CN106706131A - Double-incident slit high-resolution imaging spectral system - Google Patents
Double-incident slit high-resolution imaging spectral system Download PDFInfo
- Publication number
- CN106706131A CN106706131A CN201710037344.3A CN201710037344A CN106706131A CN 106706131 A CN106706131 A CN 106706131A CN 201710037344 A CN201710037344 A CN 201710037344A CN 106706131 A CN106706131 A CN 106706131A
- Authority
- CN
- China
- Prior art keywords
- double
- slit
- concave
- grating
- convex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title abstract description 26
- 230000003595 spectral effect Effects 0.000 title abstract description 23
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 238000012937 correction Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 238000000701 chemical imaging Methods 0.000 claims description 17
- 238000001228 spectrum Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000005350 fused silica glass Substances 0.000 claims description 3
- 230000005499 meniscus Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 15
- 230000004075 alteration Effects 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 description 7
- 102100025490 Slit homolog 1 protein Human genes 0.000 description 6
- 101710123186 Slit homolog 1 protein Proteins 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/021—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0297—Constructional arrangements for removing other types of optical noise or for performing calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/04—Slit arrangements slit adjustment
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
本发明公开了一种双缝入射高分辨率成像光谱系统,它由双入射缝、分光子系统以及探测子系统构成,其中分光子系统包含主反射镜、凸面光栅、次反射镜以及校正透镜,探测子系统包含滤光片以及面阵探测器。系统具有高分辨率、快速重访时间、较低成本以及空间系统高集成化。双缝结构使系统实现一次观测同时获得两个目标区域的光谱信息,缩短重访时间;通过主反射镜、凸面光栅、次反射镜同心的设计方法,可以减小系统像差,提高系统分辨率。
The invention discloses a double-slit incident high-resolution imaging spectroscopic system, which is composed of a double-incidence slit, a photo-splitting subsystem, and a detection subsystem, wherein the photo-splitting subsystem includes a primary reflector, a convex grating, a secondary reflector, and a correction lens. The detection subsystem includes optical filters and area array detectors. The system has high resolution, fast revisit time, low cost and high integration of space system. The double-slit structure enables the system to obtain the spectral information of two target areas at the same time in one observation, shortening the revisit time; through the concentric design method of the primary reflector, convex grating, and secondary reflector, the system aberration can be reduced and the system resolution can be improved .
Description
技术领域technical field
本发明涉及一种双缝入射成像光谱系统,特别涉及一种可以用于地面望远镜系统、星载、机载的光谱成像仪的高分辨率、高像质、长狭缝、快速重访时间的光学系统设计。The present invention relates to a double-slit incident imaging spectroscopic system, in particular to a spectroscopic imager with high resolution, high image quality, long slit, and fast revisit time that can be used in ground telescope systems, spaceborne, and airborne spectral imagers Optical system design.
技术背景technical background
光谱成像仪于20世纪80年代在多光谱遥感成像技术基础上发展起来,能够以高光谱分辨率获取景物和目标的超多谱段图像,在大气、海洋和陆地观测中有着广泛的应用。光谱成像仪是成像技术和光谱技术的有机结合,通过在连续成像空间上进行连续光谱测量对目标进行“定性、定量、定时、定位”分析和动态过程检测,实现了获得物体空间信息的同时可以得到目标的光谱信息。The spectral imager was developed on the basis of multispectral remote sensing imaging technology in the 1980s. It can obtain super multispectral images of scenes and targets with high spectral resolution, and has a wide range of applications in atmospheric, ocean and land observations. The spectral imager is an organic combination of imaging technology and spectral technology. Through continuous spectral measurement in the continuous imaging space, the "qualitative, quantitative, timing, and positioning" analysis and dynamic process detection of the target can be achieved, and the spatial information of the object can be obtained. Get the spectral information of the target.
