CN106716125B - 纳米颗粒分析器 - Google Patents
纳米颗粒分析器 Download PDFInfo
- Publication number
- CN106716125B CN106716125B CN201580036526.8A CN201580036526A CN106716125B CN 106716125 B CN106716125 B CN 106716125B CN 201580036526 A CN201580036526 A CN 201580036526A CN 106716125 B CN106716125 B CN 106716125B
- Authority
- CN
- China
- Prior art keywords
- nanoparticles
- light
- images
- spectral
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 185
- 230000003595 spectral effect Effects 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 56
- 239000007788 liquid Substances 0.000 claims abstract description 41
- 239000002245 particle Substances 0.000 claims description 26
- 238000009826 distribution Methods 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000001228 spectrum Methods 0.000 claims description 8
- 238000005286 illumination Methods 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 5
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 230000003252 repetitive effect Effects 0.000 claims description 3
- 238000000149 argon plasma sintering Methods 0.000 claims 2
- 238000007689 inspection Methods 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 9
- 239000012530 fluid Substances 0.000 abstract description 2
- 238000012937 correction Methods 0.000 description 16
- 238000001514 detection method Methods 0.000 description 12
- 230000005653 Brownian motion process Effects 0.000 description 11
- 238000005537 brownian motion Methods 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000023077 detection of light stimulus Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- -1 ranging from small Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000012418 validation experiment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0227—Investigating particle size or size distribution by optical means using imaging; using holography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
- G01N15/1436—Optical arrangements the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0038—Investigating nanoparticles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N2015/0238—Single particle scatter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
- G01N2015/144—Imaging characterised by its optical setup
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
- G01N2015/1472—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle with colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1493—Particle size
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Computer Vision & Pattern Recognition (AREA)
Abstract
本文公开的主题提供了使用多频谱分析来检测和分析共存于流体样本中的相同、类似、或不同尺寸的个体纳米颗粒的方法。多个光源可以被配置为产生不同频谱波段的多个光束。光学部件可以被配置为将所述多个光束合并成一个或多个入射光片。每个入射光片可以照亮液体样本中的一个或多个纳米颗粒。一个或多个图像检测器可以被配置为使用多个波长检测由一个或多个纳米颗粒散射或发出的光。该多个波长与多个光束的不同频谱波段相对应。同样描述了相关装置、系统、技术和文章。
Description
相关申请的交叉引用
本申请根据35U.C.S§119(e),要求于2014年6月3日递交的题目为“纳米颗粒分析器”、序列号为No.62/007,312的美国临时专利申请的优先权,其整体通过引用被结合于此。
政府资助支持声明
本文公开的主题是在政府支持(具有由国家科学基金会授予的授权号OCE-11-26870)下完成的。政府在该发明中具有一定权利。
背景技术
纳米颗粒是无所不在的,并且目前为止是地球上的自然环境中最为丰富的颗粒状实体,并且广泛分布于与人类活动相关联的许多应用中。存在很多类型的自然生成的纳米颗粒和人造的(设计的)纳米颗粒。纳米颗粒存在于空气、水生环境、雨水、饮用水、生物流体、药物、药物输送和治疗产品以及广泛范围的很多工业产品中。纳米颗粒通常存在于同时具有不同尺寸颗粒特征的多分散集合体内。
考虑到纳米颗粒的广泛使用,用来控制和准确表征其性能的能力对于很多应用可能是有用的。用于测量纳米颗粒性能的传统方法对于具有混合的纳米颗粒尺寸的多分散样本可能是不准确的,这在很多应用中是很常见的。这些传统方法中的一些方法对样本内的大量纳米颗粒的整体进行测量。因为从所有纳米颗粒散射的光被同时测量,所以在存在一些颗粒尺寸时很难将纳米颗粒分解为它们的构成尺寸。其他方法未能说明由分布于这些颗粒尺寸中不同尺寸的纳米颗粒引起的散射光强度中的明显区别。在这些方法中,来自小的纳米颗粒的低散射信号可能未被探测到,或者来自较大纳米颗粒的高散射信号可能会掩盖来自较小纳米颗粒的信号。由于这些不足,任意给定尺寸的纳米颗粒的浓度以及由此的全部尺寸分布可能会经受未知的误差。
发明内容
在一些示例实现方式中,提供用于使用多频谱分析来检测和分析共存于流体样本中的相同、类似、或不同尺寸的个体纳米颗粒的系统、方法和制品。
在一个方面,多个光源被配置为产生不同频谱波段的多个光束。光学部件被配置为将所述多个光束合并成一个或多个入射光片(light sheets)。每个入射光片照亮液体样本中的一个或多个纳米颗粒。一个或多个图像检测器被配置为使用多个波长检测由一个或多个纳米颗粒散射的光。多个波长与多个光束的不同频谱波段相对应。
