CN106727309A - Polymer micelle solution containing Quercetin and its preparation method and application - Google Patents
Polymer micelle solution containing Quercetin and its preparation method and application Download PDFInfo
- Publication number
- CN106727309A CN106727309A CN201611185252.1A CN201611185252A CN106727309A CN 106727309 A CN106727309 A CN 106727309A CN 201611185252 A CN201611185252 A CN 201611185252A CN 106727309 A CN106727309 A CN 106727309A
- Authority
- CN
- China
- Prior art keywords
- quercetin
- polymer micelle
- polymer
- solution containing
- micelle solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 title claims abstract description 321
- 229920000642 polymer Polymers 0.000 title claims abstract description 172
- 239000000693 micelle Substances 0.000 title claims abstract description 166
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 title claims abstract description 160
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 title claims abstract description 160
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 title claims abstract description 160
- 229960001285 quercetin Drugs 0.000 title claims abstract description 160
- 235000005875 quercetin Nutrition 0.000 title claims abstract description 160
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 43
- 239000003381 stabilizer Substances 0.000 claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000243 solution Substances 0.000 claims description 53
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 27
- 238000003756 stirring Methods 0.000 claims description 20
- -1 polyethylene Polymers 0.000 claims description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 12
- 239000004698 Polyethylene Substances 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- 229920000573 polyethylene Polymers 0.000 claims description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 7
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 7
- 229920000053 polysorbate 80 Polymers 0.000 claims description 7
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 6
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 229920001992 poloxamer 407 Polymers 0.000 claims description 6
- 229940044476 poloxamer 407 Drugs 0.000 claims description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- 229960000583 acetic acid Drugs 0.000 claims description 4
- 210000000170 cell membrane Anatomy 0.000 claims description 4
- 239000011258 core-shell material Substances 0.000 claims description 4
- YHHSONZFOIEMCP-UHFFFAOYSA-O phosphocholine Chemical compound C[N+](C)(C)CCOP(O)(O)=O YHHSONZFOIEMCP-UHFFFAOYSA-O 0.000 claims description 4
- 229930003427 Vitamin E Natural products 0.000 claims description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims description 3
- 239000012362 glacial acetic acid Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229940046009 vitamin E Drugs 0.000 claims description 3
- 235000019165 vitamin E Nutrition 0.000 claims description 3
- 239000011709 vitamin E Substances 0.000 claims description 3
- 150000005846 sugar alcohols Polymers 0.000 claims 7
- 238000013019 agitation Methods 0.000 claims 2
- 239000002904 solvent Substances 0.000 claims 2
- 239000010409 thin film Substances 0.000 claims 2
- 230000000118 anti-neoplastic effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000004816 latex Substances 0.000 claims 1
- 229920000126 latex Polymers 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 230000006320 pegylation Effects 0.000 claims 1
- 229920001308 poly(aminoacid) Polymers 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 20
- 238000000338 in vitro Methods 0.000 abstract description 3
- 230000004888 barrier function Effects 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 230000007547 defect Effects 0.000 abstract 1
- 239000003814 drug Substances 0.000 description 70
- 229940079593 drug Drugs 0.000 description 67
- 239000002245 particle Substances 0.000 description 42
- 238000005538 encapsulation Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 238000003760 magnetic stirring Methods 0.000 description 14
- 238000011068 loading method Methods 0.000 description 13
- 230000002209 hydrophobic effect Effects 0.000 description 12
- 239000012530 fluid Substances 0.000 description 9
- 230000002496 gastric effect Effects 0.000 description 9
- 239000008176 lyophilized powder Substances 0.000 description 8
- 239000006069 physical mixture Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- 241000282472 Canis lupus familiaris Species 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 229920006254 polymer film Polymers 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000013081 microcrystal Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 4
- AOBORMOPSGHCAX-UHFFFAOYSA-N Tocophersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-UHFFFAOYSA-N 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 230000036470 plasma concentration Effects 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 4
- 229920001661 Chitosan Polymers 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 229940041181 antineoplastic drug Drugs 0.000 description 3
- 229960003964 deoxycholic acid Drugs 0.000 description 3
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 229950004354 phosphorylcholine Drugs 0.000 description 3
- 229940069328 povidone Drugs 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003405 delayed action preparation Substances 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 210000004051 gastric juice Anatomy 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 239000012982 microporous membrane Substances 0.000 description 2
- 239000002539 nanocarrier Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- 206010007191 Capillary fragility Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000003172 expectorant agent Substances 0.000 description 1
- 230000003419 expectorant effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/28—Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明涉及一种含有槲皮素的聚合物胶束溶液及其制备方法和应用。该聚合物胶束溶液包含槲皮素、两亲性聚合物胶束材料、稳定剂和水,各组分质量百分含量分别是槲皮素0.3%~1.5%,胶束材料10%,稳定剂0.5%~3%,水85.5%~89.2%。该含有槲皮素的聚合物胶束溶液克服了槲皮素难溶于水的缺陷,同时跨越槲皮素在口服吸收过程中的跨膜屏障,可以显著延长槲皮素的体外释放时间并提高完全释放程度。本发明的聚合物胶束生物相容性好,可增加生物利用度,并提高槲皮素的稳定性。
The invention relates to a polymer micelle solution containing quercetin, a preparation method and application thereof. The polymer micelle solution comprises quercetin, an amphiphilic polymer micelle material, a stabilizer and water, and the mass percentages of each component are respectively 0.3% to 1.5% of quercetin and 10% of micelle material. Agent 0.5% ~ 3%, water 85.5% ~ 89.2%. The polymer micelle solution containing quercetin overcomes the defect that quercetin is insoluble in water, and at the same time crosses the transmembrane barrier of quercetin during oral absorption, which can significantly prolong the release time of quercetin in vitro and improve degree of complete release. The polymer micelle of the invention has good biocompatibility, can increase bioavailability, and improve the stability of quercetin.
Description
技术领域technical field
本发明涉及生物制药技术领域,尤其是涉及一种含有槲皮素的两亲性聚合物酵素溶液及其制备方法和应用。The invention relates to the technical field of biopharmaceuticals, in particular to an amphiphilic polymer enzyme solution containing quercetin and its preparation method and application.
背景技术Background technique
槲皮素,又名栎精、槲皮黄素,可作为药品,具有较好的祛痰、止咳作用,并有一定的平喘作用。此外还有降低血压、增强毛细血管抵抗力、减少毛细血管脆性、降血脂、扩张冠状动脉,增加冠脉血流量等作用。槲皮素广泛用于治疗慢性支气管炎,并对冠心病及高血压患者也有辅助治疗作用。现代医学研究表明,槲皮素还具有良好的抗肿瘤作用,在国外已有将其应用于临床治疗肿瘤。但槲皮素的稳定性差,在体内循环半衰期短,难以有效的到达病灶部位,并且槲皮素难溶于水,口服生物利用度较差。Quercetin, also known as quercetin and quercetin, can be used as a medicine, which has good expectorant and cough-relieving effects, and has a certain anti-asthma effect. In addition, it has the effects of lowering blood pressure, enhancing capillary resistance, reducing capillary fragility, lowering blood lipids, expanding coronary arteries, and increasing coronary blood flow. Quercetin is widely used in the treatment of chronic bronchitis, and also has adjuvant therapeutic effect on patients with coronary heart disease and hypertension. Modern medical research shows that quercetin also has a good anti-tumor effect, and it has been used in clinical treatment of tumors abroad. But the stability of quercetin is poor, the half-life of circulation in the body is short, it is difficult to effectively reach the lesion site, and quercetin is insoluble in water, and the oral bioavailability is poor.
发明内容Contents of the invention
基于此,有必要提供一种能够提高槲皮素的生物利用度的含有槲皮素的聚合物胶束溶液及其制备方法和应用。Based on this, it is necessary to provide a polymer micelle solution containing quercetin capable of improving the bioavailability of quercetin, its preparation method and application.
一种含有槲皮素的聚合物胶束溶液,包括具有如下质量百分含量的各组分:A polymer micelle solution containing quercetin, comprising the following components in mass percent:
其中,所述两亲性聚合物胶束材料包覆所述槲皮素形成核壳结构。Wherein, the amphiphilic polymer micelle material coats the quercetin to form a core-shell structure.
在其中一个实施例中,所述聚合物胶束溶液包括具有如下质量百分含量的各组分:In one of the embodiments, the polymer micelle solution includes the following components in mass percentage:
槲皮素 0.5%~1.0%;Quercetin 0.5%~1.0%;
两亲性聚合物胶束材料 10%;以及Amphiphilic polymer micellar material 10%; and
稳定剂 1.5%~2.5%;Stabilizer 1.5% ~ 2.5%;
余量为水。The balance is water.
在其中一个实施例中,所述两亲性聚合物胶束材料选自聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物、脱氧胆酸钠、聚氧乙烯、聚乙二醇化壳聚糖、聚维酮、仿细胞膜磷酸胆碱、聚氨基酸和聚乳酸-羟基乙酸共聚物中的至少一种。In one of the embodiments, the amphiphilic polymer micelle material is selected from polyethylene glycol-vinyl caprolactam-vinyl acetate copolymer, sodium deoxycholate, polyoxyethylene, polyethylene glycol chitosan , povidone, imitation cell membrane phosphorylcholine, polyamino acid and polylactic acid-glycolic acid copolymer at least one.
在其中一个实施例中,所述稳定剂选自天然水溶性维生素E、泊洛萨姆407和吐温80至少一种。In one embodiment, the stabilizer is at least one selected from natural water-soluble vitamin E, poloxamer 407 and Tween 80.
在其中一个实施例中,所述槲皮素的质量百分含量为0.7%;所述两亲性聚合物胶束材料为聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物;所述稳定剂是泊洛萨姆407,所述稳定剂的质量百分含量是2%。In one of the embodiments, the mass percentage of quercetin is 0.7%; the amphiphilic polymer micelle material is polyethylene glycol-vinyl caprolactam-vinyl acetate copolymer; the stable The stabilizer is poloxamer 407, and the mass percentage of the stabilizer is 2%.