光谱成像系统中的分光模式有色散型和干涉型,色散型所使用的色散元件主要有:色散棱镜、干涉滤光片、平面闪耀光栅等。棱镜分光光谱成像仪会形成谱线弯曲;干涉分光光谱成像仪的力学、热学稳定性对干涉谱的准确性影响较大,而且在轨光谱定标难度大。因此光栅色散成像光谱仪比棱镜、滤波器、干涉型等其他类型成像光谱仪具有显著优点。传统光栅色散型成像光谱仪的主要限制因素是当系统孔径大时,会产生较大的光学畸变、高衍射级次的杂散光等,严重影响了光谱纯度并限制了后期数据处理算法的精确度。凹面光栅因小巧紧凑常用于便携式光谱仪,凸面光栅光谱仪因其对称结构、全反射式和像场大等优点较多应用于航天高分辨率高光谱成像系统中。The spectroscopic modes in the spectral imaging system include dispersion type and interference type. The dispersion elements used in the dispersion type mainly include: dispersion prisms, interference filters, planar blazed gratings, etc. The prism spectroscopic imager will form spectral line bending; the mechanical and thermal stability of the interferometric spectroscopic imager has a great influence on the accuracy of the interferometric spectrum, and it is difficult to calibrate the spectrum on orbit. Therefore, grating dispersive imaging spectrometers have significant advantages over other types of imaging spectrometers such as prisms, filters, and interference types. The main limiting factor of the traditional grating dispersion imaging spectrometer is that when the system aperture is large, large optical distortion and stray light with high diffraction order will be generated, which seriously affects the spectral purity and limits the accuracy of the later data processing algorithm. Concave gratings are often used in portable spectrometers due to their small size and compactness. Convex grating spectrometers are often used in aerospace high-resolution hyperspectral imaging systems due to their advantages of symmetry, total reflection, and large image field.
1987年D.Kwo首次提出了基于Offner同心分光结构的凸面光栅成像光谱仪,该系统以凸面光栅为色散元件,结构简单、易实现大孔径。这种设计保证所有第三级像差为零,仅存在第五级像散。1999年,M.P.Chrisp对系统进行了改进,显著提高了凸面光栅成像光谱仪的成像质量。与传统成像光谱仪相比,基于Offner结构的凸面光栅成像光谱仪具有大孔径、低光学畸变、结构简单、易于实现小型化的特性,降低了成像光谱仪的设计难度和后端数据处理的复杂度,提高了成像光谱分析的准确度。美国NRL开发的一种高效推扫式高光谱成像仪PHILIS,所用光谱仪为HyperSpecTM VM~15,波段为400~1000nm,地面采样率为25m和130m,焦距为180mm。采用Offner结构,选用1024×1024背照式CCD,光谱成像只利用了1024×512像元,每个像元分辨1.13nm光谱。In 1987, D. Kwo first proposed a convex grating imaging spectrometer based on the Offner concentric beam splitting structure. This system uses a convex grating as a dispersion element, and has a simple structure and is easy to achieve a large aperture. This design ensures that all third-order aberrations are zero and only fifth-order astigmatism exists. In 1999, MPChrisp improved the system and significantly improved the imaging quality of the convex grating imaging spectrometer. Compared with the traditional imaging spectrometer, the convex grating imaging spectrometer based on the Offner structure has the characteristics of large aperture, low optical distortion, simple structure, and easy miniaturization, which reduces the design difficulty of the imaging spectrometer and the complexity of back-end data processing, and improves The accuracy of imaging spectrum analysis is improved. PHILIS, a high-efficiency push-broom hyperspectral imager developed by NRL in the United States, uses a spectrometer HyperSpec TM VM~15 with a wave band of 400~1000nm, a ground sampling rate of 25m and 130m, and a focal length of 180mm. The Offner structure is adopted, and a 1024×1024 back-illuminated CCD is selected. Only 1024×512 pixels are used for spectral imaging, and each pixel resolves 1.13nm spectrum.