在一些实现方式中,上述方法、装置、和系统还可以包括以下特征中的一个或多个特征。
记录设备可以被配置为在一个或多个影像中记录从所述一个或多个图像检测器获得的一系列图像。
至少一个处理器可以被配置为至少基于来自一系列图像的至少两个图像检测并追踪一个或多个纳米颗粒的移动。至少两个图像显示一个或多个纳米颗粒对一个或多个入射光片的散射。至少一个处理器还可以被配置为从一个或多个影像中确定一个或多个纳米颗粒的颗粒尺寸分布。颗粒尺寸分布可以包括一个或多个纳米颗粒直径的一个或多个浓度值。
检测以及追踪可以包括以下的一个或多个操作:将一个或多个影像分为一个或多个单独的频谱分量,以生成一个或多个频谱图像并回填每个频谱图像;从一个或多个影像中消除一个或多个错误特征,该消除基于包括浓度阈值或尺寸阈值的一个或多个标准;仅追踪存在于一个或多个影像的一个或多个预先选择的开始帧中的一个或多个纳米颗粒的子集;消除一个或多个纳米颗粒的偏移运动;或从一个或多个影像的一个或多个频谱分量中消除重复纳米颗粒追踪。
一个或多个纳米颗粒可以在移动。
一个或多个纳米颗粒可以没有在移动。
每个光束可以以独立可调节的功率电平输出。
光学部件可以包括反射镜、波束合并器、狭缝、柱面透镜、或长工作距离物镜中的一个或多个。
多个光束可以是可见光频谱的一部分。
多个光束可以包括具有蓝色频谱波段、绿色频谱波段、和红色频谱波段的光束。
一个或多个图像检测器可以包括拜耳模式(Bayer pattern)滤波器,该拜耳模式滤波器被配置为独立检测多个光束的不同频谱波段。
一个或多个图像检测器可以包括拜耳模式滤波器,该拜耳模式滤波器被配置为产生具有独立颜色像素的一个或多个拜耳模式图像。
光学部件还可以包括安排在所述多个光源和所述液体样本之间的偏振片。偏振片可以被配置为将多个光束相对于散射面垂直偏振,以便相对从一个或多个入射光片传输到液体样本的热能使液体样本的照亮最优化。
一个或多个图像检测器还可以被配置为以多个波长同时检测由一个或多个纳米颗粒散射的光。
一个或多个图像检测器还可以被配置为至少检测由荧光产生的光和/或由一个或多个纳米颗粒发出的其他辐射。
应当理解的是,上文的一般描述和下文的详细描述都仅是示例性和说明性的,而不是限定性的。除了本文提出的那些特征以外可以提供另外的特征和/或变化。例如,本文描述的实现方式可以针对公开的特征的各种组合和子组合和/或上下文详细描述中公开的若干另外特征的组合和子组合。
附图说明
合并于本说明书并构成其一部分的附图示出了本文公开的主题的某些方面,并且该附图与描述一起帮助解释与本文公开的主题相关联的一些原则。在附图中,
图1示出了根据一些示例实现方式的用于检测和分析个体纳米颗粒的系统;
图2示出了根据一些示例实现方式的使用线性偏振光的液体样本的照度;
图3示出了根据一些示例实现方式的用于分析纳米颗粒运动的图像数据的过程;
图4是根据一些示例实现方式的由具有拜耳模式滤波器的摄影机生成的不同频谱带中单一纳米颗粒的图像;
图5是根据一些示例实现方式的悬浮在水中直径的尺寸范围在50纳米和800纳米之间的聚苯乙烯纳米颗粒的图像;
图6A和6B示出了根据一些示例实现方式的由纳米球尺寸标准的多分散混合得出的实验结果的曲线图。
在附图中,相似的标签指代相同或类似的项。
具体实施方式
本文公开的主题提供了使用多谱线分析来检测、追踪、和分析液体介质中不同尺寸的个体纳米颗粒的技术。在一些实现方式中,个体纳米颗粒的尺寸范围可以从大约10纳米到大约1微米。这些技术可以照亮悬浮在液体样本中的纳米颗粒并记录个体纳米颗粒的布朗运动。这些记录可以被分析以确定纳米颗粒的颗粒尺寸分布。该颗粒尺寸分布可以表示特定尺寸元内样本的每单位体积的若干纳米颗粒。
图1示出了用于执行本文公开的技术的示例性系统100。光源105可以生成多个光束,用来照亮纳米颗粒的液体样本。光源105可以包括一个或多个激光器、一个或多个发光二极管(LED)、以及它们任意的组合等等。在图1的实现方式中,光源105可以包括三个光源105A、105B、和105C,这些光源输出不同波长的光,并且分别输出规定的输出功率电平。例如,光源105A可以输出可见电磁频谱的红色频谱波段中的光束(例如,波长为650nm);光源105B可以输出可见电磁频谱的绿色频谱波段中的光束(例如,波长为520nm);以及光源105C可以输出可见电磁频谱的蓝色频谱波段中的光束(例如,波长为470nm)。尽管在图1的实现方式中使用了三个光源,但是可以采用在任意数量的不同波段(包括,例如电磁频谱的可见部分以外的波段)中操作的任意数量的光源。在一些实现方式中,例如,仅可以使用单个可调谐激光器光源105。在其他实现方式中,可以使用光源105A、105B、和105C中的一个或两个。
从光源105A、105B、和105C输出的光束可以被合并为一个或多个多色光平面(或光片),多色光平面可以照亮悬浮纳米颗粒的液体样本。具有各种光学组件的光学部件可以被用来合并这些光束。光学部件中的光学组件可以包括,例如,至少一个或多个反射镜、波束合并器、狭缝、柱面透镜、长工作距离物镜、以及它们的任意组合等等。在图1的实现方式中,例如,反射镜110A、110B、和110C,可以将分别从光源105A、105B、和105C输出的光束反射到反射镜113。反射镜113可以将单独的光束合并成单个多色光片。单个多色光片可以通过一个或多个狭缝117和长工作距离物镜119来照亮样本容器(例如,液槽120)中所容纳的纳米颗粒的液体样本。在一些实现方式中,可以使用柱面透镜来代替狭缝117。在一些实现方式中,单个多色光片可以在照亮液体样本前可选地通过偏振片115,如以下关于图2所描述的。液槽120和其液体样本可以被置于样本存储器内,以便控制和测量液体样本的温度。图1的实现方式中的光学组件的布置可以与激光器光源105的使用相关联。当使用不同类型的光源105时,可以使用光学组件的其他布置。
液体样本中悬浮的纳米颗粒可以散射来自多色光片的入射光。因为液体样本可能具有不同尺寸的纳米颗粒,所以由这些纳米颗粒散射的光的量级可能变化。长工作距离物镜123可以收集预定散射角度范围内的散射光。长工作距离物镜123的数值孔径可以确定收集的散射光的角度。液体样本中的纳米颗粒可以将光散射到以相对入射多色光片的方向大约90度的轴为中心的角度。长工作距离物镜123可以收集在该中心轴附近约±10度到约±20度内散射的光。在图1的实现方式中,例如,长工作距离物镜123可以收集角度从大约75度到105度散射的光,但是其他散射角度和光收集配置也可以被实现。
散射光可以传播通过镜筒透镜125,并且图像捕获设备127可以检测并记录散射光。例如,产生散射光的样本的体积可以是大约1纳升(nL)。在图1的实现方式中,图像捕获设备127可以是摄像机系统(例如,数码摄像机),但是可以使用其他类型的图像捕获设备。图像捕获设备127可以同时检测和记录由散射光提供的信息,该散射光处于与从光源105输出的光束相同或实质上类似的波段中。在一些实现方式中,两个单独的设备可以执行对散射光提供的信息的检测和记录(例如,通过单独的检测器和单独的记录器),代替如图1的实现方式中所示出的合并这些功能到单一设备。
如果光源105A、105B、和105C是例如红、绿、和蓝波长激光器、则图像捕获设备127可以是具有检测器的彩色摄像机,该检测器可以分别地检测三个波长中的每一个波长。例如,如果光源105A输出红色频谱波段中的特定波长(例如,650nm)的光束,则图像捕获设备127可以被配置为检测全部红色频谱波段内的光或部分红色频谱波段内的光。类似地,如果光源105B输出绿色频谱波段中的特定波长(例如,520nm)的光束,则图像捕获设备127可以被配置为检测全部绿色频谱波段内的光或部分绿色频谱波段内的光。同样的,如果光源105C输出蓝色频谱波段中的特定波长(例如,470nm)的光束,则图像捕获设备127还可以被配置为检测全部蓝色频谱波段内的光或部分蓝色频谱波段内的光。在图1的示例中,拜耳模式检测器(或滤波器)129可以在光传感器的像素矩阵处使用。在拜耳滤波器模式129的情况中,在2×2的像素网格上可以有50%的绿色、25%的红色和25%的蓝色,并且两个绿色像素可以被置于对角,但是也可以使用其他检测器配置。使用拜耳模式滤波器允许图像捕获设备127分别地检测和记录在三个单独的波长/颜色中的每一个中散射的纳米颗粒光,而无需将拜耳模式与RGB像素相结合(如将拜耳模式与RGB像素相结合可能会丢失通过分别检测波长/颜色所提供的检测分辨率)。在一些实现方式中,图像捕获设备127可以包括3-CCD摄像机,以检测光的不同波段中的数据,但是也可以使用其他类型的检测器。这些不同的波段可以与光源105A、105B、和105C输出的光的频谱带相对应,但是具有多个检测器(例如,如拜耳模式中针对每个激光源的一个检测器)的单个摄像机也可以被实现。