一种上述任一实施例所述的含有槲皮素的聚合物胶束溶液的制备方法,包括如下步骤:A preparation method of a quercetin-containing polymer micelle solution described in any of the above-mentioned embodiments, comprising the steps of:
步骤一:将所述槲皮素与所述两亲性聚合物胶束材料按照相应的质量百分含量配比溶于有机溶剂中,搅拌使所述槲皮素及所述两亲性聚合物胶束材料完全溶解至混合均匀,得到含有槲皮素及两亲性聚合物胶束材料的有机溶液;Step 1: dissolving the quercetin and the amphiphilic polymer micelle material in an organic solvent according to the corresponding mass percentage ratio, stirring to make the quercetin and the amphiphilic polymer The micellar material is completely dissolved until mixed uniformly to obtain an organic solution containing quercetin and amphiphilic polymer micellar material;
步骤二:挥发完全除去所述溶液中的所述有机溶剂,得到包含所述槲皮素与所述两亲性聚合物胶束材料的聚合物薄膜材料;Step 2: completely remove the organic solvent in the solution by volatilization to obtain a polymer film material comprising the quercetin and the amphiphilic polymer micelle material;
步骤三:按照相应的质量百分含量配比将所述聚合物薄膜材料加入含有所述稳定剂的水溶液中,涡旋并搅拌,得到所述含有槲皮素的聚合物胶束溶液。Step 3: Add the polymer film material into the aqueous solution containing the stabilizer according to the corresponding mass percentage ratio, vortex and stir to obtain the polymer micelle solution containing quercetin.
在其中一个实施例中,所述有机溶剂为丙酮、甲醇、乙酸乙酯和冰醋酸中的至少一种。In one embodiment, the organic solvent is at least one of acetone, methanol, ethyl acetate and glacial acetic acid.
在其中一个实施例中,所述有机溶剂与所述两亲性聚合物胶束材料的体积质量比为(0.1-0.3)mL:100mg。In one of the embodiments, the volume-to-mass ratio of the organic solvent to the amphiphilic polymer micelle material is (0.1-0.3) mL:100 mg.
在其中一个实施例中,所述步骤一中的搅拌是于水浴中磁力搅拌,水浴的温度为40~60℃;In one of the embodiments, the stirring in the step 1 is magnetic stirring in a water bath, and the temperature of the water bath is 40-60°C;
所述步骤三中的搅拌是磁力搅拌,搅拌速度为500~700rpm,搅拌时间为0.5~2h。The stirring in the step 3 is magnetic stirring, the stirring speed is 500-700 rpm, and the stirring time is 0.5-2 h.
上述任一实施例所述的含有槲皮素的聚合物胶束溶液在制备抗肿瘤药物中的应用。Application of the quercetin-containing polymer micelle solution described in any of the above embodiments in the preparation of antitumor drugs.
上述含有槲皮素的聚合物胶束溶液中的两亲性聚合物胶束材料在水中可自发形成稳定的聚合物胶束,其具有疏水内核-亲水外壳的结构,疏水内核可以作为疏水性药物槲皮素的储库,将难溶性药物槲皮素增溶在内核,可增加槲皮素的稳定性,提高其生物利用度,促进其吸收;亲水外壳不仅使聚合物胶束的稳定性增强,而且影响着聚合物胶束与外部环境的作用,从而影响聚合物胶束在生物体内的行为。聚合物胶束具有非常高的热力学稳定性,结构内多点间具有疏水性相互作用,这样使聚合物胶束具有较高的动力学稳定性,因此其良好的热力学稳定性和动力学稳定性,能够防止药物在体内析出,保证包裹药物的稳定性。The above-mentioned amphiphilic polymer micelle material in the polymer micelle solution containing quercetin can spontaneously form a stable polymer micelle in water, which has a hydrophobic core-hydrophilic shell structure, and the hydrophobic core can serve as a hydrophobic The reservoir of the drug quercetin, solubilizing the poorly soluble drug quercetin in the inner core, can increase the stability of quercetin, improve its bioavailability, and promote its absorption; the hydrophilic shell not only stabilizes the polymer micelles Enhanced properties, and affect the interaction between polymer micelles and the external environment, thereby affecting the behavior of polymer micelles in vivo. Polymer micelles have very high thermodynamic stability, and there are hydrophobic interactions between multiple points in the structure, so that polymer micelles have high dynamic stability, so their good thermodynamic stability and dynamic stability , can prevent the drug from being separated out in the body, and ensure the stability of the packaged drug.
上述含有槲皮素的聚合物胶束溶液的制备方法工艺简单,包封率高,生产成本较低,有利于工业化生产,具有良好的应用前景,同时有利于推进液晶纳米的工业化发展。The preparation method of the polymer micelle solution containing quercetin is simple in process, high in encapsulation efficiency, and low in production cost, is conducive to industrial production, has good application prospects, and is conducive to promoting the industrial development of liquid crystal nanometers.
附图说明Description of drawings
图1为实施例2中含有不同稳定剂的含有槲皮素的聚合物胶束的粒径和电位;Fig. 1 is the particle diameter and the potential of the polymer micelle containing quercetin containing different stabilizing agents in embodiment 2;
图2为实施例3中具有不同稳定剂浓度的含有槲皮素的聚合物胶束的粒径;Fig. 2 is the particle diameter of the polymer micelle containing quercetin with different stabilizing agent concentrations in embodiment 3;
图3为实施例4中不同投药量的含有槲皮素的聚合物胶束的粒径、多分散系数、包封率、载药量和电位;Fig. 3 is the particle size, polydispersity coefficient, encapsulation efficiency, drug loading and potential of the polymer micelles containing quercetin in different dosages in Example 4;
图4为实施例5不同磁力搅拌时间下含有槲皮素的聚合物胶束的粒径和包封率;Fig. 4 is the particle diameter and encapsulation efficiency of the polymer micelle containing quercetin under the different magnetic stirring time of embodiment 5;
图5为实施例6中的含有槲皮素的聚合物胶束的电子扫描电镜照片;Fig. 5 is the scanning electron micrograph of the polymer micelle containing quercetin in embodiment 6;
图6为实施例7中的差示扫描量热图(A:槲皮素;B:含有槲皮素的聚合物胶束;C:空白聚合物胶束);Fig. 6 is the differential scanning calorimetry figure in embodiment 7 (A: quercetin; B: polymer micelle containing quercetin; C: blank polymer micelle);
图7为实施例7中的粉末X-射线衍射图(A:槲皮素;B:槲皮素和空白聚合物胶束的物理混合物;C:含有槲皮素的聚合物胶束;D:空白聚合物胶束);Fig. 7 is the powder X-ray diffraction figure (A: quercetin in embodiment 7; B: the physical mixture of quercetin and blank polymer micelle; C: the polymer micelle containing quercetin; D: blank polymer micelles);
图8为实施例8中的红外吸收光谱图(A:槲皮素;B:槲皮素和空白聚合物胶束的物理混合物;C:空白聚合物胶束;D:含有槲皮素的聚合物胶束);Fig. 8 is the infrared absorption spectrogram in embodiment 8 (A: quercetin; B: the physical mixture of quercetin and blank polymer micelle; C: blank polymer micelle; D: the polymerization containing quercetin object micelles);
图9为实施例9中含有槲皮素的聚合物胶束体外释放示意图;9 is a schematic diagram of in vitro release of polymer micelles containing quercetin in Example 9;
图10为实施例10中人工模拟胃肠液对Qu-PMs粒径的影响示意图;Figure 10 is a schematic diagram of the influence of artificially simulated gastrointestinal fluid on the particle size of Qu-PMs in Example 10;
图11为实施例10中人工模拟胃肠液对Qu-PMs粒径的影响示意图(A:pH 1.2,2h;B:pH 7.4,4h;C:pH 7.4,6h;D:pH 7.4,8h);Figure 11 is a schematic diagram of the effect of artificially simulated gastrointestinal fluid on the particle size of Qu-PMs in Example 10 (A: pH 1.2, 2h; B: pH 7.4, 4h; C: pH 7.4, 6h; D: pH 7.4, 8h) ;
图12为实施例11中Qu-PMs胶体溶液在室温下存放粒径和包封率稳定性示意图;Figure 12 is a schematic diagram of the stability of the particle size and encapsulation efficiency of the Qu-PMs colloidal solution stored at room temperature in Example 11;
图13为实施例12中比格犬灌胃槲皮素原料药和含有槲皮素的聚合物胶束的平均血药浓度-时间变化曲线(n=3)。Fig. 13 is the average plasma concentration-time curve (n=3) of quercetin crude drug and quercetin-containing polymer micelles in beagle dogs administered orally in Example 12.
具体实施方式detailed description
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the present invention will be described more fully below with reference to the associated drawings. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, these embodiments are provided to make the understanding of the disclosure of the present invention more thorough and comprehensive.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terms used herein in the description of the present invention are for the purpose of describing specific embodiments only, and are not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
一实施方式的含有槲皮素的聚合物胶束溶液,其包含具有如下质量百分含量的各组分:The polymer micelle solution containing quercetin of one embodiment, it comprises each component that has following mass percentage content:
其中,两亲性聚合物胶束材料包覆槲皮素形成核壳结构。Among them, the amphiphilic polymer micelle material coats quercetin to form a core-shell structure.
优选的,该聚合物胶束溶液包括具有如下质量百分含量的各组分:Preferably, the polymer micelle solution includes each component with the following mass percentages:
槲皮素 0.5%~1.0%;Quercetin 0.5%~1.0%;
两亲性聚合物胶束材料 10%;以及Amphiphilic polymer micellar material 10%; and
稳定剂 1.5%~2.5%;Stabilizer 1.5% ~ 2.5%;
余量为水。The balance is water.