在推扫成像光谱仪中,为了在保证信噪比的条件下实现高分辨率和快速的重访时间,往往需要较大的系统,以及更昂贵的费用。而在光纤成像光谱仪中,在保证各项性能指标不变的基础上,扩大视场也必然会增加系统的体积以及费用。In push-broom imaging spectrometers, in order to achieve high resolution and fast revisit time under the condition of guaranteed signal-to-noise ratio, larger systems are often required, and more expensive. In the fiber optic imaging spectrometer, on the basis of ensuring that various performance indicators remain unchanged, expanding the field of view will inevitably increase the volume and cost of the system.
因此,当前各成像光谱仪难以同时满足高光谱分辨率、高像质、快速重访时间、较低成本以及空间系统高集成化。Therefore, it is difficult for current imaging spectrometers to simultaneously satisfy high spectral resolution, high image quality, fast revisit time, low cost, and high integration of space systems.
发明内容Contents of the invention
针对望远镜系统要求的高分辨率、高像质、长狭缝、快速重访时间,以及空间系统中高集成化的应用背景,本发明公开一种双缝offner式成像光谱系统,以便解决上述相关问题。Aiming at the high resolution, high image quality, long slit, fast revisit time required by the telescope system, and the application background of high integration in the space system, the present invention discloses a double-slit offner imaging spectrum system in order to solve the above-mentioned related problems .
本发明通过以下技术方案实现:The present invention is realized through the following technical solutions:
系统包括双入射狭缝1、凹面反射主镜2、凸面反射光栅3、凹面反射次镜4、校正透镜5、滤光片6、面阵探测器7,其特征在于:所述的双入射狭缝1对应两个不同视场,材料为铝合金6061;所述的凹面反射主镜2、次镜3的面型为球面;所述的凸面反射光栅3的面型为球面,系统光阑放在光栅上;所述的校正透镜5为弯月形透镜,材料为熔融石英;所述的面阵探测器7的像元尺寸12um,像元数为6K×6K。The system includes a double-incidence slit 1, a concave reflection main mirror 2, a convex reflection grating 3, a concave reflection secondary mirror 4, a correction lens 5, an optical filter 6, and an area array detector 7, and is characterized in that: the double-incidence slit The slit 1 corresponds to two different fields of view, and the material is aluminum alloy 6061; the surface type of the concave reflective primary mirror 2 and the secondary mirror 3 is spherical; the surface type of the convex reflective grating 3 is spherical, and the system aperture On the grating; the correction lens 5 is a meniscus lens, and the material is fused silica; the pixel size of the area array detector 7 is 12um, and the number of pixels is 6K×6K.
系统具体设计如下:The specific design of the system is as follows:
1、入射狭缝元件的设计1. Design of the entrance slit element
系统入射狭缝元件选用并列双缝设计,双缝尺寸相同,符合系统指标要求。双缝间隔考虑探测器参数、系统光谱分辨率以及系统尺寸,使透过双缝的光束经过分光子系统后,展开的光谱无重叠。The incident slit element of the system adopts a side-by-side double slit design, and the double slits have the same size, which meets the system index requirements. The double slit interval considers the detector parameters, system spectral resolution and system size, so that after the light beam passing through the double slit passes through the photo-splitting subsystem, the unfolded spectrum will not overlap.
2、分光子系统的设计2. Design of the photo-splitting subsystem
系统分光元件选用凸面反射光栅,凸面光栅综合性较佳,色散线性有利于定量化应用;闪耀波长选择与探测器响应、太阳光谱辐照度匹配设计可以获得较好的探测灵敏度一致性;反射式结构比较容易实现焦面稳定性和辐射光谱稳定性,适合于空间环境应用。凸面光栅光谱仪因其对称结构、全反射式和像场大等优点较多应用于航天高分辨率高光谱成像系统中。Convex reflective grating is selected as the light splitting element of the system, and the convex grating has better comprehensiveness, and the linear dispersion is conducive to quantitative application; the matching design of blaze wavelength selection, detector response, and solar spectral irradiance can obtain better detection sensitivity consistency; reflective The structure is relatively easy to achieve focal plane stability and radiation spectrum stability, and is suitable for space environment applications. Convex grating spectrometers are widely used in aerospace high-resolution hyperspectral imaging systems due to their advantages of symmetric structure, total reflection and large image field.
分光子系统采用Offner结构,基于Offner同心结构的凸面光栅成像光谱仪的分光子系统由3个光学元件组成:2个凹球面反射镜和1个凸面光栅。同时3个光学元件共球心,凸面光栅位于两球面反射镜之间,是分光子系统的关键元件,也是限制凸面光栅成像光谱仪效率的主要因素。经由望远镜或光纤束收集到的光束通过双入射狭缝进入分光子系统,经凹面主镜反射到凸面闪耀光栅表面,在光栅表面按波长色散后,经由凹面次镜反射会聚至探测器。由此,面阵探测器获取到的垂直光栅刻线的一维呈现的是两个狭缝入射光束的两组光谱信息,平行于光栅刻线的一维是与狭缝形状相似的精细条纹;如果是光纤束入射,则平行于光栅刻线的一维是不同光纤对应的位置维。此外,在设计优化中,引入了一块非球面弯月形透镜,用于减小系统像差,光阑位于凸面反射光栅上。设计本身具有大孔径、低光学畸变、结构简单、易于实现小型化的特性,降低了成像光谱仪的设计难度和后端数据处理的复杂度,提高了成像光谱分析的准确度。The photo-splitting subsystem adopts the Offner structure. The photo-splitting subsystem of the convex grating imaging spectrometer based on the Offner concentric structure consists of 3 optical elements: 2 concave spherical mirrors and 1 convex grating. At the same time, the three optical elements have the same spherical center, and the convex grating is located between the two spherical mirrors. It is the key component of the photo-splitting subsystem and the main factor that limits the efficiency of the convex grating imaging spectrometer. The beam collected by the telescope or fiber optic bundle enters the beam splitting subsystem through the double incident slit, and is reflected by the concave primary mirror to the surface of the convex blazed grating. As a result, the one-dimensional vertical grating lines acquired by the area detector present two sets of spectral information of the two slit incident beams, and the one-dimensional parallel to the grating lines are fine fringes similar in shape to the slits; If a fiber bundle is incident, the dimension parallel to the grating reticle is the position dimension corresponding to different fibers. In addition, in the design optimization, an aspheric meniscus lens is introduced to reduce system aberration, and the diaphragm is located on the convex reflective grating. The design itself has the characteristics of large aperture, low optical distortion, simple structure, and easy miniaturization, which reduces the design difficulty of the imaging spectrometer and the complexity of back-end data processing, and improves the accuracy of imaging spectrum analysis.
分光器件的几何参数还需要考虑衍射特性的设计,取决于光谱成像系统指标。本专利中,凸面反射光栅的衍射级次为-1级,光栅尺寸与刻线密度根据波段、光谱采样率决定。The geometric parameters of the spectroscopic device also need to consider the design of the diffraction characteristics, which depends on the index of the spectral imaging system. In this patent, the diffraction order of the convex reflective grating is -1, and the grating size and groove density are determined according to the band and spectral sampling rate.
3、探测子系统设计3. Detection subsystem design
探测子系统包括滤波片和面阵探测器两部分。由于系统工作波段为200nm~550nm,因此需要在探测器前装置一块马赛克滤波片来消除400nm~550nm处200nm~275nm的二级衍射光谱。考虑到双缝的展开光谱及分辨率,面阵探测器像元尺寸12um,像元数为6K×6K。The detection subsystem includes two parts: filters and area detectors. Since the working band of the system is from 200nm to 550nm, it is necessary to install a mosaic filter in front of the detector to eliminate the secondary diffraction spectrum at 200nm to 275nm at 400nm to 550nm. Considering the expanded spectrum and resolution of the double slit, the pixel size of the area array detector is 12um, and the number of pixels is 6K×6K.
如上所述,根据本发明的一种双入射高分辨率光谱成像系统,其包括双入射狭缝1、凹面反射主镜2、凸面反射光栅3、凹面反射次镜4、校正透镜5、滤光片6、面阵探测器7。来自条带型地表目标的辐射经前置望远镜进入系统,通过狭缝后的光谱辐射能量,经由主镜反射至凸面反射光栅,由反射光栅分光,把不同狭缝的不同波长的光分开,再经次镜反射会聚在面阵探测器7上,实现精密光谱成像。As mentioned above, a double-incidence high-resolution spectral imaging system according to the present invention includes a double-incidence slit 1, a concave reflective primary mirror 2, a convex reflective grating 3, a concave reflective secondary mirror 4, a correction lens 5, a filter Sheet 6, area array detector 7. The radiation from the strip-type surface target enters the system through the front telescope, and the spectral radiant energy after passing through the slit is reflected by the primary mirror to the convex reflective grating, and the light of different wavelengths from different slits is separated by the reflective grating. Converge on the area array detector 7 through secondary mirror reflection to realize precise spectral imaging.
所述的双缝入射高分辨率光谱成像系统的F/5,光谱分辨率为0.04nm;工作波长为200~550nm,体积小于70×400×1050mm3。The F/5 of the double-slit incident high-resolution spectral imaging system has a spectral resolution of 0.04nm; the working wavelength is 200-550nm, and the volume is less than 70×400×1050mm 3 .
与现有技术相比,本发明的优点在于:成像光谱系统在满足大视场、高光谱分辨率、高信噪比的前提下,双缝入射可以满足快速重访时间、较低成本以及空间系统高集成化;基于Offner结构的凸面光栅成像光谱系统可以实现大孔径、低光学畸变、结构简单、易于实现小型化。Compared with the prior art, the present invention has the advantages that: under the premise of large field of view, high spectral resolution, and high signal-to-noise ratio, the imaging spectrum system can satisfy fast revisit time, low cost and space The system is highly integrated; the convex grating imaging spectroscopy system based on the Offner structure can achieve large aperture, low optical distortion, simple structure, and easy miniaturization.
附图说明Description of drawings
图1是本发明实施例所提供的双缝高光谱成像系统的光路示意图;1 is a schematic diagram of the optical path of a double-slit hyperspectral imaging system provided by an embodiment of the present invention;
图2是本发明实施例所提供的双缝高光谱成像系统组件示意图;Fig. 2 is a schematic diagram of components of a double-slit hyperspectral imaging system provided by an embodiment of the present invention;
图3是本发明实施例所提供的双缝高光谱成像系统的狭缝元件结构示意图;Fig. 3 is a schematic structural diagram of a slit element of a double-slit hyperspectral imaging system provided by an embodiment of the present invention;
其中:in:
1、双入射狭缝;1. Double incident slit;
2、凹面反射镜;2. Concave reflector;
3、凸面反射光栅;3. Convex reflective grating;
4、凹面反射次镜;4. Concave reflective secondary mirror;
5、校正透镜;5. Correction lens;
6、滤光片;6. Optical filter;
7、面阵探测器。7. Area array detector.
具体实施方式detailed description
下面结合图给出本发明一个较好的实施例,主要用作进一步详细说明本发明的特点,而非用来限定本发明的范围:Provide a preferred embodiment of the present invention below in conjunction with figure, mainly be used as further specifying the characteristics of the present invention in detail, rather than being used for limiting the scope of the present invention:
图1是本发明具体实施例的双缝高光谱成像系统的光路示意图。参见附图1,来自目标的双条带型辐射信号经过前端望远镜系统后分别成像于视场光阑双狭缝1上,透过双狭缝1的辐射能量经由凹面反射镜2,反射到凸面反射光栅3上,把不同波长的光分开,不同波长的光线在凸面反射光栅3反射出后,沿着不同的角度反射至凹面反射次镜4上,经由凹面反射次镜4反射出,进入校正透镜5,最终经过滤光片6汇聚到面阵探测器7的不同位置,实现谱线分离。面阵探测器7上显示的是呈精细条纹状的像,其中缝1的展开光谱位于探测器下半部分,缝2的展开光谱位于探测器上半部分。由于采用了Offner结构,系统实现放大率为1:1的成像。Fig. 1 is a schematic diagram of an optical path of a double-slit hyperspectral imaging system according to a specific embodiment of the present invention. Referring to Figure 1, the double-strip radiation signal from the target is imaged on the double slit 1 of the field diaphragm after passing through the front-end telescope system, and the radiation energy passing through the double slit 1 is reflected to the convex surface by the concave mirror 2 On the reflective grating 3, the light of different wavelengths is separated. After the light of different wavelengths is reflected by the convex reflective grating 3, it is reflected to the concave reflective secondary mirror 4 along different angles, and is reflected by the concave reflective secondary mirror 4 to enter the calibration. The lens 5 finally converges to different positions of the area array detector 7 through the optical filter 6 to realize spectral line separation. The image displayed on the area array detector 7 is a fine fringe image, in which the expanded spectrum of slit 1 is located in the lower half of the detector, and the expanded spectrum of slit 2 is located in the upper half of the detector. Due to the Offner structure, the system realizes imaging with a magnification ratio of 1:1.
图2是上述光谱成像系统组件示意图。参见附图2,其中分光子系统由凹面反射主镜2、凸面反射光栅3、凹面反射次镜4、校正透镜5构成;探测子系统由滤光片6、面阵探测器7构成。其中凸面反射光栅3的光栅常数为每毫米190线对。Fig. 2 is a schematic diagram of components of the spectral imaging system described above. Referring to accompanying drawing 2, wherein the light-splitting subsystem is composed of a concave reflective primary mirror 2, a convex reflective grating 3, a concave reflective secondary mirror 4, and a correction lens 5; the detection subsystem is composed of an optical filter 6 and an area array detector 7. The grating constant of the convex reflective grating 3 is 190 line pairs per millimeter.
图3是本发明具体实施例所提供的光谱成像系统中双入射狭缝元件结构示意图。参见附图3,每个狭缝尺寸均为50mm×125um,狭缝间间隔为35mm,本专利中采用狭缝元件材料为铝合金6061。Fig. 3 is a schematic structural diagram of a dual-incidence slit element in a spectral imaging system provided by a specific embodiment of the present invention. Referring to accompanying drawing 3, the size of each slit is 50mm×125um, and the interval between the slits is 35mm. The material of the slit element used in this patent is aluminum alloy 6061.
系统工作波长为200nm~550nm,光谱范围350nm,数值孔径NA为0.1,狭缝尺寸为50mm×125um,狭缝间间隔为35mm,光谱分辨率达到0.04nm,探测器像元尺寸12um,像元数为6K×6K,系统放大率为1:1。全系统反射镜面为全球面设计,材料为零膨胀微晶玻璃,校正透镜材料为熔融石英。全视场内系统弥散斑RMS半径在5um以内,小于1/2探测器像元尺寸,系统体积为70×400×1050mm3。The working wavelength of the system is 200nm~550nm, the spectral range is 350nm, the numerical aperture NA is 0.1, the slit size is 50mm×125um, the interval between slits is 35mm, the spectral resolution reaches 0.04nm, the detector pixel size is 12um, and the number of pixels It is 6K×6K, and the system magnification ratio is 1:1. The mirror surface of the whole system is designed as a spherical surface, the material is zero-expansion glass-ceramic, and the material of the correction lens is fused silica. The RMS radius of the system diffuse spot in the full field of view is within 5um, which is less than 1/2 the pixel size of the detector, and the system volume is 70×400×1050mm 3 .
系统主要光学参数:Main optical parameters of the system:
系统保证了在工作波段内满足高光谱分辨率、高像质的前提下,同时实现快速重访时间、较低成本以及空间系统高集成化设计。The system ensures fast revisit time, low cost and highly integrated design of the space system under the premise of high spectral resolution and high image quality in the working band.
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710037344.3A CN106706131A (en) | 2017-01-19 | 2017-01-19 | Double-incident slit high-resolution imaging spectral system |
CN201720842963.5U CN207280591U (en) | 2017-01-19 | 2017-07-12 | Double entrance slit high-resolution imaging spectroscopic systems |
CN201710565845.9A CN107144350A (en) | 2017-01-19 | 2017-07-12 | A kind of pair of entrance slit high-resolution imaging spectroscopic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710037344.3A CN106706131A (en) | 2017-01-19 | 2017-01-19 | Double-incident slit high-resolution imaging spectral system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106706131A true CN106706131A (en) | 2017-05-24 |
Family
ID=58907781
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710037344.3A Pending CN106706131A (en) | 2017-01-19 | 2017-01-19 | Double-incident slit high-resolution imaging spectral system |
CN201710565845.9A Pending CN107144350A (en) | 2017-01-19 | 2017-07-12 | A kind of pair of entrance slit high-resolution imaging spectroscopic system |
CN201720842963.5U Active CN207280591U (en) | 2017-01-19 | 2017-07-12 | Double entrance slit high-resolution imaging spectroscopic systems |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710565845.9A Pending CN107144350A (en) | 2017-01-19 | 2017-07-12 | A kind of pair of entrance slit high-resolution imaging spectroscopic system |
CN201720842963.5U Active CN207280591U (en) | 2017-01-19 | 2017-07-12 | Double entrance slit high-resolution imaging spectroscopic systems |
Country Status (1)
Country | Link |
---|---|
CN (3) | CN106706131A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108398186A (en) * | 2018-02-07 | 2018-08-14 | 中国科学院光电研究院 | Free form surface Offner convex grating spectrum imaging systems |
CN110672206A (en) * | 2019-09-30 | 2020-01-10 | 中国海洋大学 | Double-slit curved prism chromatic dispersion ultra-large field of view spectrometer optical system |
CN113701882A (en) * | 2021-08-31 | 2021-11-26 | 中国科学院长春光学精密机械与物理研究所 | Spectrometer optical system and design method thereof |
CN117523157A (en) * | 2023-11-21 | 2024-02-06 | 深圳华天高科电子有限公司 | AI machine vision recognition method and system under dynamic sunlight irradiance |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108106729B (en) * | 2017-12-01 | 2019-09-10 | 中国科学院长春光学精密机械与物理研究所 | A kind of total CCD spectrometer of double grating |
CN109724931B (en) * | 2019-03-06 | 2023-04-07 | 台州市维谱智能科技有限公司 | Real-time calibration spectrum sensing system and spectrum processing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101545807A (en) * | 2009-05-08 | 2009-09-30 | 中国科学院上海技术物理研究所 | Multi-slit convex grating imaging spectrograph |
CN104792414A (en) * | 2015-04-03 | 2015-07-22 | 中国科学院空间科学与应用研究中心 | Convex grating Offner structure double-slit multispectral system |
CN105092031B (en) * | 2015-06-02 | 2017-08-25 | 中国科学院上海技术物理研究所 | A kind of infrared high spectrum imaging system with cold stop |
CN106525237A (en) * | 2016-10-24 | 2017-03-22 | 中国科学院国家空间科学中心 | Multi-slit multispectral system of crossed Czerny-Turner structure |
-
2017
- 2017-01-19 CN CN201710037344.3A patent/CN106706131A/en active Pending
- 2017-07-12 CN CN201710565845.9A patent/CN107144350A/en active Pending
- 2017-07-12 CN CN201720842963.5U patent/CN207280591U/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108398186A (en) * | 2018-02-07 | 2018-08-14 | 中国科学院光电研究院 | Free form surface Offner convex grating spectrum imaging systems |
CN110672206A (en) * | 2019-09-30 | 2020-01-10 | 中国海洋大学 | Double-slit curved prism chromatic dispersion ultra-large field of view spectrometer optical system |
CN113701882A (en) * | 2021-08-31 | 2021-11-26 | 中国科学院长春光学精密机械与物理研究所 | Spectrometer optical system and design method thereof |
CN117523157A (en) * | 2023-11-21 | 2024-02-06 | 深圳华天高科电子有限公司 | AI machine vision recognition method and system under dynamic sunlight irradiance |
CN117523157B (en) * | 2023-11-21 | 2024-07-16 | 深圳华天高科电子有限公司 | AI machine vision recognition method and system under dynamic sunlight irradiance |
Also Published As
Publication number | Publication date |
---|---|
CN107144350A (en) | 2017-09-08 |
CN207280591U (en) | 2018-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207280591U (en) | Double entrance slit high-resolution imaging spectroscopic systems | |
CN108801460B (en) | A common-aperture multi-channel full-band hyperspectral imaging system | |
CN102519595B (en) | Optical system of a spaceborne differential absorption spectrometer | |
CN104359553B (en) | A kind of compact grating dispersion spectrum imager | |
CN112229516B (en) | A spectroscopic imaging system and imaging method for snapshot imaging spectrometer | |
CN205808912U (en) | Compact high-resolution wide visual field spectrum imaging system | |
CN109781261B (en) | Compact catadioptric athermal imaging spectrometer | |
CN106017676A (en) | Infrared imaging spectral measurement system based on gradual filter | |
CN106885629A (en) | The beam splitting system and its light-splitting method of a kind of spaceborne imaging spectrometer | |
CN104792414A (en) | Convex grating Offner structure double-slit multispectral system | |
CN109489817A (en) | A kind of optical system of the airborne Difference Absorption imaging spectrometer of big visual field wide spectrum | |
CN111208080A (en) | Large-view-field high-resolution ultraviolet imaging spectrometer optical system for earth observation | |
CN110319932A (en) | A kind of high light spectrum image-forming optics system | |
CA3040931A1 (en) | Monolithic assembly of reflective spatial heterodyne spectrometer | |
CN103411670B (en) | A kind of Novel prism dispersion imaging spectrometer | |
Ji et al. | Analytical design and implementation of an imaging spectrometer | |
CN103852163A (en) | Miniature beam splitting system suitable for miniature imaging spectrometer | |
CN110501074B (en) | High-flux wide-spectrum high-resolution coherent dispersion spectrum imaging method and device | |
CN113390508B (en) | Short-wave infrared imaging method and device for spectral-spatial resolution image quality optimization | |
WO2023103115A1 (en) | Optical system and detection method based on spectral imaging and spatial optical remote sensing detection | |
CN210774359U (en) | Convergent light-splitting aperture multispectral imaging optical system | |
CN211824764U (en) | Medium-and long-wave thermal infrared double-spectrum band non-refrigeration type imaging device | |
CN106840403B (en) | More slit polarization imaging spectrometers based on Amici prismatic decompositions | |
CN108760634A (en) | A kind of ultraviolet-visible-near infrared imaging spectrometer for the detection of airborne water colour | |
CN110285884B (en) | Optical system of a hyperspectral imager for sunlight-induced chlorophyll fluorescence detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170524 |
|
WD01 | Invention patent application deemed withdrawn after publication |