图像捕获设备127可以基于由纳米颗粒的样本散射的光来记录一个或多个影像。这些影像可以包含表示纳米颗粒的布朗运动的信息。个体纳米颗粒可以被视为经历这些影像中的布朗运动的亮点。图像捕获设备127可以至少以每秒25帧(fps)来记录这些影像。虽然可以使用各种影像长度,但是每个影像的时长最好在10秒到15秒,因为该长度通常对于在统计意义上追踪和分析个体纳米颗粒的布朗运动是足够的。例如,如果图像捕获设备127以每秒30帧来记录影像,则单个影像的长度大约为10秒到15秒(或300帧到450帧)。
图像捕获设备127可以针对给定样本的不同等分试样(aliquot)记录多个影像,以便确保统计上的稳定结果。这些影像可以被存储为原始数据或原始模式。例如,如果图像捕获设备127是彩色摄像机,则可以以原始拜耳模式存储影像。这些影像可以被存储在图像捕获设备127处或被远程地存储在计算设备130处。计算设备130可以具有至少一个处理器,该处理器被配置为分析这些视频数据的原始模式以确定纳米颗粒的浓度和尺寸分布。
如上所述,系统100可以可选地包括偏振片115。偏振片115可以在多色光片照亮液体样本之前使其相对于散射面垂直偏振。
通常,纳米颗粒检测的灵敏度可以取决于散射光的强度。如上所述的散射角度,垂直偏振光的作用可以是主要的,而水平偏振光的作用可以大体上忽略。图2示出了使用随机偏振光束210来照亮液体样本中的纳米颗粒。入射光束的水平分量可能会加热纳米颗粒的液体样本。该加热可能对纳米颗粒的检测有不利的影响。将偏振片115添加到系统100中可以消除该入射光束的水平分量,并降低对纳米颗粒检测的不利影响。偏振片115可以仅允许入射光束210的垂直分量撞击纳米颗粒,该垂直分量不会影响纳米颗粒检测,因为垂直偏振光220是在正常角度附近散射光强的主要分量。
纳米颗粒还可能由于与入射光束的相互作用发出或导致发出辐射(例如,荧光)。图像捕获设备127可以以如上文关于检测散射光类似的方式来检测这种辐射(例如,荧光)。
在一些实现方式中,本文公开的主题可以提供用于消除与不同尺寸的纳米颗粒的潜在曝光不足和过度曝光相关联的问题的系统和方法。可以使用以下结合的方法来解决这些问题:使用不同频谱带的不同强度的照明光束进行多频谱样本照亮,并同时多频谱检测由纳米颗粒散射的光。
例如,在蓝色频谱带中由小纳米颗粒(即,小于大约100nm-200nm)产生的散射光强可以比绿色和红色频谱带中产生的要强。为了优化小纳米颗粒的检测和分析,以相对高输出功率(例如,范围从大约500mW到1000mW)进行操作的蓝色光源105C可以被用来照亮液体样本。以类似的方式,可以通过利用绿色光源105B照亮样本来优化中等纳米颗粒(在大约100nm-200nm和400nm-500nm之间)的检测和分析。绿色光源105B可以以低于蓝色光源的输出功率(例如,从大约50mW到200mW)进行操作。可以通过利用红色光源照亮样本来优化大纳米颗粒(即,大于大约400nm-500nm)的检测和分析,该红色光源以低输出功率(例如,从大约20mW到100mW)进行操作。
计算设备130可以使用分别以蓝色、绿色和红色记录的图像和/或视频信息同时分析所有纳米颗粒,范围包括来自相同液体样本的小、中、和大纳米颗粒。因为这些尺寸范围可能彼此重叠,所以本文公开的主题能够同步确定遍及整个纳米颗粒尺寸范围的纳米颗粒的浓度和尺寸分布。相反,如果利用恒定功率的单色光束照亮液体样本,则产生低强度散射光的小纳米颗粒可能曝光不足或未检测到。该不利影响可能导致过低估计小纳米颗粒。同样的,大纳米颗粒可能产生高强度散射光,并且可能过度曝光。该过度曝光可能会引入伪影,这可能会影响对这些颗粒的布朗运动的追踪、对这些颗粒的尺寸的确定、以及影响检测大的过度曝光的颗粒周围的小的曝光不足的纳米颗粒的能力。
计算设备130可以执行如图3所示的过程300,用来分析来自图像捕获设备127的数据(例如,图像数据、视频数据等等)以及确定液体样本中纳米颗粒的颗粒尺寸分布(即,作为纳米颗粒尺寸的函数的纳米颗粒的浓度)。如上文关于图1所描述的,视频数据可以表示纳米颗粒布朗运动,并且可以以原始像素模式记录。
计算设备130可以使用视频记录和获取应用程序获得视频数据。该程序可以被配置为执行关于系统100的各种操作。例如,该程序可以在预定间隔或按需对液体样本进行温度测量。计算设备130可以使用这些温度测量来从与纳米颗粒相关联的布朗扩散系数中计算纳米颗粒直径。该程序还可设置并读取光源105A、105B和105C的输出功率,并且控制液体样本到液槽120的传送。该程序可以包括具有一个或多个数据获取参数的输入文件。该输入文件可以使用图像捕获设备127发起对影像或一系列影像(例如,一个或多个图像、数字视频等等)的记录。由视频记录和获取应用程序收集的数据可以被存储在图像捕获设备127或计算设备130处的日志文件中。计算设备130可以使用该日志文件分析所收集的图像和视频数据。
过程300可以被分为子过程305、310、315、320、325和330。下文中描述了这些子过程中的每一个过程。
在子过程305处,计算设备130可以处理从图像捕获设备127收集的视频数据。在305A处,计算设备135可以将从图像捕获设备127收集的视频数据分为其频谱分量。如上文关于图1所描述的,图像捕获设备127可以是例如具有拜耳滤波器模式的彩色相机。彩色相机可以使用拜耳滤波器以原始模式记录纳米颗粒移动。在子过程305A期间,计算设备130可以从影像的每一帧的视频数据中分别提取红色、绿色、和蓝色分量(即,像素的灰度等级强度或亮度)。在305A处示出的符号R、G、和B分别指的是在红色、绿色、和蓝色频谱波段中记录的原始视频数据。
在305B处,计算设备130可以使用移动平均填充任何缺少的像素。因为图像捕获设备127可以使用拜耳模式滤波器来记录视频数据,所以每个像素可以仅记录红色、绿色、和蓝色中的一种颜色。例如,在2×2像素网格中,仅有50%的像素(即,2个像素)可以是绿色。计算设备130可以利用使用移动平均值的亮度值回填缺少的2个像素(即,非绿色的像素)。该移动平均值可以例如具有4个像素的呈现长度。在红色、绿色、和蓝色波段的每个波段中的缺少像素被填充之后,305B处示出的符号R’、G’、和B’分别指红色、绿色、和蓝色波段中的原始视频数据。
计算设备130可以使用305C处的亮度阈值过滤从305B生成的视频数据。计算设备130可以确定影像的每个帧的像素亮度值的直方图,并从直方图中选择一个或多个亮度阈值。计算设备130可以将每个像素的强度值与该亮度阈值相比较。如果例如像素的强度值小于阈值,则计算设备130可以将像素强度设置为0,以便将图像中噪声(即,背景亮度)的可能影响最小化。在完成过滤之后,305C处示出的符号R”、G”、和B”分别指的是在红色、绿色、和蓝色波段中产生的视频数据。
图4示出了在红色、绿色、和蓝色频谱段中由单个纳米颗粒散射的光的一系列图像410、415、420、425、430和435。计算设备130可以使用具有拜耳模式滤波器的CCD摄像机基于305A、305B、和305C处执行的操作生成这些图像。图像410、420和430分别示出了在蓝色、绿色、和红色频谱段中纳米颗粒的原始未处理的图像。在这些原始图像中,亮点可以与检测给定具体频谱段内的光的拜耳模式的像素相对应。亮点之间的暗区可以与来自其他两个频谱段的像素相对应。图像415、425、和435示出了在计算设备130使用移动平均填充暗像素之后的纳米颗粒的图像。从这些图像中明显的是,在纳米颗粒是大的(在该示例说明中直径为800nm)时红色段在图像435中提供了纳米颗粒的最佳图像。
返回图3,在子过程310处,计算设备130可以识别并检测视频数据中纳米颗粒的存在。在310处示出的符号xyR、xyG、和xyB指的是在每个影像帧和每个频谱段中检测到的纳米颗粒的x和y坐标。纳米颗粒在影像帧上显示为明亮特征或斑点。计算设备130可以使用由Maria L.Kilfoil开发的“颗粒预追踪和追踪以及2D特征查找”算法(被称为“Kilfoil的算法”)的修订形式来检测斑点的存在。计算设备130可以使用Kilfoil的算法来查找并追踪视频数据中预定特征的运动以用于进一步分析。通常,纳米颗粒特征(本文中称为斑点)趋向于是圆的、明亮的。与噪声或其他伪影相关联的非纳米颗粒特征可能是椭圆的、在形状上拉伸、并且比纳米颗粒的强度或亮度要小。计算设备130可以使用Kilfoil的算法,以便在每个帧上以及在视频数据的每个频谱波段中识别并定位想要的纳米颗粒特征。对Kilfoil的算法的修改可以使在每个波段中和在影像的每个帧中对斑点的接受和对背景噪声或其他错误(非纳米颗粒)特征的拒绝最优化。这些修改在下文中被描述,并且可以以任意组合和任意顺序使用。