两亲性聚合物胶束材料选自聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物(soluplus)、脱氧胆酸钠、聚氧乙烯(PEO)、聚乙二醇化壳聚糖(PEG-CS)、聚维酮(PVP)、仿细胞膜磷酸胆碱、聚氨基酸和聚乳酸-羟基乙酸共聚物(PLGA)中的至少一种。The amphiphilic polymer micelle material is selected from polyethylene glycol-vinyl caprolactam-vinyl acetate copolymer (soluplus), sodium deoxycholate, polyoxyethylene (PEO), polyethylene glycol chitosan (PEG- CS), povidone (PVP), imitation cell membrane phosphorylcholine, polyamino acid and polylactic-co-glycolic acid (PLGA).
槲皮素结构上带有酚羟基,酚羟基易于和羰基之间形成分子间氢键。优选的,两亲性聚合物胶束材料为聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物。聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物具有亲水段和聚乙烯基己内酰胺-醋酸乙烯酯疏水段的两亲性结构,CMC值(6.44×10-8mol·L-1)非常低,可以在水中自发形成稳定的聚合物胶束。疏水段聚乙烯基己内酰胺-醋酸乙烯酯形成疏水内核,包埋难溶性药物,提高溶解性能的同时能够加强其稳定性。聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物形成的聚合物胶束疏水内核具有酰胺基和乙酰基的羰基结构,能够与槲皮素的酚羟基形成氢键,因而能够形成稳定包覆的核壳结构。Quercetin has phenolic hydroxyl groups in its structure, which are easy to form intermolecular hydrogen bonds with carbonyl groups. Preferably, the amphiphilic polymer micelle material is polyethylene glycol-vinyl caprolactam-vinyl acetate copolymer. Polyethylene glycol-vinylcaprolactam-vinyl acetate copolymer has an amphiphilic structure with a hydrophilic segment and a hydrophobic segment of polyvinylcaprolactam-vinyl acetate, and its CMC value (6.44×10 -8 mol·L -1 ) is very Low, can spontaneously form stable polymer micelles in water. The hydrophobic segment of polyvinylcaprolactam-vinyl acetate forms a hydrophobic inner core, embeds insoluble drugs, improves solubility and enhances its stability. The hydrophobic inner core of polymer micelles formed by polyethylene glycol-vinyl caprolactam-vinyl acetate copolymer has the carbonyl structure of amide and acetyl groups, which can form hydrogen bonds with the phenolic hydroxyl groups of quercetin, thus forming a stable coating core-shell structure.
稳定剂选自天然水溶性维生素E(TPGS)、泊洛萨姆407(F127)和吐温80(Tween80)至少一种。The stabilizer is at least one selected from natural water-soluble vitamin E (TPGS), poloxamer 407 (F127) and Tween 80 (Tween80).
优选的,本实施方式的含有槲皮素的聚合物胶束溶液中,槲皮素的质量百分含量为0.7%;两亲性聚合物胶束材料为聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物;稳定剂是泊洛萨姆407,稳定剂的质量百分含量是2%。Preferably, in the polymer micelle solution containing quercetin in this embodiment, the mass percentage of quercetin is 0.7%; the amphiphilic polymer micelle material is polyethylene glycol-vinyl caprolactam-acetic acid Vinyl ester copolymer; the stabilizer is poloxamer 407, and the mass percentage of the stabilizer is 2%.
本实施方式还提供了一种上述含有槲皮素的聚合物胶束溶液的制备方法,其包括如下步骤:This embodiment also provides a method for preparing the above-mentioned polymer micelle solution containing quercetin, which includes the following steps:
步骤一:将槲皮素与两亲性聚合物胶束材料按照相应的质量百分含量配比溶于有机溶剂中,搅拌使槲皮素及两亲性聚合物胶束材料完全溶解至混合均匀,得到含有槲皮素及两亲性聚合物胶束材料的有机溶液;Step 1: Dissolving the quercetin and the amphiphilic polymer micelle material in an organic solvent according to the corresponding mass percentage ratio, stirring to completely dissolve the quercetin and the amphiphilic polymer micelle material until evenly mixed , to obtain an organic solution containing quercetin and amphiphilic polymer micelle material;
步骤二:挥发完全除去溶液中的有机溶剂,得到包含槲皮素与两亲性聚合物胶束材料的聚合物薄膜材料;Step 2: completely remove the organic solvent in the solution by volatilization, and obtain a polymer film material comprising quercetin and amphiphilic polymer micelle material;
步骤三:按照相应的质量百分含量配比将聚合物薄膜材料加入含有稳定剂的水溶液中,涡旋并搅拌,得到含有槲皮素的聚合物胶束溶液。Step 3: Add the polymer film material into the aqueous solution containing the stabilizer according to the corresponding mass percentage ratio, vortex and stir to obtain a polymer micelle solution containing quercetin.
有机溶剂优选但不限于为丙酮、甲醇、乙酸乙酯和冰醋酸,且有机溶剂与两亲性聚合物胶束材料的体积质量比为(0.1-0.3)mL:100mg。The organic solvent is preferably but not limited to acetone, methanol, ethyl acetate and glacial acetic acid, and the volume-to-mass ratio of the organic solvent to the amphiphilic polymer micelle material is (0.1-0.3) mL:100 mg.
步骤一中的搅拌是于水浴中磁力搅拌,水浴的温度为40~60℃。The stirring in step 1 is magnetic stirring in a water bath, and the temperature of the water bath is 40-60°C.
步骤三中的搅拌是磁力搅拌,搅拌速度为500~700rpm,搅拌时间为0.5~2h。优选的,搅拌速度为650rpm,搅拌时间为2h。The stirring in step 3 is magnetic stirring, the stirring speed is 500-700 rpm, and the stirring time is 0.5-2 h. Preferably, the stirring speed is 650rpm, and the stirring time is 2h.
上述含有槲皮素的聚合物胶束溶液可广泛应用于制备抗肿瘤药物中。得到的抗肿瘤药物具有良好的稳定性,且生物利用度较之单一槲皮素大大提高,吸收效率也大大提高。The above-mentioned polymer micelle solution containing quercetin can be widely used in the preparation of antitumor drugs. The obtained antitumor drug has good stability, and the bioavailability is greatly improved compared with single quercetin, and the absorption efficiency is also greatly improved.
以下为具体实施例部分。The following is the specific embodiment part.
实施例1:含有槲皮素的聚合物胶束溶液的制备。Example 1: Preparation of polymer micelle solution containing quercetin.
称取一定量的槲皮素(Qu)和100mg载体soluplus(聚乙二醇-乙烯基己内酰胺-醋酸乙烯酯共聚物)溶于0.2mL丙酮中,磁力搅拌使其完全溶解,混合均匀,然后于50℃水浴磁力搅拌,挥发除去丙酮,得到包含槲皮素与两亲性聚合物胶束材料的聚合物薄膜材料;称取稳定剂溶于水中,配制成一定浓度的水溶液;将含有稳定剂的水溶液加入所制备的聚合物薄膜材料中使体系总重为1g,涡旋,650rmp磁力搅拌,即得含有槲皮素的聚合物胶束溶液(Qu-NPs)。Weigh a certain amount of quercetin (Qu) and 100mg carrier soluplus (polyethylene glycol-vinyl caprolactam-vinyl acetate copolymer) and dissolve in 0.2mL acetone, magnetically stir to dissolve completely, mix well, and then place in Magnetic stirring in a water bath at 50°C, volatilization and removal of acetone, to obtain a polymer film material containing quercetin and amphiphilic polymer micelles; weigh the stabilizer and dissolve it in water to prepare an aqueous solution of a certain concentration; The aqueous solution was added to the prepared polymer film material to make the total weight of the system 1 g, vortexed, and magnetically stirred at 650 rpm to obtain a polymer micelle solution (Qu-NPs) containing quercetin.
实施例2:稳定剂种类对含有槲皮素的聚合物胶束(以下简称“聚合物胶束”)的影响。Example 2: Effects of stabilizer types on polymer micelles containing quercetin (hereinafter referred to as "polymer micelles").
考察不同种类稳定剂对聚合物胶束的影响,制备方法同实施例1,聚合物胶束溶液分别采用1%TPGS、1%F127、1%Tween80和去离子水。其中槲皮素用量0.7%(7mg),磁力搅拌2h。以聚合物胶束粒径、Zeta电位和包封率作为考察指标。The influence of different types of stabilizers on the polymer micelles was investigated. The preparation method was the same as in Example 1. The polymer micelles solution used 1% TPGS, 1% F127, 1% Tween80 and deionized water respectively. Wherein the amount of quercetin is 0.7% (7mg), and magnetically stirred for 2h. The polymer micelle particle size, Zeta potential and encapsulation efficiency were used as the investigation indexes.
粒径和电位测定方法,用超纯水稀释聚合物胶束溶液后,取0.5mL聚合物胶束溶液加入到样品池中,25℃平衡2min,采用Zetasizer Nano ZS90粒径测定仪测定聚合物胶束的粒径大小、多分散系数(PDI)和Zeta电位。Particle size and potential measurement method, after diluting the polymer micelle solution with ultrapure water, take 0.5mL of the polymer micelle solution and add it to the sample cell, equilibrate at 25°C for 2min, and use the Zetasizer Nano ZS90 particle size analyzer to measure the polymer gel Beam size, polydispersity index (PDI) and Zeta potential.
采用膜过滤法测定槲皮素的包封率,膜过滤法是指未包封的药物以游离微晶(绝大部分)和溶解在介质(极小部分)两种形式存在,因此可以用微孔滤膜过滤截留游离微晶,对于已溶解的药物浓度可以近似地认为是药物的溶解度。The encapsulation efficiency of quercetin was determined by membrane filtration method. Membrane filtration method means that the unencapsulated drug exists in two forms: free microcrystals (mostly) and dissolved in the medium (very small part), so microcrystals can be used. The pore filter retains free microcrystals, and the dissolved drug concentration can be approximately considered as the solubility of the drug.
精密量取稀释的Qu-PMs胶体溶液0.5mL,用0.45μm微孔滤膜滤去未包封的药物,将滤液用甲醇破乳,定容10mL容量瓶,HPLC法测定含量;另精密量取稀释的Qu-PMs胶体溶液0.5mL于10mL容量瓶中,加甲醇破乳、定容,采用HPLC测定药物的含量,计算包封率(entrapment efficiency,EE)。Accurately measure 0.5mL of the diluted Qu-PMs colloidal solution, filter the unencapsulated drug with a 0.45μm microporous membrane, demulsify the filtrate with methanol, set the volume to a 10mL volumetric flask, and measure the content by HPLC; Put 0.5mL of the diluted Qu-PMs colloidal solution in a 10mL volumetric flask, add methanol to break the emulsification, make up to volume, measure the drug content by HPLC, and calculate the entrapment efficiency (EE).
HPLC条件如下:色谱柱:Odyssil C18(250×4.6mm,5μm);流动相:甲醇:0.2%磷酸(60:40);柱温:35℃;检测波长:375nm;流速:1.0mL·min-1;进样量:20μL。The HPLC conditions are as follows: chromatographic column: Odyssil C18 (250×4.6mm, 5μm); mobile phase: methanol: 0.2% phosphoric acid (60:40); column temperature: 35°C; detection wavelength: 375nm; flow rate: 1.0mL min- 1; Injection volume: 20 μL.
如图1A和1B所示,结果表明,加入不同稳定剂TPGS、F127、Tween80的条件下,均可得到小于100nm的聚合物胶束,且包封率均较好,均大于80%。使用1%TPGS作为稳定剂,制备聚合物胶束粒径(62.11±0.53nm)和PDI(0.081±0.02)均较小,但是包封率相对最低(83.02±3.46%),Zeta电位为-5.19±1.83mV,放置过程中发现容易聚集。使用1%F127作为稳定剂,制备聚合物胶束粒径(61.64±0.35nm)和PDI(0.017±0.02)均较小,且包封率最高(95.85±2.86),Zeta(-13.63±1.45)最小。使用1%Tween80作为稳定剂制备聚合物胶束的特点与使用1%F127作为稳定剂相似,但是放置过程中发现容易聚集,不加稳定剂制备聚合物胶束粒径和PDI均相对较大。As shown in Figures 1A and 1B, the results show that under the conditions of adding different stabilizers TPGS, F127, and Tween80, polymer micelles smaller than 100 nm can be obtained, and the encapsulation efficiencies are all higher than 80%. Using 1% TPGS as a stabilizer, the particle size (62.11±0.53nm) and PDI (0.081±0.02) of the prepared polymer micelles were small, but the encapsulation efficiency was relatively lowest (83.02±3.46%), and the Zeta potential was -5.19 ±1.83mV, easy to gather during placement. Using 1% F127 as a stabilizer, the particle size (61.64±0.35nm) and PDI (0.017±0.02) of the prepared polymer micelles were smaller, and the encapsulation efficiency was the highest (95.85±2.86), Zeta(-13.63±1.45) minimum. The characteristics of polymer micelles prepared by using 1% Tween80 as a stabilizer are similar to those of using 1% F127 as a stabilizer, but it is found that they are easy to aggregate during the standing process, and the particle size and PDI of polymer micelles prepared without stabilizers are relatively large.
实施例3:稳定剂浓度对聚合物胶束的影响。Example 3: Effect of stabilizer concentration on polymer micelles.
考察不同稳定剂浓度对聚合物胶束的影响,制备方法同实施例1,聚合物胶束溶液分别采用质量百分含量为0.5%F127、1%F127、2%F127和3%F127。其中槲皮素用量0.7%(7mg),磁力搅拌2h。以聚合物胶束粒径和包封率作为考察指标,方法同实施例2。To investigate the influence of different stabilizer concentrations on polymer micelles, the preparation method was the same as in Example 1, and the polymer micelles solutions were used with mass percentages of 0.5% F127, 1% F127, 2% F127 and 3% F127. Wherein the amount of quercetin is 0.7% (7mg), and magnetically stirred for 2h. The polymer micelle particle size and encapsulation efficiency are used as the investigation index, and the method is the same as in Example 2.
如图2所示,结果表明,0.5-2%F127浓度对聚合物胶束的粒径和包封率影响较小,包封率都大于85%。3%F127制备的聚合物胶束粒径较大(107nm),0.5%、1%和2%F127制备的聚合物胶束粒径均较小。As shown in Figure 2, the results show that the concentration of 0.5-2% F127 has little effect on the particle size and encapsulation efficiency of polymer micelles, and the encapsulation efficiency is greater than 85%. The particle size of the polymer micelle prepared by 3% F127 was larger (107nm), and the particle size of the polymer micelle prepared by 0.5%, 1% and 2% F127 was smaller.
实施例4:投药量对聚合物胶束的影响。Example 4: Effect of dosage on polymer micelles.
考察不同投药量对聚合物胶束的影响,制备方法同实施例1,槲皮素的投药量分别为聚合物胶束溶液总重的0.3%(3mg)、0.5%(5mg)、0.7%(7mg)、1.0%(10mg)、1.5%(15mg)。其中稳定剂为2%F127,磁力搅拌2h。以聚合物胶束粒径、PDI、载药量和包封率作为考察指标,方法同实施例2。Investigate the impact of different dosages on polymer micelle, preparation method is the same as embodiment 1, and the dosage of quercetin is respectively 0.3% (3mg), 0.5% (5mg), 0.7% ( 7mg), 1.0% (10mg), 1.5% (15mg). Among them, the stabilizer is 2% F127, and magnetically stirred for 2 hours. The polymer micelle particle size, PDI, drug loading and encapsulation efficiency are used as the investigation indicators, and the method is the same as in Example 2.
结果见图3。图3A粒径结果表明,随着投药量的增加,聚合物胶束粒径逐渐增大,当投药量为10mg时,含有槲皮素的聚合物胶束粒径明显的增大。在投药量为15mg时,粒径急剧增加为559.23±19.41nm,PDI为0.427±0.104,这表明未包载的药物在溶液中形成了微晶。The results are shown in Figure 3. The particle size results in Fig. 3A show that with the increase of dosage, the particle size of polymer micelles gradually increases, and when the dosage is 10 mg, the particle size of polymer micelles containing quercetin increases significantly. When the dosage was 15mg, the particle size increased sharply to 559.23±19.41nm, and the PDI was 0.427±0.104, which indicated that the unencapsulated drug formed microcrystals in the solution.
图3B包封率结果表明,随着投药量增大,药物的包封率呈上升趋势,当投药量为0.7%时,药物的包封率最大,当投药量为1.0%时,包封率小于60%,有一半药物未被包封,药物利用率较低。当投药量为1.5%时,包封率只有2.29%。The results of encapsulation efficiency in Figure 3B show that as the dosage increases, the encapsulation efficiency of the drug is on the rise. When the dosage is 0.7%, the encapsulation efficiency of the drug is the largest, and when the dosage is 1.0%, the encapsulation efficiency Less than 60%, half of the medicine is not encapsulated, and the utilization rate of the medicine is low. When the dosage is 1.5%, the encapsulation efficiency is only 2.29%.
图3B载药量结果表明,随着投药量增大,药物的载药量呈上升趋势,当投药量为0.7%时,药物的载药量最大,当投药量为1.0%时,载药量开始下降,载药量有5.01%,当投药量为1.5%时,载药量只有0.34%。The results of drug loading in Figure 3B show that as the dosage increases, the drug loading of the drug shows an upward trend. When the dosage is 0.7%, the drug loading is the largest. When the dosage is 1.0%, the drug loading It began to decline, and the drug loading was 5.01%. When the dosage was 1.5%, the drug loading was only 0.34%.
图3C电位结果表明,随着投药量增大,药物的Zeta电位呈上升趋势,当投药量达到7%时,聚合物胶束的Zeta电位最小,然后随着投药量的增加,Zeta电位有变大趋势。The potential results in Figure 3C show that as the dosage increases, the Zeta potential of the drug shows an upward trend. When the dosage reaches 7%, the Zeta potential of the polymer micelle is the smallest, and then as the dosage increases, the Zeta potential changes. Trend.
综合分析以上结果,随着槲皮素投药量的增大,粒径、载药量、包封率及Zeta电位绝对值都有所增加。聚合物胶束载药量的增加,即聚合物胶束内核包载的药物量增多,更多的药物包入内核,造成内核直径变大,所以聚合物胶束粒径就增大。同时,由于疏水内核的空间有限,增大槲皮素的投入量,超出内核载药能力时,必然有部分槲皮素不能包入核内,这样会使原料的利用率降低。当投药量为1.0%时,含有槲皮素的聚合物胶束的粒径超过100nm,可能是由于当投药量增多,疏水内核直径增大的缘故。当投药量为1.5%时,这时超过了聚合物胶束载药的能力,药物在水溶液中形成了微晶。因此从粒子的粒径、包封率、载药量及Zeta电位考虑,适宜的投药量应该控制在0.7%(7mg)。Comprehensive analysis of the above results, with the increase of quercetin dosage, the particle size, drug loading, encapsulation efficiency and absolute value of Zeta potential all increased. The increase of the drug loading of the polymer micelle means that the amount of drug entrapped in the inner core of the polymer micelle increases, and more drugs are included in the inner core, causing the diameter of the inner core to become larger, so the particle size of the polymer micelle increases. At the same time, due to the limited space of the hydrophobic inner core, increasing the input amount of quercetin, when the drug loading capacity of the inner core is exceeded, some quercetin must not be included in the inner core, which will reduce the utilization rate of raw materials. When the dosage is 1.0%, the particle size of the polymer micelles containing quercetin exceeds 100nm, which may be due to the increase in the diameter of the hydrophobic inner core when the dosage increases. When the dosage is 1.5%, it exceeds the ability of the polymer micelle to carry the drug, and the drug forms microcrystals in the aqueous solution. Therefore, considering the particle size, encapsulation efficiency, drug loading and Zeta potential of the particles, the appropriate dosage should be controlled at 0.7% (7mg).
实施例5:磁力搅拌时间对聚合物胶束的影响。Example 5: Effect of magnetic stirring time on polymer micelles.
考察不同磁力搅拌时间对胶束的影响,制备方法同实施例1,搅拌时间分别为0.5、1、1.5和2h。其中稳定剂为2%F127,投药量为0.7%(7mg)。以聚合物胶束粒径和包封率作为考察指标,方法同实施例2。The influence of different magnetic stirring times on the micelles was investigated. The preparation method was the same as in Example 1, and the stirring times were 0.5, 1, 1.5 and 2 hours respectively. The stabilizer is 2% F127, and the dosage is 0.7% (7mg). The polymer micelle particle size and encapsulation efficiency are used as the investigation index, and the method is the same as in Example 2.
如图4所示,结果显示,随着磁力搅拌时间延长聚合物胶束粒径变小,没有显著性变化,PDI随磁力搅拌时间延长而变小。磁力搅拌时间对包封率的影响不大。磁力搅拌时间为2h得到聚合物胶束粒粒径小,而且分布范围较窄,包封率也较好。综合考虑选择磁力搅拌2h。As shown in Figure 4, the results show that the particle size of the polymer micelles becomes smaller with the prolongation of the magnetic stirring time, and there is no significant change, and the PDI becomes smaller with the prolongation of the magnetic stirring time. Magnetic stirring time had little effect on encapsulation efficiency. When the magnetic stirring time is 2h, the particle size of the polymer micelles is small, and the distribution range is narrow, and the encapsulation efficiency is also good. Taking into account the choice of magnetic stirring for 2h.
综合上面处方和工艺各个实施例的结果,优化出最佳制备工艺及处方:投药量为7mg,以2%F127为稳定剂,650rpm磁力搅拌2h。Based on the results of each example of the above prescription and process, the best preparation process and prescription were optimized: the dosage was 7 mg, 2% F127 was used as a stabilizer, and magnetic stirring was performed at 650 rpm for 2 hours.
实施例6:聚合物胶束的形态表征。Example 6: Morphological characterization of polymer micelles.
为了考察聚合物胶束的形态和粒子的大小,采用电子扫描电镜(SEM)方法观察。In order to investigate the morphology of polymer micelles and the size of particles, scanning electron microscopy (SEM) was used to observe.
含有槲皮素的聚合物胶束冻干粉样品制备。取聚合物胶束胶体溶液,加入5%的甘露醇冻干保护剂,放入-80℃冰箱预冻12h,然后置于冷冻干燥仪中冻干24h,即可得到饼状含有槲皮素的聚合物胶束冻干粉。Sample preparation of polymer micellar lyophilized powder containing quercetin. Take the polymer micelle colloidal solution, add 5% mannitol freeze-drying protective agent, put it into -80 ℃ refrigerator for 12 hours, and then place it in a freeze dryer for 24 hours to obtain the quercetin-containing quercetin. Polymer micelles lyophilized powder.
将实施例1所制备含有槲皮素的聚合物胶束冻干粉样品置于粘有绝缘胶的铜制盘上,喷金2.5min,真空干燥,用电子扫描电镜扫描成像、观察并拍照。其结果如图5所示,结果显示扫描电镜显示制备的含有槲皮素的聚合物胶束呈球形或类球形,平均粒径约100nm。Place the quercetin-containing polymer micelle freeze-dried powder sample prepared in Example 1 on a copper plate adhered with insulating glue, spray gold for 2.5 minutes, dry in vacuum, scan and image with a scanning electron microscope, observe and take pictures. The results are shown in FIG. 5 , and the scanning electron microscope showed that the prepared polymer micelles containing quercetin were spherical or quercetin-like, with an average particle diameter of about 100 nm.
实施例7:槲皮素在聚合物胶束体系中的晶型研究。Example 7: Study on the crystal form of quercetin in a polymer micelle system.
为了考察槲皮素在聚合物胶束中的存在状态,采用DSC和X-射线衍射(XRD)进行分析测定。In order to investigate the existence state of quercetin in polymer micelles, DSC and X-ray diffraction (XRD) were used for analysis and determination.
DSC:分别取适量5mg槲皮素(Qu)、空白聚合物胶束冻干粉和实施例1所制备载药聚合物胶束冻干粉(Qu-PMs)冻干粉进行DSC分析。DSC条件为:升温速度10℃/min,测量范围30-400℃,空铝盘为空白对照,炉内气体为氮气。DSC: An appropriate amount of 5 mg quercetin (Qu), the blank polymer micelle lyophilized powder and the drug-loaded polymer micelle lyophilized powder (Qu-PMs) lyophilized powder prepared in Example 1 were respectively taken for DSC analysis. The DSC conditions are as follows: the heating rate is 10°C/min, the measurement range is 30-400°C, the empty aluminum pan is used as the blank control, and the gas in the furnace is nitrogen.
DSC结果见图6。结果表明,槲皮素原料药在是以晶型的形式存在的,DSC图中显示在134℃和325℃出现2个峰,134℃的峰是药物一个脱水峰,325℃的峰是药物一个明显的熔融吸热峰;空白聚合物胶束出现四个吸热峰,而含有槲皮素的聚合物胶束与空白聚合物胶束的吸热峰是一致的,这与载体的玻璃转化温度和相互之间联系有关,在134℃和325℃处没有出现原料药的吸热峰。DSC结果显示槲皮素在聚合物胶束中的分散与原料药晶型是不同的。从DSC图还可以看出,含有槲皮素的聚合物胶束在大约350℃的峰与空白聚合物胶束相比峰形位置发生了移动,这说明了槲皮素和两亲性聚合物胶束材料之间可能存在一定的作用力。The DSC results are shown in Figure 6. The results show that the quercetin raw material drug exists in the form of crystalline forms. The DSC chart shows two peaks at 134°C and 325°C. The peak at 134°C is a dehydration peak of the drug, and the peak at 325°C is a peak of the drug. Obvious melting endothermic peaks; four endothermic peaks appear in the blank polymer micelles, and the endothermic peaks of the quercetin-containing polymer micelles are consistent with the blank polymer micelles, which is consistent with the glass transition temperature of the carrier Related to the relationship between them, there is no endothermic peak of the raw material drug at 134°C and 325°C. DSC results showed that the dispersion of quercetin in polymer micelles was different from that of the bulk drug. It can also be seen from the DSC figure that the peak position of the polymer micelles containing quercetin at about 350 ° C has shifted compared with that of the blank polymer micelles, which shows that quercetin and amphiphilic polymers Some forces may exist between micellar materials.
X-射线衍射(XRD):取适量槲皮素(Qu)、空白聚合物胶束冻干粉(PMs)、空白聚合物胶束冻干粉和原料药的物理混合物及实施例所制备载药聚合物胶束冻干粉(Qu-PMs)样品,进行XRD分析。XRD条件为:扫描角度为3°≤2θ≤50°,步长0.9min-1,停留时间2秒,电压为40KV,电流为25mA。X-ray diffraction (XRD): take an appropriate amount of quercetin (Qu), blank polymer micelle lyophilized powder (PMs), the physical mixture of blank polymer micelle lyophilized powder and raw materials, and the drug-loading prepared in the examples Polymer micelles lyophilized powder (Qu-PMs) samples were analyzed by XRD. The XRD conditions are as follows: the scanning angle is 3°≤2θ≤50°, the step size is 0.9min-1, the dwell time is 2 seconds, the voltage is 40KV, and the current is 25mA.
X射线衍射分析的结果见图7。结果表明,槲皮素原料药呈现明显的晶型结构的衍射峰;在槲皮素原料药与空白聚合物胶束冻干粉的物理混合物中槲皮素仍呈现药物的晶型结构的衍射峰,说明在物理混合物中槲皮素仍然以晶型的结构存在;而含有槲皮素的聚合物胶束的XRD中也有许多峰,但是不同于原料药或物理混合中药物的晶型衍射峰,这表明了槲皮素在聚合物胶束中存在不同于槲皮素原料药的晶型结构。从物理混合、空白聚合物胶束和含有槲皮素的聚合物胶束中衍射峰的移动说明了槲皮素与聚合物之间存在着一定的相互作用。XRD结果也表明,槲皮素在聚合物胶束中可能以分子状态或无定形状态存在。The results of the X-ray diffraction analysis are shown in FIG. 7 . The results show that the quercetin bulk drug presents the diffraction peak of the crystal structure; in the physical mixture of the quercetin bulk drug and the blank polymer micellar freeze-dried powder, quercetin still presents the diffraction peak of the crystal structure of the drug , indicating that quercetin still exists in the crystal form in the physical mixture; and there are many peaks in the XRD of the polymer micelle containing quercetin, but they are different from the crystal form diffraction peaks of the raw material drug or the drug in the physical mixture, This indicates that quercetin has a crystal structure different from quercetin bulk drug in the polymer micelle. The movement of diffraction peaks from physical mixing, blank polymer micelles and polymer micelles containing quercetin shows that there is a certain interaction between quercetin and polymers. XRD results also indicated that quercetin may exist in molecular state or amorphous state in polymer micelles.
实施例8:槲皮素与两亲性聚合物胶束材料的相互作用(FTIR)。Example 8: Interaction of quercetin with amphiphilic polymer micellar materials (FTIR).
为了考察槲皮素和两亲性聚合物胶束材料的相互作用,采用红外光谱分析方法,对槲皮素(Qu)、空白聚合物胶束冻干粉(PMs)、空白聚合物胶束冻干粉和原料药的物理混合物及实施例1所制备载药聚合物胶束冻干粉(Qu-PMs)进行样品结构特征分析。In order to investigate the interaction between quercetin and amphiphilic polymer micelles, quercetin (Qu), blank polymer micelles freeze-dried powder (PMs), blank polymer micelles freeze-dried The physical mixture of the dry powder and the bulk drug and the freeze-dried powder of drug-loaded polymer micelles (Qu-PMs) prepared in Example 1 were analyzed for the structural characteristics of the samples.
首先将冷冻干燥样品压成粉末,加入一定量的溴化钾(KBr),混合均匀,红外灯下干燥除去多余的水分,压成薄片,置于红外光谱分析仪,在400~4000cm-1范围测定样品的红外光谱。First, press the freeze-dried sample into powder, add a certain amount of potassium bromide (KBr), mix well, dry under infrared light to remove excess water, press into thin slices, and place it in an infrared spectrometer in the range of 400 to 4000 cm -1 Measure the infrared spectrum of the sample.
红外光谱结果见图8A、图8B、图8C及图8D。通过红外光谱位移和强度可以观察分子间是否存在相互作用。结果显示,槲皮素原料药的红外光谱出现许多特征吸收峰:OH伸缩振动峰(3700-3300cm-1);C=O吸收峰(1670cm-1);C-C伸缩振动峰(1612cm-1);C-H弯曲振动峰(1456,1383,和866cm-1);在环结构上的C-O伸缩振动峰(1272cm-1)和C-O伸缩振动峰(1070-1050cm-1),这与文献的报道相一致的。空白胶束也出现许多特征吸收峰:OH伸缩振动峰(3500-3250cm-1);sp3CH伸缩振动峰(2932cm-1,亚甲基);C=O吸收(1742cm-1,酯基),C=O吸收(1641cm-1,酰胺基)。空白聚合物胶束和槲皮素原料药的物理混合物的红外吸收图中可以看出,既显现了空白胶束的特征吸收,还显现了槲皮素的特征吸收峰;含有槲皮素的聚合物胶束出现特征吸收峰:C=O吸收(1737cm-1,1636cm-1),与空白胶束中C=O吸收峰(1742cm-1,1641cm-1)相比较,位移改变了,C=O吸收(1636cm-1)峰变宽,这说明在槲皮素胶束中槲皮素酚羟基和聚合物的羰基之间形成了氢键。The infrared spectrum results are shown in Fig. 8A, Fig. 8B, Fig. 8C and Fig. 8D. Whether there is interaction between molecules can be observed through infrared spectral shift and intensity. The results showed that there were many characteristic absorption peaks in the infrared spectrum of quercetin: OH stretching vibration peak (3700-3300cm -1 ); C=O absorption peak (1670cm -1 ); CC stretching vibration peak (1612cm -1 ); CH bending vibration peaks (1456, 1383, and 866cm -1 ); CO stretching vibration peaks (1272cm -1 ) and CO stretching vibration peaks (1070-1050cm -1 ) on the ring structure, which are consistent with the reports in the literature . Many characteristic absorption peaks also appeared in blank micelles: OH stretching vibration peak (3500-3250cm -1 ); sp3CH stretching vibration peak (2932cm -1 , methylene); C=O absorption (1742cm -1 , ester group), C =O absorption (1641 cm -1 , amide group). It can be seen from the infrared absorption diagram of the physical mixture of blank polymer micelles and quercetin raw materials that both the characteristic absorption of the blank micelles and the characteristic absorption peak of quercetin appeared; the polymerization containing quercetin The characteristic absorption peaks of the micelles appeared: C=O absorption (1737cm -1 , 1636cm -1 ), compared with the C=O absorption peaks (1742cm -1 , 1641cm -1 ) in the blank micelles, the displacement changed, C= The O absorption (1636cm -1 ) peak became broad, which indicated that hydrogen bonds were formed between the quercetinol hydroxyl groups in the quercetin micelles and the carbonyl groups of the polymer.
实施例9:含有槲皮素的聚合物胶束的释放行为及释放模型。Example 9: Release behavior and release model of polymer micelles containing quercetin.
采用透析袋法研究含有槲皮素的聚合物胶束的药物释放行为。由于槲皮素难溶于水,而且在胃肠液中溶解度很小,很难达到漏槽条件,因此,选用35%的乙醇作为释放介质以满足漏槽条件,比对原料药槲皮素和含有槲皮素的聚合物胶束的释放情况,为体内实验研究提供参考。The drug release behavior of quercetin-containing polymer micelles was studied by dialysis bag method. Because quercetin is insoluble in water, and its solubility in gastrointestinal fluid is very small, it is difficult to achieve the sink condition. Therefore, 35% ethanol is selected as the release medium to meet the sink condition. Compared with the raw material quercetin and The release of polymer micelles containing quercetin provides a reference for in vivo experimental research.
分别按照最优处方制备投药量为5%,7%和9%制备Qu-PMs溶液,同时制备槲皮素的丙二醇溶液,各取一定样品置于透析袋(截留分子量14000)中,扎紧透析袋两端,将含药透析袋置于100mL 35%乙醇释放介质中,在37±0.5℃、转速为100rpm条件下进行释放,定时取样4mL,并及时补充相应量同温度的释放介质,经0.45μm微孔滤膜过滤,得续滤液,采用HPLC测定药物的含量。计算不同时间点时药物的累积释放百分率,绘制累积释放曲线。According to the optimal prescription, prepare the Qu-PMs solution with dosages of 5%, 7% and 9%, and prepare the propylene glycol solution of quercetin at the same time. Take a certain sample and place it in a dialysis bag (molecular weight cut-off 14000), and tighten it for dialysis. At both ends of the bag, place the drug-containing dialysis bag in 100mL of 35% ethanol release medium, release at 37±0.5°C, and rotate at 100rpm, sample 4mL at regular intervals, and replenish the corresponding amount of release medium at the same temperature in time, after 0.45 The microporous membrane was filtered to obtain the filtrate, and the content of the drug was determined by HPLC. Calculate the cumulative release percentage of the drug at different time points, and draw the cumulative release curve.
高效液相色谱条件:色谱柱:Odyssil C18(250×4.6mm,5μm);流动相:甲醇:0.2%磷酸(60:40);柱温:35℃;检测波长:375nm;流速:1.0mL·min-1;进样量:20μL。HPLC conditions: chromatographic column: Odyssil C18 (250×4.6mm, 5μm); mobile phase: methanol: 0.2% phosphoric acid (60:40); column temperature: 35°C; detection wavelength: 375nm; flow rate: 1.0mL· min -1 ; injection volume: 20 μL.
其释放结果见图9。结果表明,槲皮素原料药在24h内基本释放完全,达到96.13%;而含有槲皮素的聚合物胶束在24h内仅仅释放26.22%,在240h内释放了57.78%,与原料药相比,含有槲皮素的聚合物胶束具有明显的缓释作用。实验结果表明,soluplus聚合物胶束可以作为缓释制剂的载体。The release results are shown in Figure 9. The results showed that the quercetin bulk drug was basically released completely within 24h, reaching 96.13%; while the polymer micelles containing quercetin only released 26.22% within 24h and 57.78% within 240h, compared with the bulk drug , The polymer micelles containing quercetin have obvious sustained-release effect. The experimental results show that soluplus polymer micelles can be used as the carrier of sustained-release preparations.
从结果还可知,在240h内投药量7mg和9mg的Qu-PMs释放大约70%,而投药量5mg的Qu-PMs释放不到60%,投药量越大,释放越快,前期释放较快,后期释放变得缓慢。It can also be seen from the results that within 240 hours, the Qu-PMs with dosages of 7mg and 9mg released about 70%, while the Qu-PMs with dosage of 5mg released less than 60%. The larger the dosage, the faster the release, and the faster the early release. Later release becomes slower.
缓释制剂的体外释放特征基本可按照下列方程并根据其相关系数来评价:The in vitro release characteristics of sustained-release preparations can basically be evaluated according to the following equation and its correlation coefficient:
零级药物释放模型:y=k1t+a1 Zero-order drug release model: y=k 1 t+a 1
一级药物释放模型:ln(100-y)=k2t+a2 First order drug release model: ln(100-y)=k 2 t+a 2
Higuchi方程(扩散方程):y=k3t0.5+a3 Higuchi equation (diffusion equation): y=k 3 t0.5+a 3
其中,y为累积释放百分率,t为取样时间,a1~a3为常数,k1~k3为释放常数。将槲皮素的释放参数按上述方程进行拟合考察药物从聚合物胶束中的释放机制,以相关系数r确定制剂的最佳拟合模型。拟合所得到回归方程见表1。Wherein, y is the cumulative release percentage, t is the sampling time, a 1 to a 3 are constants, and k 1 to k 3 are release constants. The release parameters of quercetin were fitted according to the above equation to investigate the release mechanism of the drug from the polymer micelle, and the best fitting model of the formulation was determined by the correlation coefficient r. The regression equation obtained by fitting is shown in Table 1.
表1 Qu-PMs的不同释放模型拟合方程Table 1 Fitting equations of different release models of Qu-PMs
注:y,累计释放百分率;t,取样时间;R,相关系数。Note: y, cumulative release percentage; t, sampling time; R, correlation coefficient.
结果表明,按Higuchi方程拟合,相关系数(R2>0.98)大,拟合效果较好,表明Qu-PMs释放是以扩散为主的释药方式,药物分子从胶束的疏水内核部位慢慢地扩散到释放介质。由于可能药物分子结构上羟基和疏水内核的羰基之间存在氢键作用,导致药物释放更加缓慢。投药量不同的含有槲皮素的聚合物胶束的释放呈类似趋势,随着投药量的增加槲皮素的释放稍有加快的趋势。相对于槲皮素原料药,含有槲皮素的聚合物胶束总体呈现明显的缓释效果。The results showed that according to the Higuchi equation fitting, the correlation coefficient (R 2 >0.98) was large, and the fitting effect was good, indicating that the release of Qu-PMs was mainly in the form of diffusion, and the drug molecules were released slowly from the hydrophobic core of the micelles. Diffused slowly into the release medium. Due to the possible hydrogen bond between the hydroxyl group on the molecular structure of the drug and the carbonyl group of the hydrophobic core, the drug release is slower. The release of quercetin-containing polymer micelles with different dosages showed a similar trend, and the release of quercetin tended to accelerate slightly with the increase of dosage. Compared with the quercetin bulk drug, the polymer micelles containing quercetin generally exhibited an obvious sustained-release effect.
实施例10:含有槲皮素的聚合物胶束在模拟胃肠液中的稳定性。Example 10: Stability of quercetin-containing polymer micelles in simulated gastrointestinal fluid.
为了确保纳米载体能将药物输送到吸收部位,有必要考察纳米载体在不同pH值的人工模拟胃肠液中的稳定性,方法如下。In order to ensure that nanocarriers can deliver drugs to the absorption site, it is necessary to investigate the stability of nanocarriers in artificially simulated gastrointestinal fluids at different pH values, as follows.
精密取9mL人工模拟胃液(不含酶),加入1mL实施例1制备的Qu-PMs溶液,振荡混合,放置2h,采用Zetasizer Nano ZS90粒径仪测定Qu-PMs粒径。Precisely take 9 mL of artificial simulated gastric juice (without enzyme), add 1 mL of Qu-PMs solution prepared in Example 1, shake and mix, let stand for 2 hours, and measure the particle size of Qu-PMs with Zetasizer Nano ZS90 particle size analyzer.
精密取9mL人工模拟肠液(不含酶),加入实施例1制备1mL Qu-PMs溶液,振荡混合,放置4h、6h、8h,采用Zetasizer Nano ZS90粒径仪测定Qu-PMs粒径。Precisely take 9mL of artificial simulated intestinal juice (without enzyme), add Example 1 to prepare 1mL Qu-PMs solution, shake and mix, let stand for 4h, 6h, 8h, use Zetasizer Nano ZS90 particle size analyzer to measure the particle size of Qu-PMs.
结果如表2、图10和图11A-11D所示,结果表明,载药聚合物胶束的里在不同pH值的人工模拟胃肠液中的变化是不同的。在pH1.2的人工模拟胃液中孵化2h,粒径从61.54±0.494nm变为70.72±2.77nm;在pH7.4的人工模拟肠液中孵化4h、6h、8h,粒径分别为60.38±0.64nm、61.07±0.47nm和61.03±0.94nm。总之,在人工模拟胃肠液中粒径虽有变化,但是均小于100nm,这表明含有槲皮素的聚合物胶束在人工模拟胃肠液中较为稳定。这为含有槲皮素的聚合物胶束在体内的吸收打下了良好的基础。The results are shown in Table 2, Figure 10 and Figures 11A-11D, and the results show that the changes in the drug-loaded polymer micelles in artificially simulated gastrointestinal fluids with different pH values are different. Incubate in the artificial simulated gastric juice of pH 1.2 for 2 hours, the particle size changes from 61.54±0.494nm to 70.72±2.77nm; incubate in the artificial simulated intestinal juice of pH7.4 for 4h, 6h, 8h, the particle size is 60.38±0.64nm , 61.07±0.47nm and 61.03±0.94nm. In conclusion, although the particle size in the artificial simulated gastrointestinal fluid varies, they are all less than 100nm, which indicates that the polymer micelles containing quercetin are relatively stable in the artificial simulated gastrointestinal fluid. This lays a good foundation for the absorption of the polymer micelles containing quercetin in the body.
表2人工模拟胃肠液对Qu-PMs粒径的影响Table 2 Effect of artificial simulated gastrointestinal fluid on the particle size of Qu-PMs
实施例11:含有槲皮素的聚合物胶束在模拟室温下的稳定性。Example 11: Stability of quercetin-containing polymer micelles at simulated room temperature.
考察Qu-PMs在模拟室温下的稳定性。将实施例1所制备的含有槲皮素的聚合物胶束胶体溶液在室温下放置3个月,分别在30天、60天和90天取样,测定含有槲皮素的聚合物胶束的粒径和包封率(方法同实施例5)。结果如图12和表3所示,结果表明,Qu-PMs的粒径、包封率和外观在90天没有出现明显的变化,制备的Qu-PMs胶体溶液具有良好的稳定性。The stability of Qu-PMs at simulated room temperature was investigated. The polymer micelle colloid solution containing quercetin prepared in Example 1 was placed at room temperature for 3 months, and samples were taken at 30 days, 60 days and 90 days respectively, and the particle size of the polymer micelles containing quercetin was measured. Diameter and encapsulation efficiency (method is the same as embodiment 5). The results are shown in Figure 12 and Table 3. The results showed that the particle size, encapsulation efficiency and appearance of Qu-PMs did not change significantly after 90 days, and the prepared Qu-PMs colloidal solution had good stability.
表3 Qu-PMs胶体溶液在室温下存放稳定性Table 3 Storage stability of Qu-PMs colloidal solution at room temperature
实施例12:含有槲皮素的聚合物胶束的药代动力学研究。Example 12: Pharmacokinetic study of quercetin-containing polymer micelles.
考察制备的Qu-PMs胶体溶液的药代动力学性质,方法如下。To investigate the pharmacokinetic properties of the prepared Qu-PMs colloidal solution, the method is as follows.
取健康的雄性比格犬6只,给药前禁食12h,自由饮水。6只比格犬随机分成2组:第一组以16mg·kg-1剂量的槲皮素胶束给比格犬灌胃;第二组以16mg·kg-1剂量的槲皮素混悬溶液(0.3%CMCNa)给比格犬灌胃作为对照组。给药后0.5、1、2、3、4、6、8、10、12、24、48h从后肢静脉血管取血约3mL,全血置于肝素的管中,5000rpm离心l0min分离血浆,-20℃保存;准确吸取空白血浆0.1mL于1.5mL离心管中,加入甲醇0.3mL,25%盐酸0.1mL,旋涡混合2min,于50℃水浴加热10min,12000rpm离心10min,取上清液100μL进样,用HPLC法测定含量。Take 6 healthy male Beagle dogs, fast for 12 hours before administration, and drink water freely. Six Beagle dogs were randomly divided into two groups: the first group was administered intragastrically with 16 mg·kg -1 quercetin micelles; the second group was given 16 mg·kg -1 quercetin suspension (0.3% CMCNa) was administered to Beagle dogs as a control group. At 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 24, and 48 hours after administration, about 3 mL of blood was collected from the veins of the hind limbs. The whole blood was placed in a heparin tube and centrifuged at 5000 rpm for 10 minutes to separate the plasma. Store at ℃; accurately draw 0.1mL of blank plasma into a 1.5mL centrifuge tube, add 0.3mL of methanol, 0.1mL of 25% hydrochloric acid, vortex mix for 2min, heat in a water bath at 50℃ for 10min, centrifuge at 12000rpm for 10min, and take 100μL of the supernatant for injection. The content was determined by HPLC method.
高效液相色谱条件如下:色谱柱:Odyssil C18(250×4.6mm,5μm),预柱(4.6×12.5mm,5μm);流动相:甲醇:0.2%磷酸(60:40);柱温:35℃;检测波长:375nm,流速:1.0mL·min-1;进样量:100μL。HPLC conditions are as follows: chromatographic column: Odyssil C18 (250×4.6mm, 5μm), pre-column (4.6×12.5mm, 5μm); mobile phase: methanol: 0.2% phosphoric acid (60:40); column temperature: 35 ℃; detection wavelength: 375nm, flow rate: 1.0mL·min -1 ; injection volume: 100μL.
采用3P87程序对单剂量血药浓度数据进行处理,根据血药浓度,计算出槲皮素口服后的Cmax、Tmax、T1/2、AUC0-∞等药代动力学参数。Qu-PMs胶体溶液的相对生物利用度按下式计算:F=AUCQu-PMs/AUCQu×100%。两种制剂均是以单室模型和权重为1/C2时拟合后与实际曲线最相符。3P87 program was used to process the single-dose plasma concentration data. According to the plasma concentration, the pharmacokinetic parameters such as C max , T max , T 1/2 , and AUC 0-∞ of quercetin after oral administration were calculated. The relative bioavailability of the Qu-PMs colloidal solution was calculated according to the following formula: F=AUCQu-PMs/AUCQu×100%. The two preparations were fitted with the single-compartment model and the weight was 1/C 2 , which was the most consistent with the actual curve.
两种制剂灌胃给药后的平均药时曲线见图13。模型的药物动力学参数和相对生物利用度结果见表4,其中,Cmax和Tmax采用实测值,其他参数由3p87软件计算而得。比格犬体内血药浓度结果显示,槲皮素原料药(Qu)组达峰时间短(Tmax为5.31±1.08h),达峰浓度(Cmax)为5.24±1.32μg·mL-1,随后浓度迅速下降,波动较大,至24h时已检测不到药物。药物的生物半衰期(T1/2)为4.94±2.03h,药-时曲线下面积(AUC0~∞)为37.68±16.8μg·h-1·mL-1。平均滞留时间(MRT)为7.18±2.25h,24h已基本从体内完全消除,表明其在体内代谢迅速。而含有槲皮素的聚合物胶束实验组(Qu-PMs)口服给药后,Tmax为7.02±2.02h,Cmax为7.56±3.28μg·mL-1,T1/2为10.81±3.7h,MRT为7.18±2.25h,AUC0~∞为107.84±54.4μg·h-1·mL-1。Qu-PMs的T1/2和MRT分别是Qu的2.19倍和3.77倍,表明聚合物胶束使药物在体内消除变慢,滞留时间延长,以至于在48h还维持较高浓度,说明Qu-PMs在体内具有良好的缓释特性,且生物利用度明显提高(AUC0~∞是槲皮素的2.86倍)。实验结果表明口服Qu-PMs溶液能明显改善槲皮素在比格犬体内吸收过程,促进药物的吸收,有效地提高药物生物利用度,为槲皮素口服制剂的研究提供了理论依据。The average drug-time curves after intragastric administration of the two preparations are shown in Figure 13. The pharmacokinetic parameters and relative bioavailability results of the model are shown in Table 4, where Cmax and Tmax are measured values, and other parameters are calculated by 3p87 software. The results of blood drug concentration in Beagle dogs showed that the quercetin API (Qu) group had a shorter time to peak (T max was 5.31±1.08h), and the peak concentration (C max ) was 5.24±1.32μg·mL -1 , Then the concentration decreased rapidly with large fluctuations, and no drug could be detected by 24 hours. The biological half-life (T 1/2 ) of the drug was 4.94±2.03h, and the area under the drug-time curve (AUC 0~∞ ) was 37.68±16.8μg·h -1 ·mL -1 . The mean residence time (MRT) is 7.18±2.25h, and it has been completely eliminated from the body after 24h, indicating that it is rapidly metabolized in the body. After oral administration of quercetin-containing polymer micelles (Qu-PMs), the T max was 7.02±2.02h, the C max was 7.56±3.28μg·mL -1 , and the T 1/2 was 10.81±3.7 h, MRT was 7.18±2.25h, AUC 0~∞ was 107.84±54.4μg·h -1 ·mL -1 . The T 1/2 and MRT of Qu-PMs are 2.19 times and 3.77 times that of Qu, respectively, indicating that the polymer micelles slow down the elimination of drugs in the body and prolong the residence time, so that they maintain a high concentration at 48h, indicating that Qu-PMs PMs have good sustained-release characteristics in vivo, and the bioavailability is significantly improved (AUC 0~∞ is 2.86 times that of quercetin). The experimental results show that oral administration of Qu-PMs solution can significantly improve the absorption process of quercetin in beagle dogs, promote the absorption of the drug, and effectively improve the bioavailability of the drug, which provides a theoretical basis for the study of oral preparations of quercetin.
表4槲皮素口服后的药代动力学参数(n=3)Table 4 The pharmacokinetic parameters of quercetin after oral administration (n=3)
注:AUC,药时曲线下面积;T1/2,消除半衰期;Cmax,血浆峰浓度;Tmax,血浆浓度达峰时间。Note: AUC, area under the drug-time curve; T 1/2 , elimination half-life; C max , peak plasma concentration; T max , time to peak plasma concentration.
以上实施例所使用的物质及其浓度只是作为示例,可理解,在其他实施例中,相应的物质及其浓度不限于实施例中所述,如两亲性聚合物胶束材料还可以选自脱氧胆酸钠、聚氧乙烯、聚乙二醇化壳聚糖、聚维酮、仿细胞膜磷酸胆碱、聚氨基酸或聚乳酸-羟基乙酸共聚物中的一种,或者选自soluplus与这些聚合物材料中的两种或两种以上的混合物等。The substances and their concentrations used in the above embodiments are only examples, and it can be understood that in other embodiments, the corresponding substances and their concentrations are not limited to those described in the examples, such as the amphiphilic polymer micelle materials can also be selected from One of sodium deoxycholate, polyoxyethylene, pegylated chitosan, povidone, imitation cell membrane phosphorylcholine, polyamino acid or polylactic acid-glycolic acid copolymer, or selected from soluplus and these polymers A mixture of two or more materials, etc.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The various technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the various technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611185252.1A CN106727309A (en) | 2016-12-20 | 2016-12-20 | Polymer micelle solution containing Quercetin and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611185252.1A CN106727309A (en) | 2016-12-20 | 2016-12-20 | Polymer micelle solution containing Quercetin and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106727309A true CN106727309A (en) | 2017-05-31 |
Family
ID=58894145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611185252.1A Pending CN106727309A (en) | 2016-12-20 | 2016-12-20 | Polymer micelle solution containing Quercetin and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106727309A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108047271A (en) * | 2017-12-06 | 2018-05-18 | 石家庄学院 | A kind of quercetin dimer derivative and its preparation method and application |
CN108851084A (en) * | 2018-06-06 | 2018-11-23 | 福建省农业科学院农业工程技术研究所 | A kind of site specific DDS for colon micella of load Quercetin and preparation method thereof |
CN109999002A (en) * | 2019-05-22 | 2019-07-12 | 福州大学 | A kind of preparation method of quercetin nano particle and its preparing the application on anti-breast cancer medicines |
CN110302391A (en) * | 2019-07-01 | 2019-10-08 | 大连民族大学 | A kind of dextran-quercetin polymer drug-loaded micelle preparation and preparation method thereof |
CN113197852A (en) * | 2021-04-20 | 2021-08-03 | 上海应用技术大学 | Cannabidiol nano micelle preparation and preparation method thereof |
CN115192578A (en) * | 2022-06-20 | 2022-10-18 | 山东大学齐鲁医院 | Preparation of mixed micelles loaded with quercetin and nintedanib |
CN117679395A (en) * | 2023-12-13 | 2024-03-12 | 上海拜思丽实业有限公司 | Molecular capsule of polypeptide coated quercetin and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101982168A (en) * | 2010-11-02 | 2011-03-02 | 山东大学 | Quercetin nano-micelle preparation and preparation method thereof |
-
2016
- 2016-12-20 CN CN201611185252.1A patent/CN106727309A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101982168A (en) * | 2010-11-02 | 2011-03-02 | 山东大学 | Quercetin nano-micelle preparation and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
LINGHUI DIAN EL AL.: "Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles", 《NANOSCALE RESEARCH LETTERS》 * |
吴金花等: "载有槲皮素的PEG-PE胶束对乳腺癌细胞耐药性的逆转效应", 《基础医学与临床》 * |
杨小云等: "槲皮素嵌段共聚物胶束大鼠体内药动学研究", 《广东化工》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108047271B (en) * | 2017-12-06 | 2020-05-26 | 石家庄学院 | Quercetin dimer derivative and preparation method and application thereof |
CN108047271A (en) * | 2017-12-06 | 2018-05-18 | 石家庄学院 | A kind of quercetin dimer derivative and its preparation method and application |
CN108851084A (en) * | 2018-06-06 | 2018-11-23 | 福建省农业科学院农业工程技术研究所 | A kind of site specific DDS for colon micella of load Quercetin and preparation method thereof |
CN108851084B (en) * | 2018-06-06 | 2021-06-15 | 福建省农业科学院农业工程技术研究所 | Colon positioning micelle loaded with quercetin and preparation method thereof |
CN109999002A (en) * | 2019-05-22 | 2019-07-12 | 福州大学 | A kind of preparation method of quercetin nano particle and its preparing the application on anti-breast cancer medicines |
CN110302391B (en) * | 2019-07-01 | 2022-11-08 | 大连民族大学 | Glucan-quercetin polymer drug-loaded micelle preparation and preparation method thereof |
CN110302391A (en) * | 2019-07-01 | 2019-10-08 | 大连民族大学 | A kind of dextran-quercetin polymer drug-loaded micelle preparation and preparation method thereof |
CN113197852A (en) * | 2021-04-20 | 2021-08-03 | 上海应用技术大学 | Cannabidiol nano micelle preparation and preparation method thereof |
CN113197852B (en) * | 2021-04-20 | 2022-12-09 | 上海应用技术大学 | Cannabidiol nano-micelle preparation and preparation method thereof |
CN115192578A (en) * | 2022-06-20 | 2022-10-18 | 山东大学齐鲁医院 | Preparation of mixed micelles loaded with quercetin and nintedanib |
CN115192578B (en) * | 2022-06-20 | 2023-05-30 | 山东大学齐鲁医院 | Preparation of quercetin and nilamide mixed micelle |
CN117679395A (en) * | 2023-12-13 | 2024-03-12 | 上海拜思丽实业有限公司 | Molecular capsule of polypeptide coated quercetin and preparation method thereof |
CN117679395B (en) * | 2023-12-13 | 2024-05-17 | 上海拜思丽实业有限公司 | Molecular capsule of polypeptide coated quercetin and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106727309A (en) | Polymer micelle solution containing Quercetin and its preparation method and application | |
Gong et al. | Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites | |
Huang et al. | The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles | |
JP2011509322A (en) | Taxane-containing amphiphilic block copolymer micelle composition and production method thereof | |
WO2014108076A1 (en) | Gel composition of insoluble drug and preparation method therefor | |
JP2006514698A5 (en) | ||
CN103006539B (en) | A kind of polymeric micelle medicine composition and preparation method thereof | |
Wang et al. | Uniform carboxymethyl chitosan-enveloped Pluronic F68/poly (lactic-co-glycolic acid) nano-vehicles for facilitated oral delivery of gefitinib, a poorly soluble antitumor compound | |
Moogooee et al. | Synthesis and in vitro studies of cross-linked hydrogel nanoparticles containing amoxicillin | |
CN104056275A (en) | Method for synthesizing multifunctional active targeted hyaluronic acid-polylactic acid carrier and preparing anti-tumor medicinal micelle of multifunctional active targeted hyaluronic acid-polylactic acid carrier | |
Zhang et al. | Three dimensional macroporous hydroxyapatite/chitosan foam-supported polymer micelles for enhanced oral delivery of poorly soluble drugs | |
Moretton et al. | Nanopolymersomes as potential carriers for rifampicin pulmonary delivery | |
CN107176911B (en) | Oral targeting nanoparticles based on the apical OCTN2 transporter in intestinal epithelial cells | |
CN104162169B (en) | A kind of preparation method of pharmaceutical composition | |
CN106727336B (en) | Oridonin cubic liquid crystal nanoparticles and preparation method thereof | |
CN103877029A (en) | Preparation method of novel magnetic 5-fluorouracil carrying polylactic-co-glycolic acid (PLGA) material | |
CN103720675B (en) | A kind of have the curcumin prodrug micelle of isotope of redox-sensitive, micelle monomer and preparation method thereof | |
CN109438707A (en) | A kind of poly- dithiothreitol (DTT) nanometer system and its preparation method and application for anti-tumor drug delivering | |
Shan et al. | Preparation of Icaritin-loaded mPEG-PLA micelles and evaluation on ischemic brain injury | |
Sun et al. | Molecular simulation approach to the rational design of self-assembled nanoparticles for enhanced peroral delivery of doxorubicin | |
Wu et al. | Influence of drug-carrier compatibility and preparation method on the properties of paclitaxel-loaded lipid liquid crystalline nanoparticles | |
CN111012918B (en) | Cholesterol biguanide conjugate with anti-tumor and carrier effects and application of salt thereof in microparticle administration preparation | |
CN102641245B (en) | A chitosan-chitosan derivative nanosphere loaded with insoluble drugs, its preparation method and its application as an oral preparation | |
Han et al. | In vitro and in vivo evaluation of core–shell mesoporous silica as a promising water-insoluble drug delivery system: Improving the dissolution rate and bioavailability of celecoxib with needle-like crystallinity | |
CN104784117B (en) | A kind of curcumin mixed micelle oral formulations and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |