 2006-04-26 | 2006-10-11 | 同济大学 | A TiO2/PI hybrid film with photocatalytic self-cleaning function and its preparation method |
CN101157764A (en) * | 2007-09-26 | 2008-04-09 | 天津工业大学 | A preparation method of inorganic micropowder hybridized polyvinylidene fluoride film |
CN101703896A (en) * | 2009-12-02 | 2010-05-12 | 天津大学 | Polyvinylidene fluoride microporous filtering film with high flux and preparation method thereof |
CN102688705A (en) * | 2011-03-22 | 2012-09-26 | 中国科学院生态环境研究中心 | A method of using nano TiO2 sol to hydrophilize PVDF ultrafiltration membrane |
CN102430343A (en) * | 2011-11-07 | 2012-05-02 | 上海同纳环保科技有限公司 | Preparation method of polyvinylidene fluoride flat microfiltration membrane |
CN104289118A (en) * | 2013-07-15 | 2015-01-21 | 华东理工大学 | In situ polymerization method for controlling polyvinylidene fluoride ultrafiltration membrane structure |
KR20160051340A (en) * | 2014-11-03 | 2016-05-11 | 롯데케미칼 주식회사 | Manufactured method of polymer resin composition having increasing hydrophilicity and mechanical strength for preparing of filter membrane |
CN106178987A (en) * | 2016-07-26 | 2016-12-07 | 东华大学 | A kind of Kynoar/nano silicon dioxide hybridization film and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
朱愉洁等: "聚偏氟乙烯/Ti02杂化膜的结构与性能研究", 《天津工业大学学报》 * |
程井动等: "原位聚合法制备聚酞亚胺/纳米二氧化硅杂化膜", 《材料科学与工程学报》 * |
蒋淑冬等: "PVDF/Si02原位复合纳米纤维膜的制备及性能研究", 《材料导报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109320882A (en) * | 2018-11-05 | 2019-02-12 | 天津摩根坤德高新科技发展有限公司 | Silica-modified PVDF aerogel, preparation method and aerogel product including the same |
CN109320882B (en) * | 2018-11-05 | 2021-04-13 | 天津摩根坤德高新科技发展有限公司 | Silica-modified PVDF aerogel, preparation method and aerogel product comprising same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102600733B (en) | Preparation method for homogeneously-enhanced polyvinylidene fluoride hollow fiber membrane | |
CN102240510B (en) | A kind of preparation method of superhydrophilic polyvinylidene fluoride film | |
CN102274693B (en) | Method for preparing organic pervaporation membrane | |
CN101632903A (en) | Polyvinylidene fluoride microporous membrane and preparation method thereof | |
CN102527262A (en) | Method for preparing chemically perforated polyvinylidene fluoride hollow fiber ultrafiltration membrane | |
WO2010020115A1 (en) | Method for preparation of beta crystalline phase polyvinylidene fluoride hollow fiber membrane | |
CN104548974B (en) | A kind of preparation method of zinc-oxide nano composite hyperfiltration membrane | |
CN101249387B (en) | There is the high flux of laminar hole structure, withstand voltage milipore filter and preparation method thereof | |
CN103394293B (en) | A kind of preparation method of hydrophilia polyvinylidene fluoride hollow fiber membrane | |
CN1973972A (en) | Prepn process of reinforced hybrid organic-inorganic film | |
CN106914154A (en) | PEG‑TiO2The preparation method of the hydrophilic milipore filters of/PES/PVA and application | |
CN102626593B (en) | Formula of acid and alkali-resistant and anti-pollution ultrafiltration membrane and preparation method thereof | |
CN103721575A (en) | Preparation method of polysulfones flat ultrafiltration composite membrane | |
CN108499363A (en) | The method of the nano-silicon dioxide modified PVDF dewatering microporous films of fabricated in situ | |
CN105013356A (en) | Organic-inorganic composite nanoparticle super-hydrophilic modified polymer film and preparation method therefor | |
CN102974230B (en) | Chitosan/titanium dioxide ultrathin hybrid film, and preparation method and application thereof | |
CN111330453A (en) | Polytetrafluoroethylene hollow fiber composite membrane and preparation method thereof | |
CN110917894B (en) | Preparation method of polyvinylidene fluoride hollow fiber porous membrane | |
CN100431676C (en) | Processing technology of polyacrylic acid and cellulose acetate composite membrane | |
CN110038454B (en) | A kind of high strength, high water flux graphene modified PVDF ultrafiltration membrane and preparation method thereof | |
CN106731900A (en) | In-situ sol-gel high-strength polyvinylidene fluoride milipore filter and preparation method | |
CN108998841A (en) | A kind of preparation method of porous polypropylene nitrile nanofibre | |
CN107051231A (en) | The preparation method of polyvinyl chloride homogeneous perforated membrane | |
CN102512987B (en) | Method for preparing high-flux polyvinylidene fluoride hollow fiber membrane | |
CN113318605A (en) | MOF-based mixed matrix membrane and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |
|
RJ01 | Rejection of invention patent application after publication |