在对Kilfoil的算法的第一修改中,计算设备130可以计算纳米颗粒的强度阈值和尺寸阈值中的一个或多个。这些参数可以帮助区别错误特征或背景噪声与纳米颗粒斑点。计算设备130可以计算每个频谱段和影像的每一帧中这些参数中的一个或多个参数。
强度阈值可以根据存在于帧中的所有斑点的强度值确定。给定纳米颗粒斑点或错误特征的强度值可以根据与斑点或特征卷积的掩模被计算为所有像素的累积强度。在这些计算中,像素化盘状掩模可以具有预定的直径(例如,20个像素),并且假设掩模内的每个像素具有值为1的强度。
尺寸阈值可以由存在于帧中的所有斑点和其他特征的尺寸值确定。给定斑点或其他特征的尺寸可以被计算为斑点或特征的回旋半径的平方。
以影像的第一帧开始,计算设备130可以对影像的每一帧以及对每个频谱分量应用上述的强度阈值和尺寸阈值,以便从噪声或其他错误特征中区分出纳米颗粒(斑点)。计算设备130可以从预先选择的初始帧开始在逐帧的基础上随着时间追踪每个频谱带中的纳米颗粒。在一些实现方式中,初始帧可能不是影像的第一帧。
在对Kilfoil的算法的第二修改中,计算设备130可以调整应用尺寸阈值的方式。例如,当分析影像的蓝色和绿色频谱分量时,计算设备130可以应用尺寸阈值,而不管帧中斑点的亮度。计算设备130可以接受小于尺寸阈值的斑点用于后续的追踪和分析。计算设备130可以拒绝大于尺寸阈值的斑点。在每个帧中,例如,尺寸阈值可以与帧中的斑点的平均尺寸或平均斑点尺寸减去预定斑点尺寸相对应。例如,预定斑点尺寸可以与盘状掩模的尺寸(例如,直径为20个像素)相对应。该修改可以增强对错误特征的拒绝,特别是在蓝色波段中。
在对Kilfoil的算法的第三修改中,计算设备130可以调整应用尺寸阈值的方式。例如,当分析影像的红色频谱分量时,计算设备130可以应用强度阈值,而不管斑点尺寸。计算设备130可以接受具有高于强度阈值的累积强度的斑点(即,将它们接受为纳米颗粒)。计算设备130可以拒绝具有低于强度阈值的累积强度的斑点。对于每个帧,强度阈值可以与乘以标量因子(例如,0.1)的最高累积强度相对应。
在对Kilfoil的算法的第四修改中,计算设备130可以消除环形类伪影,该环形类伪影可能与个体斑点相关联。这些伪影可能在样本中的斑点出现模糊不清并可能导致纳米颗粒的错误检测时出现。为了移除这些伪影,计算设备130可以确定每个帧中相邻斑点特征之间的距离。如果该距离小于预定值(例如,针对帧选择的多个尺寸阈值),则计算设备130可以拒绝斑点进行进一步分析。
在子过程315处,计算设备130可以(在315A期间)追踪纳米颗粒的移动并(在315B期间)消除纳米颗粒展现出的任何偏移(非布朗运动)。在315A期间,计算设备130可以分别地追踪在子过程310期间检测到的纳米颗粒的布朗运动。计算设备130可以在逐帧的基础上并且在每个频谱段中随着时间分别地追踪纳米颗粒。追踪过程可以基于各种预定标准,包括例如,相邻帧(例如,11个像素)之间的最大颗粒位移、追踪中帧的最小数量(例如,5)、以及帧之间的最大间隙(例如,4)(在其中纳米颗粒的位置是未确定的)。在满足一些预定的标准(如果不是所有的预定标准)时,追踪被认为是有效的。在315A处示出的符号TR、TG、和TB指的是每个频谱带中记录的对纳米颗粒的有效追踪。追踪可以在预先选择的影像的初始帧(例如,帧1)处开始,并继续进行至所有后续的帧直到达到影像的结尾或者直到最长的追踪结束。
虽然在315A处执行的追踪过程可以是基于Kilfoil的算法的,但是计算设备130可以采用各种改进来提高该过程的准确度。在第一方面,计算设备130可以仅追踪那些在预先选择的影像的初始帧上检测到的纳米颗粒。该修改可以防止纳米颗粒被多次计数,并且可以有助于纳米颗粒在初始帧之后消失(例如,因为对其的追踪被终止),并且随后在影像期间的另一帧中再出现的情况。另外,计算设备130可以忽略不在初始帧中而在后续帧中出现的任意“新的”纳米颗粒。
在另一方面,计算设备130可以使用不同的预先选择的初始帧多次重复追踪过程,以便提高所获得结果在统计上的稳定性。例如,计算设备130可以针对给定的影像在帧1、11、21、31、和41处开始重复进行5次上述的追踪过程。通过对经过这些迭代获得的数据进行平均,计算设备130可以获得比从单一影像获得的结果更为准确的结果。在一些实现方式中,该过程可以被扩展,并且通过获得和分析多个影像针对液体样本的不同等分试样重复该过程,其中每个影像对应于样本的不同等分试样。
在315B处,计算设备130可以计算液体样本内纳米颗粒的平移偏移。偏移运动可以例如在照亮光束加热并引起液体样本中的对流运动时出现。计算设备130可以计算该平移偏移,并将该平移偏移从315A处获得的追踪结果中消除。为了该目的,计算设备130可以比较在存在和不存在偏移运动的情况下纳米颗粒的布朗运动的仿真。由于一对视频帧之间的偏移引起的给定纳米颗粒行进的距离可以被量化为帧中记录的纳米颗粒的位置之间的距离的一部分。以下过程描述了对偏移校正因子的计算。
第一,计算设备130可以使用来自两个最靠近的帧(在其中检测到纳米颗粒)的位置数据来计算每对连续帧之间的x和y位置的差异。可以从追踪的开始到结束执行该计算,并且该计算可以考虑在其中没有检测到颗粒的帧。
在示例中,纳米颗粒可以在帧1、3、4、7、8、10、和11中被检测和追踪。计算设备130可以计算帧1和3之间、帧3和4之间、帧4和7之间、帧7和8之间、帧8和10之间、以及帧10和11之间纳米颗粒的x和y位置的差异。因为帧1距离帧3有2个帧,所以计算设备130可以将记录的差异除以2,以便获得帧1和3之间每一帧的估计的差异。类似地,因为帧3距离帧4有1个帧,所以计算设备可以采用这些帧之间的x和y位置的差异,并且将该差异除以1。计算设备可以以类似的方式计算其他对帧之间的差异。
计算设备130可以将这些计算的差异相加,并且将该总和除以一个小于追踪内帧数目的数。该商值可以乘以校正因子(例如,0.45),以获得对每一帧的偏移校正的最终估计。
计算设备130可以通过将每一帧的偏移校正乘以追踪中期望帧和第一帧之间的帧数目来计算任意给定帧的最终偏移校正。参考以上的示例,计算设备130可以通过将每一帧的偏移校正乘以2来计算帧3的最终偏移校正值,因为在追踪中帧3距离第一帧(帧1)有2个帧。类似地,计算设备130可以通过将每一帧的偏移校正乘以3来计算帧4的最终偏移校正值,因为在追踪中帧4距离第一帧有3个帧。计算设备130可以以类似的方式计算追踪中剩余帧的最终偏移校正值。偏移校正因子可以基于与布朗运动和偏移运动的组合相关联的颗粒追踪的一个或多个蒙特卡罗模拟。其他校正程序和校正因子可以被用来确定偏移校正因子。
计算设备130可以通过从纳米颗粒的记录的x和y坐标中减去最终偏移校正获得每个帧中纳米颗粒的经校正的x和y位置。新的经校正的x和y位置可以仅归因于纳米颗粒的布朗运动。在315B处,计算设备130可以在影像的每个追踪中使用经校正的x和y位置,以计算每个纳米颗粒的均方位移(MSD)的值。间或,影像帧的序列可以包括一些帧,这些帧的纳米颗粒的x和y位置是未确定的。计算设备130可以考虑这些“丢失”帧中的数据以正确地计算MSD值。在315B处示出的符号T’R、T’G、和T’B指的是在偏移运动校正后每个频谱带中记录的纳米颗粒的有效追踪,被用来计算每个纳米颗粒的MSD值。
在子过程320处,计算设备130可以使用315B处计算的MSD值计算每个追踪的纳米颗粒的布朗扩散系数。计算设备130可以使用已知的方法计算在每个帧中以及在每个频谱带中每个纳米颗粒的布朗系数。在一些实现方式中,计算设备130可以消除一些追踪,以避免布朗扩散系数的数据的生成经受不可接受的巨大错误。在320处示出的符号DR、DG、和DB指的是在每个频谱带中追踪的纳米颗粒的布朗扩散系数。
在子过程325处,计算设备130可以消除重复的纳米颗粒。间或,一些纳米颗粒可能不只在一个频谱带中被检测和追踪。计算设备130可以基于对在每个频谱带以及在影像的每个帧中每个纳米颗粒的位置的比较来识别这些重复。如果在不同的频谱带中识别出对相同纳米颗粒的重复追踪,则计算设备130可以使用在计算扩散系数中产生最小不确定性的纳米颗粒追踪,最后可以使用该纳米颗粒追踪计算纳米尺寸分布。计算设备130可以忽略任意剩余的追踪以及关联的布朗分散系数。
在子过程330期间,计算设备130可以(在330A处)计算一个或多个纳米颗粒直径以及在(在330B处)计算液体样本中的纳米颗粒的尺寸分布。
关于前者,计算设备130可以使用在325处获得的布朗扩散系数来计算每个检测和追踪的纳米颗粒的水动力直径。可以根据已知的方法使用例如爱因斯坦方程(也被经常称为斯托克斯-爱因斯坦方程)来执行该计算。
在计算所有检测和追踪的纳米颗粒的直径之后,在330B处,计算设备130可以确定液体样本中纳米颗粒的颗粒尺寸分布。颗粒尺寸分布可以表示每个特定尺寸元内纳米颗粒尺寸的浓度(例如,每个尺寸元内每单位体积样本中的纳米颗粒的数量)。每个尺寸元具有与不同纳米颗粒直径相对应的中心。元的宽度可以是1nm小,但是可以使用不同的面元方案。计算设备130可以显示例如与每个尺寸元相关联的纳米颗粒的颗粒尺寸分布和浓度。
图5示出了不同尺寸的纳米颗粒(具有直径为50nm、240nm和800nm的标准聚苯乙烯纳米球的混合)的图像500。图像表示在10秒间隔期间针对水中悬浮的纳米颗粒获得的在蓝色、绿色、和红色频谱段中300个视频帧的重叠。亮的集群或条纹表示随着时间个体纳米颗粒的轨迹(即,追踪)。计算设备130可以被配置为在执行过程325之后显示图5。
图6A和6B示出了从对由不同尺寸的纳米颗粒尺寸标准的混合组成的两个测试样本的验证实验中获得的颗粒尺寸分布(PSD)。PSD被描述为密度函数,可以表示每单位尺寸间隔为1nm的任意给定直径的颗粒的浓度。在给定尺寸范围对密度函数进行积分可以得出该范围内的颗粒浓度。例如,密度函数在直径为100nm处的值可以表示1nm宽度的尺寸元内的颗粒的浓度,该1nm宽度的尺寸元范围从99.5nm到100.5nm并以100nm为中心。图6A和6B的曲线图比较本文公开的系统和具有参考分布的另一未标识系统获得的PSD。
图6A和6B示出了本文公开的系统针对多分散的样本提供了高度准确的结果,因为其PSD紧密地追随参考数据点。相反,未标识系统的PSD与参考数据点截然不同。针对图6A示出的样本(即,N~d-1,其中N是纳米颗粒浓度,d是纳米颗粒的直径),未标识系统的PSD明显在参考分布以下。该表现可以指示低估了在经检查的样本内跨纳米颗粒尺寸的整个范围的纳米颗粒浓度。未标识系统之间的浓度值和参考浓度值的相对差异在不同的尺寸标准的直径处的范围是从-81%到-34%,平均差异为-61%。相反,与本文公开的系统相关联的浓度和参考浓度值的差异明显较小。该差异的范围从-42%到+9%,平均差异为-15%。
针对图6B中示出的样本(即,N~d-3),未标识系统的PSD明显在参考分布以上。该表现可以指示高估了纳米颗粒浓度。未标识系统和参考浓度之间的相对差异的范围是从+50%到+1118%,平均差异为+446%。相反,与本文公开的系统相关联的浓度和参考浓度值的差异明显较小,范围从-38%到+119%,平均差异为+41%。
由图6A和6B得出的结果证明在未标识系统中存在较大的误差,并且还指示这些测量中的偏差从一个样本到另一个样本的变化是非常大的。例如,该偏差对于N~d-1样本可能是明显负的,而对于N~d-3样本可能是高度正的。
在不以任何方式限制本文所示的权利要求的范围、解释、或应用的情况下,本文公开的示例实现方式中的一个或多个的技术效果可以包括增强对纳米颗粒的检测。
本文描述的主题可以根据期望的配置在系统、装置、方法和/或文章中实施。例如,本文描述的装置和/或过程可以使用以下的一种或多种来实现:执行程序代码的处理器、专用集成电路(ASIC)、数字信号处理器(DSP)、嵌入式处理器、现场可编程门阵列(FPGA)、和/或它们的组合。这些各种实现方式可以包括用在包括至少一个可编程处理器(可以是专用或通用)的可编程系统上可执行和/或可翻译的一个或多个计算机程序的实现方式,该至少一个可编程处理器被耦合以从存储系统、至少一个输入设备、和至少一个输出设备接收数据和指令,以及向存储系统、至少一个输入设备、和至少一个输出设备接收数据和指令。这些计算机程序(还被称为程序、软件、软件应用、应用、组件、程序代码、或代码)包括针对可编程处理器的机器指令,并且可以被实现于高级程序上的和/或面向对象的编程语言、和/或装配/机器语言。如在本文中所使用,术语“机器可读介质”指的是任意计算机程序产品、计算机可读介质、计算机可读存储介质,用来向可编程处理器提供机器指令和/或数据的装置和/或设备(例如,磁盘、存储器、可编程逻辑设备(PLD))包括,接收机器指令的机器可读介质。类似地,同样在本文中描述的系统可以包括耦合至该处理器的处理器和存储器。存储器可以包括一个或多个程序,使得处理器执行本文描述的操作中的一个或多个操作。例如,本文公开的对过程和操作的控制可以包括计算机代码。
在上文的描述中以及权利要求中,在元件或特征的连接列表之前可以出现诸如“至少一个”或“一个或多个”之类的短语。术语“和/或”还可以在两个或更多个元件或特征的列表中出现。除非在上下文中含蓄或明确反驳使用的是哪一个,否则这种短语旨在表示任意列出的独立的元件或特征,或者任意列举的元件或特征结合任意其他列举的元件或特征。例如,短语“A和B中的至少一个”、“A和B中的一个或多个”、“A和/或B”分别旨在表示“A独自、B独自、或A和B一起”。类似的解释还旨在针对包括三个或更多个项的列表。例如,短语“A、B和C中的至少一个”、“A、B和C中的一个或多个”、“A、B和/或C”分别旨在表示“A独自、B独自、C独自、A和B一起、A和C一起、B和C一起、或A和B和C一起”。另外,在上文中和权利要求中使用术语“基于”旨在表示“至少部分基于”,使得未列举的特征或元件也是可允许的。
虽然上文已经详细描述了一些变化,但是其他的修改或添加是可能的。具体的,除了本文提出的那些之外可以提供另外的特征和/或变化。此外,上文描述的实现方式可以针对公开的特征的各种组合和子组合和/或上文公开的若干另外特征的组合和子组合。另外,附图描绘的和/或本文中描述的逻辑流不要求以所示的特定顺序或连续顺序来实现期望的结果。其他的实现方式可以在以下的权利要求的范围内。此外,上述提供的具体值仅是示例,并且在一些实现方式中可以变化。
虽然在权利要求中陈述了本发明的各个方面,但是本发明的其他方面包括来自所描述的实现方式和权利要求的特征的其他组合,而不单单是在权利要求中明确陈述的组合。
Claims (28)
1.一种用于检测和分析个体纳米颗粒的系统,包括:
多个光源,所述多个光源包括蓝色光源、绿色光源和红色光源,其中,蓝色光源与绿色光源相比以较高的输出功率操作,绿色光源与红色光源相比以较高的输出功率操作,并所述多个光源被配置为产生不同频谱波段的多个光束,其中,所述多个光束包括具有蓝色光谱波段、绿色光谱波段和红色光谱波段的光束;
光学部件,所述光学部件被配置为将所述多个光束合并成一个或多个入射光片,每个入射光片照亮液体样本中的一个或多个纳米颗粒;以及
一个或多个图像检测器,所述一个或多个图像检测器被配置为使用多个波长检测由一个或多个纳米颗粒散射的光,所述多个波长与所述多个光束的不同频谱波段相对应。
2.如权利要求1所述的系统,还包括:
记录设备,所述记录设备被配置为在一个或多个影像中记录从所述一个或多个图像检测器获得的一系列图像。
3.如权利要求2所述的系统,还包括:
至少一个处理器,所述至少一个处理器被配置为至少执行以下操作:
基于来自所述一系列图像的至少两个图像检测并追踪所述一个或多个纳米颗粒的移动,所述至少两个图像显示所述一个或多个纳米颗粒对所述一个或多个入射光片的散射;以及
从所述一个或多个影像中确定所述一个或多个纳米颗粒的颗粒尺寸分布,所述颗粒尺寸分布包括一个或多个纳米颗粒直径的一个或多个浓度值。
4.如权利要求3所述的系统,其中所述检测以及所述追踪包括以下的一个或多个操作:
将所述一个或多个影像分为一个或多个单独的频谱分量,以生成一个或多个频谱图像并回填每个频谱图像;
从所述一个或多个影像中消除一个或多个错误特征,所述消除基于包括浓度阈值或尺寸阈值的一个或多个标准;
仅追踪存在于所述一个或多个影像的一个或多个预先选择的开始帧中的所述一个或多个纳米颗粒的子集;
消除所述一个或多个纳米颗粒的偏移运动;或
从所述一个或多个影像的所述一个或多个频谱分量中消除重复纳米颗粒追踪。
5.如权利要求1-4中任一权利要求所述的系统,其中,所述一个或多个纳米颗粒在移动。
6.如权利要求1-4中任一权利要求所述的系统,其中,所述一个或多个纳米颗粒没有在移动。
7.如权利要求1-4中任一权利要求所述的系统,其中,每个光束以独立可调节的功率电平输出。
8.如权利要求1-4中任一权利要求所述的系统,其中,所述光学部件包括一个或多个反射镜、波束合并器、狭缝、柱面透镜、或长工作距离物镜。
9.如权利要求1-4中任一权利要求所述的系统,其中,所述多个光束是可见光频谱的一部分。
10.如权利要求1-4中任一权利要求所述的系统,其中,所述一个或多个图像检测器包括拜耳模式滤波器,所述拜耳模式滤波器被配置为独立检测所述多个光束的不同频谱波段。
11.如权利要求1-4中任一权利要求所述的系统,其中,所述一个或多个图像检测器包括拜耳模式滤波器,所述拜耳模式滤波器被配置为产生具有独立颜色像素的一个或多个拜耳模式图像。
12.如权利要求1-4中任一权利要求所述的系统,其中,所述光学部件还包括安排在所述多个光源和所述液体样本之间的偏振片,所述偏振片被配置为将所述多个光束相对于散射面垂直偏振,以便相对从所述一个或多个入射光片传输到所述液体样本的热能使所述液体样本的照亮最优化。
13.如权利要求1-4中任一权利要求所述的系统,其中,所述一个或多个图像检测器还被配置为以所述多个波长同时检测由所述一个或多个纳米颗粒散射的光。
14.如权利要求1-4中任一权利要求所述的系统,其中,所述一个或多个图像检测器还被配置为至少检测由荧光产生的光和/或由所述一个或多个纳米颗粒发出的其他辐射。
15.一种用于检测和分析个体纳米颗粒的方法,包括
产生不同频谱波段的多个光束,其中,所述多个光束包括具有蓝色光谱波段、绿色光谱波段和红色光谱波段的光束;
将所述多个光束合并成一个或多个入射光片,每个入射光片照亮液体样本中的一个或多个纳米颗粒;以及
使用多个波长检测由一个或多个纳米颗粒散射的光,所述多个波长与所述多个光束的不同频谱波段相对应。
16.如权利要求15所述的方法,其中,所述产生是由多个光源执行的,所述多个光源包括蓝色光源、绿色光源和红色光源,其中,蓝色光源与绿色光源相比以较高的输出功率操作,绿色光源与红色光源相比以较高的输出功率操作,
其中,所述合并是由光学部件执行的,所述光学部件包括反射镜、波束合并器、狭缝、柱面透镜、或长工作距离物镜中的一个或多个,并且其中,所述检测是由一个或多个图像检测器执行的。
17.如权利要求15所述的方法,还包括:
在一个或多个影像中记录从所述检测中获得的一系列图像。
18.如权利要求17所述的方法,还包括:
基于来自所述一系列图像的至少两个图像检测并追踪所述一个或多个纳米颗粒的移动,所述至少两个图像显示所述一个或多个纳米颗粒对所述一个或多个入射光片的散射;以及
从所述一个或多个影像中确定所述一个或多个纳米颗粒的颗粒尺寸分布,所述颗粒尺寸分布包括一个或多个纳米颗粒直径的一个或多个浓度值。
19.如权利要求18所述的方法,其中所述检测以及所述追踪包括以下的一个或多个操作:
将所述一个或多个影像分为一个或多个单独的频谱分量,以生成一个或多个频谱图像并回填每个频谱图像;
从所述一个或多个影像中消除一个或多个错误特征,所述消除基于包括浓度阈值或尺寸阈值的一个或多个标准;
仅追踪存在于所述一个或多个影像的一个或多个预先选择的开始帧中的所述一个或多个纳米颗粒的子集;
消除所述一个或多个纳米颗粒的偏移运动;或
从所述一个或多个影像的所述一个或多个频谱分量中消除重复纳米颗粒追踪。
20.如权利要求15-18中任一权利要求所述的方法,其中,所述一个或多个纳米颗粒在移动。
21.如权利要求15-18中任一权利要求所述的方法,其中,所述一个或多个纳米颗粒没有在移动。
22.如权利要求15-18中任一权利要求所述的方法,其中,每个光束以独立可调节的功率电平输出。
23.如权利要求15-18中任一权利要求所述的方法,其中,所述多个光束是可见光频谱的一部分。
24.如权利要求15-18中任一权利要求所述的方法,其中,所述检测包括使用拜耳模式滤波器独立检测所述多个光束的不同频谱波段。
25.如权利要求15-18中任一权利要求所述的方法,其中,所述检测包括使用拜耳模式滤波器产生具有独立颜色像素的一个或多个拜耳模式图像。
26.如权利要求15-18中任一权利要求所述的方法,还包括:
将所述多个光束相对于散射面垂直偏振,以便相对从所述一个或多个入射光片传输到所述液体样本的热能使所述液体样本的照亮最优化。
27.如权利要求15-18中任一权利要求所述的方法,其中,所述检测还包括以所述多个波长同时检测由所述一个或多个纳米颗粒散射的光。
28.如权利要求15-18中任一权利要求所述的方法,其中,所述检测还包括至少检测由荧光产生的光和/或由所述一个或多个纳米颗粒发出的其他辐射。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462007312P | 2014-06-03 | 2014-06-03 | |
US62/007,312 | 2014-06-03 | ||
PCT/US2015/034075 WO2015187881A1 (en) | 2014-06-03 | 2015-06-03 | Nanoparticle analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106716125A CN106716125A (zh) | 2017-05-24 |
CN106716125B true CN106716125B (zh) | 2020-10-09 |
Family
ID=54701397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580036526.8A Active CN106716125B (zh) | 2014-06-03 | 2015-06-03 | 纳米颗粒分析器 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9645070B2 (zh) |
EP (1) | EP3152566B1 (zh) |
JP (1) | JP6628743B2 (zh) |
KR (1) | KR102315741B1 (zh) |
CN (1) | CN106716125B (zh) |
CA (1) | CA2988263C (zh) |
WO (1) | WO2015187881A1 (zh) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103728236B (zh) * | 2012-10-12 | 2016-01-20 | 厦门福流生物科技有限公司 | 一种检测纳米粒子的方法 |
DE102013105648B3 (de) * | 2013-05-31 | 2014-08-07 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zur Ermittlung einer sich ändernden räumlichen Verteilung von Partikeln zu mehreren Zeitpunkten |
WO2018070324A1 (ja) * | 2016-10-13 | 2018-04-19 | 国立研究開発法人産業技術総合研究所 | ナノ粒子評価方法およびナノ粒子観察装置 |
US10596567B2 (en) | 2017-03-27 | 2020-03-24 | International Business Machines Corporation | Microfluidic ratchets for displacing particles |
JP6549747B2 (ja) * | 2017-04-14 | 2019-07-24 | リオン株式会社 | 粒子測定装置および粒子測定方法 |
EP3721207A1 (en) * | 2017-12-06 | 2020-10-14 | Koninklijke Philips N.V. | Particle sensor and method |
JP7209287B2 (ja) * | 2018-06-12 | 2023-01-20 | 国立大学法人愛媛大学 | ナノ粒子の判別方法 |
US10809186B2 (en) * | 2018-12-14 | 2020-10-20 | The Boeing Company | Optical detection system and method |
CN110057726A (zh) * | 2019-03-19 | 2019-07-26 | 中国科学院上海光学精密机械研究所 | 三色光源共光轴颗粒粒度测量装置 |
ES2938687T3 (es) * | 2019-04-03 | 2023-04-13 | Mecwins S A | Procedimiento de detección óptica de biomarcadores |
JP7328871B2 (ja) * | 2019-04-09 | 2023-08-17 | 株式会社日立製作所 | 粒子サイズ測定装置および測定方法 |
JP7356891B2 (ja) * | 2019-06-12 | 2023-10-05 | 株式会社堀場製作所 | 粒子分析装置及び粒子分析方法 |
US10823662B1 (en) | 2020-02-18 | 2020-11-03 | Horiba Instruments, Incorporated | Special purpose cuvette assembly and method for optical microscopy of nanoparticle colloids |
JP7421968B2 (ja) * | 2020-03-17 | 2024-01-25 | リオン株式会社 | 粒子測定装置及び粒子測定方法 |
EP4229217A1 (en) | 2020-10-21 | 2023-08-23 | Athanor Biosciences, Inc. | Size-based detection and quantification of functional bio-nanoparticles |
CN112362546B (zh) * | 2020-11-09 | 2021-08-10 | 中国南方电网有限责任公司超高压输电公司柳州局 | 一种高精度多波段便携式颗粒物质量浓度测量仪 |
KR102501486B1 (ko) | 2020-12-10 | 2023-02-17 | 한국화학연구원 | 나노 입자 또는 나노 구조체에서 발생된 분광 신호 분석 시스템 및 분석 방법 |
US12208400B2 (en) | 2021-05-25 | 2025-01-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Systems and methods for non-destructive isolation, concentration, and detection for unbiased characterization of nano- and bioparticles |
EP4266056A1 (en) | 2022-04-21 | 2023-10-25 | Athanor Biosciences, Inc. | Size-based detection and quantification of functional bio-nanoparticles |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0293344A (ja) * | 1988-09-30 | 1990-04-04 | Kowa Co | 微粒子測定方法および装置 |
AU699519B2 (en) * | 1995-10-23 | 1998-12-03 | Cytometrics, Inc. | Method and apparatus for reflected imaging analysis |
US6586193B2 (en) * | 1996-04-25 | 2003-07-01 | Genicon Sciences Corporation | Analyte assay using particulate labels |
US6249341B1 (en) * | 1999-01-25 | 2001-06-19 | Amnis Corporation | Imaging and analyzing parameters of small moving objects such as cells |
US6836559B2 (en) | 2000-03-09 | 2004-12-28 | The Regents Of The University Of California | Automated video-microscopic imaging and data acquisition system for colloid deposition measurements |
EP1334338A4 (en) * | 2000-10-12 | 2008-03-19 | Amnis Corp | PICTURE AND ANALYSIS OF PARAMETERS OF SMALL MOBILE OBJECTS, SUCH AS CELLS, FOR EXAMPLE |
US6366403B1 (en) * | 2001-02-12 | 2002-04-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Laser image contrast enhancement system |
US6995841B2 (en) * | 2001-08-28 | 2006-02-07 | Rice University | Pulsed-multiline excitation for color-blind fluorescence detection |
WO2003021231A2 (en) | 2001-09-05 | 2003-03-13 | Genicon Sciences Corporation | Method and apparatus for normalization and deconvolution of assay data |
CA2490201A1 (en) * | 2002-06-24 | 2003-12-31 | Tsi Incorporated | Analysis systems detecting particle size and fluorescence |
WO2005091970A2 (en) * | 2004-03-06 | 2005-10-06 | Michael Trainer | Methods and apparatus for determining the size and shape of particles |
US7751048B2 (en) * | 2004-06-04 | 2010-07-06 | California Institute Of Technology | Optofluidic microscope device |
JP4517145B2 (ja) * | 2004-09-02 | 2010-08-04 | 国立大学法人北海道大学 | 光散乱装置、光散乱測定法、光散乱解析装置および光散乱測定解析法 |
US7456881B2 (en) * | 2006-01-12 | 2008-11-25 | Aptina Imaging Corporation | Method and apparatus for producing Bayer color mosaic interpolation for imagers |
US20090323061A1 (en) | 2006-02-28 | 2009-12-31 | Lukas Novotny | Multi-color hetereodyne interferometric apparatus and method for sizing nanoparticles |
US7629124B2 (en) * | 2006-06-30 | 2009-12-08 | Canon U.S. Life Sciences, Inc. | Real-time PCR in micro-channels |
US7679742B2 (en) | 2007-02-28 | 2010-03-16 | Translume, Inc. | Method, system and apparatus for monitoring variations in the size of particles present in a fluid |
KR101484566B1 (ko) * | 2007-03-21 | 2015-01-20 | 루미다임 인크. | 국소적으로 일관된 피처를 기초로 하는 생체인식 |
WO2009155151A2 (en) * | 2008-06-20 | 2009-12-23 | Visiongate, Inc. | Functional imaging of cells optical projection tomography |
AU2010241582A1 (en) * | 2009-05-01 | 2011-11-24 | Oregon Health & Science University | Automated detection and counting of biomolecules using nanoparticle probes |
JP2011080932A (ja) * | 2009-10-09 | 2011-04-21 | Fujitsu Ltd | 表面検査装置及び表面検査方法 |
JP5517000B2 (ja) * | 2009-10-16 | 2014-06-11 | 国立大学法人群馬大学 | 粒径計測装置、及び粒径計測方法 |
US9074980B2 (en) * | 2011-01-20 | 2015-07-07 | Industry-University Corporation Foundation Hanyang University | Method for the toxicity assessments of nano-materials |
CN106290160A (zh) | 2011-01-21 | 2017-01-04 | 提拉诺斯公司 | 样品使用最大化的系统和方法 |
CN102109454B (zh) * | 2011-03-17 | 2013-04-03 | 上海理工大学 | 同时测量多颗粒的动态光散射纳米颗粒粒度的方法 |
TWI772897B (zh) * | 2011-08-29 | 2022-08-01 | 美商安美基公司 | 用於非破壞性檢測-流體中未溶解粒子之方法及裝置 |
US9964747B2 (en) | 2012-06-11 | 2018-05-08 | Helmholtz Zentrum Munchen Deutsches Forschungszentrum Fur Gesundheit Und Umwelt (Gmbh) | Imaging system and method for imaging an object |
US9404869B2 (en) * | 2012-10-09 | 2016-08-02 | Howard Hughes Medical Institute | Multiview light-sheet microscopy |
-
2015
- 2015-06-03 US US14/730,138 patent/US9645070B2/en active Active
- 2015-06-03 WO PCT/US2015/034075 patent/WO2015187881A1/en active Application Filing
- 2015-06-03 CN CN201580036526.8A patent/CN106716125B/zh active Active
- 2015-06-03 KR KR1020177000076A patent/KR102315741B1/ko active Active
- 2015-06-03 JP JP2016571031A patent/JP6628743B2/ja active Active
- 2015-06-03 CA CA2988263A patent/CA2988263C/en active Active
- 2015-06-03 EP EP15802476.0A patent/EP3152566B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3152566B1 (en) | 2020-09-09 |
US20150346076A1 (en) | 2015-12-03 |
EP3152566A4 (en) | 2018-02-21 |
JP6628743B2 (ja) | 2020-01-15 |
CA2988263A1 (en) | 2015-12-10 |
CA2988263C (en) | 2022-11-29 |
JP2017517001A (ja) | 2017-06-22 |
CN106716125A (zh) | 2017-05-24 |
US9645070B2 (en) | 2017-05-09 |
KR102315741B1 (ko) | 2021-10-21 |
WO2015187881A1 (en) | 2015-12-10 |
KR20170015967A (ko) | 2017-02-10 |
EP3152566A1 (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106716125B (zh) | 纳米颗粒分析器 | |
US9360410B2 (en) | Method and particle analyzer for determining a broad particle size distribution | |
JP6590876B2 (ja) | 流体中の非溶解粒子の非破壊的検出のための方法および装置 | |
CN101124474B (zh) | 检测管道内气体中微粒存在的装置和方法以及管道系统 | |
US9297759B2 (en) | Classification of surface features using fluorescence | |
EP3148411B1 (en) | Imaging apparatus, imaging method and medical imaging system | |
KR102093108B1 (ko) | 표면 피처들 맵핑 | |
US9863892B2 (en) | Distinguishing foreign surface features from native surface features | |
US20070097372A1 (en) | Particle detection apparatus and particle detection method used therefor | |
CN108603825A (zh) | 用于对单独流体承载颗粒进行检测和/或形态分析的方法和设备 | |
EP3531112B1 (en) | Raman spectroscopy detection device and sample safety detection method for use in raman spectroscopy detection | |
EP3279635B1 (en) | Method, processor and machine-readable, non-transient storage medium for characterising particles suspended in a fluid dispersant | |
US10819915B1 (en) | Apparatus and method generating high dynamic range video | |
JP2000046723A (ja) | 血小板機能検査方法 | |
WO2015037055A1 (ja) | 蛍光画像取得装置 | |
WO2021133515A1 (en) | Apparatus and method for observation of microscopic movements and counting of particles in colloids | |
KR20130039744A (ko) | 융합형 진주 분석 시스템 및 이를 이용한 진주 분석 방법 | |
WO2021133514A1 (en) | Apparatus and method generating high dynamic range video |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |